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Abstract

Computer aided diagnosis (CAD) systems are designed to assist clinicians in vari-
ous tasks, including highlighting abnormal regions in medical images. Common
methods exploit supervised learning using annotated data sets and perform clas-
sification at voxel-level. However, many pathologies are characterized by subtle
lesions that may be located anywhere in the organ of interest, have various shapes,
sizes and textures. Acquiring a data set adequately representing the heterogeneity
of such pathologies is therefore a major issue. Moreover, when a lesion is not
visually detected on a scan, outlining it accurately is not feasible. Performing
supervised learning on such labeled data would not be reliable. In this study, we
consider the problem of detecting subtle epilepsy lesions in multiparametric (T1w,
FLAIR) MRI exams considered as normal (MRI-negative). We cast this problem
as an outlier detection problem and build on a previously proposed approach that
consists in learning a oc-SVM model for each voxel in the brain volume using a
small number of clinically-guided features [1]. Our goal in this study is to make
a step forward by replacing the handcrafted features with automatically learnt
representations using neural networks. We propose a novel version of siamese net-
works trained on patches extracted from healthy patients’ scans only. This network,
composed of stacked convolutional autoencoders as subnetworks, is regularized by
the reconstruction error of the patches. It is designed to map patches centered at
the same spatial localization to ’close’ representations with respect to the chosen
metric (i.e. cosine) in a latent space. Finally, the middle layer representations of
the subnetworks are fed into oc-SVM models at voxel-level. The model is trained
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on 75 healthy subjects and validated on 21 patients with confirmed epilepsy lesions
(with 18 MR negative patients) and shows a promising performance.

1 Introduction

Computer aided diagnosis (CAD) systems have been introduced as to assist clinicians in various
tasks such as organ or lesion segmentation, detection of abnormal regions in a medical image, etc.
Recent CAD systems for brain pathologies exploit various modalities of neuroimaging data, such
as magnetic resonance imaging (MRI) and positron emission tomography (PET). The vast majority
of the existing CAD systems are built upon methods developed in supervised settings, using either
manually designed features or currently ubiquitous deep learning architectures as in [2, 3, 4, 5].
Such systems benefit from the available data sets (usually) annotated at voxel-level, and output
maps where each voxel is characterized either by a class label, a probability or, less commonly, a
score discriminating healthy versus pathological voxels. Supervised learning, however, cannot be
applied when the number of pathological cases in the training set is not sufficient to account for the
complexity of the task. This is often the case when it comes to detecting some brain pathologies such
as small vessel diseases (SVD), multiple sclerosis (MS) or epilepsy, when the lesions are subtle and
vary largely in terms of shapes and textures. It is not trivial to obtain a well-annotated data set to
represent such a variability. To bypass the problem of insufficient labeled data, some authors recently
proposed to formulate such lesion detection tasks in semi-supervised settings, by accounting for both
labeled and unlabeled data in a deep architecture for MS lesion segmentation [6] or by exploiting
weak labels (the number of lesions in a scan) to detect enlarged perivascular spaces in the basal
ganglia [7].
In this study we propose to tackle the problem of epilepsy lesion detection in patients with MRI
negative exams, meaning that the lesions were not visually identified by clinicians on the MR scans.
Similarly to the above mentioned lesion detection tasks, most of the current epilepsy detection
methods perform supervised learning by leveraging annotated lesions delineated on MRI positive
patients (the lesions are visually detected on the scans) [8] or by careful a posteriori re-reading of post-
surgical scans of MRI negative patients who had undergone surgery and were seizure-free afterwards
[1, 9, 10, 11]. While obtaining accurately labeled data for MRI positive patients is feasible, the real
challenge is to extract accurate delineations in MRI negative patients. [11] showed that exploiting
’too generously’ annotated lesions on MRI negative scans as labels for supervised learning methods
leads to poor detection rate due to the presence of normal tissue in the areas labeled as pathological.
Therefore, some recent methods cast epilepsy lesion detection task as an outlier detection problem
[1, 11, 12]. Such an approach solely needs a training set of non-pathological images, hence no
labeled data is required. [1] used a small number of features modeling the gray-white matter junction
(similarly to [13, 14]) while [12] and [11] derived features from surface based morphometry (SBM).
All the latter methods targeted a specific type of epilepsy caused by focal cortical dysplasia (FCD);
hence the features were chosen as to provide the most common FCD-characteristics to the models.

In this work we build on the method proposed in [1] that learns a one-class SVM (oc-SVM) model
for each voxel individually. Our goal is to make a step forward by replacing the handcrafted
features with automatically learnt representations using neural networks. Deep learning architectures
allow to learn representations that are not limited to the clinically-guided features which have to
be designed for each pathology individually; the representations are learnt based on the available
data. Moreover, certain architectures provide a convenient framework to learn joint representations
of multiparametric/multimodality imaging. Our methodological contribution consists in proposing
a variant of siamese neural network designed to learn representations for outlier detection on brain
images. The network is composed of stacked convolutional autoencoders and is trained on the patches
of healthy brain volumes only, by utilizing a novel loss function adapted to the given context. Such
a network allows learning meaningful representations which, coupled with voxel-level oc-SVM
classifiers, discriminate various brain abnormalities and can be applied to detect subtle pathologies in
general. From the medical application perspective, we attempt to make a step forward in automatically
learning representations for epilepsy lesion detection, unlike in the previous studies ([1, 11]). Our
approach is not targeted at one specific epilepsy type and thus is more generic and also detects lesions
with rather unknown signatures. Moreover, to our knowledge, this is the first study to propose a neural
network architecture trained on multiparametric MRI data that can be applied to detect epilepsy
lesions.
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Figure 1: Siamese neural network composed of stacked convolutional autoencoders as sub-networks.
The input consists of a pair of patches of 2 different subjects centered at the same spatial localization
in the brain. The middle-layer representation is denoted by g(x).

2 Method

In this study we propose to use a siamese network to learn patch-level representations in the context
of outlier detection. Such an approach is applicable in cases where pathological samples are not
available or their number is insufficient to adequately represent the nature of the pathology and hence,
supervised learning is not possible.
The motivation behind the architecture choice is the following. Our objective is to map the original
patches to a space where the patches belonging to different subjects but centered at the same spatial
localization are "close" with respect to a chosen metric. We could consider the patches centered at the
same voxel as representatives of the same class (hence, "similar" patches). In this case the number of
classes would be equal to the number of voxels in a brain volume (around 4 millions) but the number
of samples per class would be equal to the number of subjects. The siamese networks have proved
to be efficient in similar scenarios [15, 16] where the number of classes is largely greater than the
number of samples per class.

2.1 Regularized siamese neural network for representation learning

2.1.1 Architecture

The proposed architecture is illustrated on figure 1. Our regularized siamese neural network (rSNN)
consists of two identical (same architecture, shared parameters) subnetworks - stacked convolutional
autoencoders (sCAE) with K hidden layers and a cost module. The input x of a SCAE is first
encoded to a middle-layer representation by a series of convolutional and max-pooling operations
and later decoded with a series of deconvolutions and up-poolings to produce a reconstruction x̂ of
the input. A convolutional layer l is composed of Nl kernels and biases and can be expressed as

Hm
l = f(Wm

l−1 ∗Hl−1 + bml−1)

where Hm
l is the m-th feature map of the convolutional layer l, Wm

l is the kernel matrix associated
with Hm

l and bml is its bias, f is an activation function (usually non-linear). ∗ denotes the convolution
operation. The parameters are iteratively updated to optimize a loss function that measures the
deviation between the output x̂ and the input x.
The siamese network receives a pair of patches (x1,x2) at input, then each patch is propagated
through the corresponding subnetwork yielding representations g(xt), t = (1, 2) in the middle
layer which are then passed to the loss function L below. It is important to mention that, unlike
in the classical siamese frameworks where the network also receives a binary label that stands for
the similarity/dissimilarity of the pair, in our application all the considered pairs are ’similar’ and
therefore the label is not present in the loss function. The loss function, however, can be easily
modified to meet the general setting.
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2.1.2 Loss function

Our loss function is designed to maximize the cosine similarity between g(x1) and g(x2). In
the absence of dissimilar pairs (the notion of dissimilar patches is not defined in our context), it
is necessary to add a regularizing term. To this end, we propose to use the mean squared error
between the input patches and their reconstructions output by the subnetworks. Without a proper
regularization term, the loss function could be driven to 0 by mapping all the patches to a constant
value. The proposed loss function for a single pair hence is:

L(x1,x2; Θ) =

2∑
t=1

||xt − x̂t||22 − αcos(g(x1), g(x2)) (1)

where x̂t is the reconstructed output of subnetwork t of the patch xt while g(xt) is its (vectorized)
representation in the middle layer and α is a coefficient that controls the tradeoff between the two
terms. Θ represents the parameter set.

2.2 Voxel-level outlier detection with oc-SVM classifiers

A oc-SVM classifier [17] is an outlier detection method that seeks to find the optimal hyperplane
that separates the given points from the origin in a dot product space defined by some kernel function
φ. The corresponding optimization problem is the following:

min
w,ρ,ξi

1

2
||w||2 − ρ+

1

νn

n∑
i=1

ξi

subject to w · φ(xi) ≥ ρ− ξi, ξi ≥ 0, i ∈ [1,n]

(2)

where n is the number of training examples, xi is the i-th example in the training dataset X , ξi-s are
slack variables relaxing the inequality constraints as to account for the non-separable classes, w and
ρ define the separating hyperplane, ν is a parameter that sets a boundary to the fraction of outliers
allowed. The decision function, then, for an example x is w · φ(x)− ρ. This decision function
contributes to the signed score output by a oc-SVM model (in a typical scenario examples with
negatives scores would be considered outliers).
To validate the usefulness of the features learnt by the proposed method, we use the representations
in the middle layer of the subnetworks (g(x)) to train oc-SVM classifiers at voxel level. Each voxel
is associated with a classifier, hence the number of classifiers is equal to the number of voxels in
a volume (around 4 million voxels). For a given voxel vi, the associated oc-SVM classifier Ci is
trained on the matrix Mi = [xi1, ...,xin] where xij is the feature vector corresponding to the patch
centered at vi of subject j and n is the number of subjects.
For a new patient, each voxel vi is matched against the corresponding classifier Ci and is assigned
the signed score output by the classifier. This yields a distance map Dp for the given patient.

2.3 Post-processing

For a given patient, the output of the previous step - the distance map Dp- is then post-processed to
obtain the final detections. A 3-step post-processing is proposed as follows.

The first step consists in normalizing the distance maps with respect to the intra-subject spatial
variability. For that purpose, the distance maps of the control subjects are computed by performing a
k-fold evaluation of the controls in the training set (i.e. for each fold of normal subjects, the distance
maps are obtained with oc-SVMs trained on the remaining subjects). These maps are used to estimate
the standard deviation of the normal subjects’ distance distribution at voxel-level. For a given patient
p, a new map D́p is computed by a voxel-wise division of the output distance map Dp over the
estimated standard deviations. The final distance map Fp is then derived by averaging Dp and D́p i.e.

Fp = 1
2 (

Dp

max(abs(Dp)) +
D́p

max(abs(D́p)
)). The reason behind the additional term is that some zones in

the brain have more intra-subject variability than others and therefore are more likely to be considered
as anomalies. By weighing them by the standard deviation, the score maps account for this effect.
The second step consists in thresholding the Fp map to produce a cluster map. We keep the most
negative scores up to the score corresponding to a pre-chosen p-value in the patient’s distance score
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distribution and apply a 26-connectivity rule to identify connected components which we refer to as
clusters. The voxel clusters smaller than a fixed size (here, 82 voxels corresponding to the expected
cluster size calculated with the SPM analysis of the T1 MRI data) are discarded. This allows quick
elimination of small and very negative clusters which usually represent isolated intensity peaks (the
size of the majority of the detected clusters varies between 500 and 1500, this threshold therefore does
not affect the performance in any significant way). The clusters are what we refer to as detections
by the proposed method. By varying the p-value the number of clusters can be controlled according
to a clinician’s needs.
The third step consists in ranking the detected clusters to help the analysis of the detections. For each
patient individually, a p-value is found that produces at most 15 clusters. Among those, we use the
following ranking criterion to assign a rank to a cluster ci

rank(ci) ∼ λ ∗
score(ci)

minjscore(cj)
+ (1− λ) ∗ size(ci)

maxjsize(cj)
(3)

where score(ci) is the average of the voxel scores in the cluster and size(ci) is the number of voxels
in the cluster. Such a ranking favors large clusters with the most negative average score. Using
this ranking, we keep the top n detections and discard the rest. When there is a significant overlap
between a detected cluster and the ground truth for a given patient, we consider the cluster a true
positive and false positive otherwise.

3 Experiments and results

3.1 Dataset description and pre-processing

The study was approved by our institutional review board with approval numbers 2012-A00516-37
and 2014-019 B and a written consent was obtained for all participants.
Our database consists of multiparametric (T1-weighted and FLAIR) MR images of 75 healthy subjects
and 21 patients. They all had a 3D anatomical T1-weighted brain MRI (TR/TE 2400/3.55; 160
sagittal slices of 192 x 192 1.2mm cubic voxels) and FLAIR (176 sagittal slices of 196 x 256 1.2mm
cubic voxels) on a 1.5 T Sonata scanner (Siemens Healthcare, Erlangen, Germany). All the volumes
were normalized to the standard brain template of the Montreal Neurological Institute (MNI) [18]
using a voxel size of 1 x 1 x 1 mm. This processing was performed using the unified segmentation
algorithm [19] implemented in SPM12 also correcting for magnetic field inhomogeneities. This
spatial normalisation assures a voxel-level correspondence between the subjects. We removed top 1%
intensities and scaled the images between 0 and 1 at image level before feeding the patches to the
rSNN.
The method has been validated on 21 patients admitted to our clinical center with confirmed medically
intractable epileptogenic lesions: 2 of them were visually detected on the patient FLAIR images
(but not on T1w images) and only 1 lesion was identified on both T1w and FLAIR scans. The
remaining 18 patients are confirmed MR negative patients. The MR negative patients had undertaken
surgeries and have been seizure-free since. The ground truth annotations used in the performance
evaluation were obtained by outlining the visible zones of the MR positive patients and by combining
the information of post-surgical MR images and the resected zones for MR negative patients.

3.2 Feature extraction with SNN

The proposed rSNN consists of two identical subnetworks - stacked convolutional autoencoders with
the architecture as in fig. 2. In the mono-modal scenario, they both receive at input 15x15 patches
extracted from all the available healthy subjects’ volumes of the corresponding modality (T1w or
FLAIR) with a stride of 8. In the multi-modal scenario, the input consists of the patches of each
modality joint as channels. For each of the patches, a random ’similar pair’ is found among the other
subjects yielding in total around 3.5 million pairs. The α parameter in the loss 1 is set to 0 during the
first 10 epochs, then grows linearly for 15 epochs until it reaches 0.5 and then plateaus for 5 more
epochs. We used ReLU activation function in all the layers except the last one where the sigmoid is
used (the input patches are scaled between 0 and 1). The Adam optimizer was used with the learning
rate set to 0.001 (the rest of the parameters remained at their default value as implemented in Theano).
The architecture itself is not arbitrary. The size of the patches at input was chosen after a number of
tested configurations and is justified by the subtle nature of epilepsy lesions. Indeed, larger patch
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Figure 2: rSNN subnetwork architecture for epilepsy lesion detection. C and DC denote convolu-
tional and deconvolutional layers respectively, MP and UP denote Maxpooling and Uppooling. The
C and DC layers are denoted with the number of features maps (e.g. 16 for the first C layer) and the
kernel size in parenthesis (e.g. 3x3 for the first C layer). With this configuration, the middle-layer is
composed of 16 feature maps of size 2x2 which yields a 64-dimensional representation vector g(x)
when flattened.

sizes were not successful at detecting subtle lesions. Since the middle-layer representations are used
to build oc-SVM models per voxel where the number of samples per model is equal to the number
of subjects, having large representation vectors would not be beneficial. As shown on figure 2 the
middle layer has 16 feature maps of 2x2 which, when flattened, yields a 64-dimensional vector.

3.3 oc-SVM classifier design

We used oc-SVM classifiers with RBF kernel which gives us two parameters to tune - ν (upper bound
on the fraction of permitted outliers) and γ (the kernel parameter). Varying the parameter ν did not
significantly impact the results; the fraction of the outliers is controlled in the post-processing step by
the threshold value applied on the distance map. It was set to 0.03 for all the voxels. The γ parameter
was derived for each voxel vi individually by estimating the median of the standardized euclidean
pairwise distances of the corresponding matrix Mi (see section 2.2) as in [20].

3.4 Results

Below we evaluate the performance of the system on 21 patients with confirmed epilepsy lesions. We
first demonstrate the advantage of the multi-modal approach versus mono-modal approaches. Fig. 3
shows the true detection rates among the top n clusters for 3 scenarios - voxel-level outlier detection
with T1w-only, FLAIR-only and T1w/FLAIR-trained features, for 3 values of λ of expression 3, the
trade-off coefficient between the cluster size and average score. It clearly demonstrates that features
learnt on the combination of multimodality data outperform the individual modalities. Moreover, the
figure shows that ranking the clusters by both their average score and size has an advantage over the
individual criteria. With this ranking approach, the multimodal model achieves 62% of true detections
among the top 10 clusters. [11] reports a detection rate of 70% when individual SBM-based features
are used; the results vary between 60 and 70% when considering combinations of some of these
SBM features. 2 of the 3 MR positive lesions were detected among the top 2 clusters. This result
is expected considering that visually detected lesions have visible markers that allow to distinguish
them easily unlike the MR negative patients whose lesions may be detected along with other outliers
of similar ’suspiciousness’.
We have also compared the global results of our CAD system to the results obtained with a general
linear model (GLM) learned on feature maps derived from T1w images using three settings - 1.
junction contrast, 2.extension contrast and 3. the conjunction of both contrasts - for a p-value of 0.001
as done in [1]. These features model the junction between gray and white matters as described in
[13, 14]. For a fair comparison, the same clustering and ranking procedures (as described in section
2.3) were applied and only the top 10 clusters were considered. The results are summarized in table
1. While extension contrast detects one additional lesion compared with our mono-modal T1-based
approach, the combination of junction and extension contrasts does not achieve our best performance
with T1w/FLAIR model. We should also note that without applying the ranking method the original
SPM implementation produces much more false positive detections without any significant change in
the true positive rate.
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Figure 3: The performance of the CAD system. x-axis: Top n clusters, y-axis: Detection rate among
the top n clusters. From left to right: λ = 1 (score-only), λ = 0.5 (score and size average) and λ = 0
(size-only) ranking criteria.

Table 1: Our system versus GLM model on T1w MRI as implemented in SPM software. First column:
the true positive rate; the number of detected patients / total number of patients in parenthesis. Second
column: the true positive rate calculated on MRI negative patients only. Third column: the average
number of false positive detections per patient.

True positive rate True positive rate on Average # of
MR negative patients false positives

rSNN + oc-SVM on T1 (ranked, top 10) 0.38 (8/21) 0.38 (7/18) 9
rSNN + oc-SVM on FLAIR (ranked, top 10) 0.52 (11/21) 0.5 (9/18) 9
rSNN + oc-SVM on T1/FLAIR (ranked, top 10) 0.62 (13/21) 0.61 (11/18) 9
SPM Junction on T1 (ranked, top 10) 0.28 (6/21) 0.27 (5/18) 9
SPM Extension on T1 (ranked, top 10) 0.43 (9/21) 0.44 (8/18) 9
SPM Junction-Extension on T1 (ranked, top 10) 0.24 (5/21) 0.22 (4/18) 9

Figure 4: CAD system output for patients A+, B− and C− respectively (+ stands for MR positive
patients, − for MR negative patients). Top row: Transverse slices centered at the lesion locations
(highlighted in red circles). Bottom row: Maximum intensity projections (MIP) of the cluster maps
overlaid on the MRI transverse slices. The maps show the top 1, top 6 and top 3 clusters, respectively.
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4 Discussion

This study presents a novel method to learn representations that can be used in the task of anomaly
detection on brain images. We have formulated a regularized siamese network architecture that learns
normal brain representations using a set of non-pathological MR volumes. The features learnt with
the network do not target specific pathology but rather allow to capture normal variability from a
cohort of healthy subjects. The framework allows integrating multiple modalities and we have shown
the performance gain obtained by coupling T1w and FLAIR imaging for the task of detecting subtle
epilepsy lesions in MRI negative patients. To our knowledge, this is the first attempt to use deep
learning for epilepsy lesion detection.

Most current studies target a specific type of the pathology, referred to as focal cortical dysplasia
(FCD), mainly resulting from a malformation of cortical development and leading to drug-resistant
epilepsy lesions. Some of these studies use manually designed features characterizing cortical
malformations based on surface based morphometry (SBM) [9, 11, 12]. Others associate these
morphometric features to the intensity anomalies in T1w MRI mainly caused by heterotopy lesions
[1, 8]. Our method seeks to find more complex features in an unsupervised manner in order to identify
lesions with unknown signatures. Naturally, such an approach, when applied to a specific pathology,
is likely to produce more false positive detections. Although a fair comparison with published results
is difficult because of the differences in the patient groups, results reported in table 1 (62% sensitivity
for 9 false positives per scan) are of the same order as those reported in recent studies for the difficult
task of automated detection in MRI-negative patients. Indeed, the system proposed in [11] based on
SBM features coupled with semi-supervised hierarchical conditional random fields achieves 70%
sensitivity on a sample of 20 T1 weighted MRI negative patients among the top 10 detections per
scan. In [1], a CAD system based on morphometric and intensity features coupled with a oc-SVM
classifier allows achieving the same 70% sensitivity with an average of 4 false positives per scan
when evaluated on a small cohort of 8 T1w MRI negative patients.

There are different options to improve the diagnostic performance of the proposed system. First, some
pathology-specific information could be introduced in the post-processing step, by discarding some of
the detected clusters based on shape and/or localization criteria. In the majority of the cases, as shown
in figure 4, most of the detected false positive clusters are indeed irregularities that can be easily
removed by a trained radiologist. An alternative option is to move towards a semi-supervised setting
by enhancing the neural network with a few ’pathological’ patches that could be extracted from MRI
positive cases or after a careful analysis of retrospective MRI negative patients, following, for instance,
some ideas recently proposed in [21]. More improvement could be achieved by accounting for the
complementary information provided by different imaging modalities. T1 and FLAIR modalities,
introduced as channels to our network, allowed a significant diagnostic performance gain as shown on
figure 3. We expect a further performance gain by exploiting PET imaging as recently demonstrated
in [22].

Finally, the proposed method is quite straightforward to implement and to apply in daily practice as
the output of the system can be obtained under a couple of minutes.
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