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ABSTRACT

Normalization techniques have only recently begun to be exploited in supervised
learning tasks. Batch normalization exploits mini-batch statistics to normalize
the activations. This was shown to speed up training and result in better models.
However its success has been very limited when dealing with recurrent neural
networks. On the other hand, layer normalization normalizes the activations
across all activities within a layer. This was shown to work well in the recurrent
setting. In this paper we propose a unified view of normalization techniques, as
forms of divisive normalization, which includes layer and batch normalization as
special cases. Our second contribution is the finding that a small modification
to these normalization schemes, in conjunction with a sparse regularizer on the
activations, leads to significant benefits over standard normalization techniques.
We demonstrate the effectiveness of our unified divisive normalization framework
in the context of convolutional neural nets and recurrent neural networks, showing
improvements over baselines in image classification, language modeling as well as
super-resolution.

1 INTRODUCTION

Standard deep neural networks are difficult to train. Even with non-saturating activation functions
such as ReLUs (Krizhevsky et al., 2012), gradient vanishing or explosion can still occur, since
the Jacobian gets multiplied by the input activation of every layer. In AlexNet (Krizhevsky et al.,
2012), for instance, the intermediate activations can differ by several orders of magnitude. Tuning
hyperparameters governing weight initialization, learning rates, and various forms of regularization
thus become crucial in optimizing performance.

In current neural networks, normalization abounds. One technique that has rapidly become a standard
is batch normalization (BN) in which the activations are normalized by the mean and standard
deviation of the training mini-batch (Ioffe & Szegedy, 2015). At inference time, the activations are
normalized by the mean and standard deviation of the full dataset. A more recent variant, layer
normalization (LN), utilizes the combined activities of all units within a layer as the normalizer (Ba
et al., 2016). Both of these methods have been shown to ameliorate training difficulties caused by
poor initialization, and help gradient flow in deeper models.

A less-explored form of normalization is divisive normalization (DN) (Heeger, 1992), in which
a neuron’s activity is normalized by its neighbors within a layer. This type of normalization is
a well established canonical computation of the brain (Carandini & Heeger, 2012) and has been
extensively studied in computational neuroscience and natural image modelling (see Section 2).
However, with few exceptions (Jarrett et al., 2009; Krizhevsky et al., 2012) it has received little
attention in conventional supervised deep learning.

Here, we provide a unifying view of the different normalization approaches by characterizing them
as the same transformation but along different dimensions of a tensor, including normalization across
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examples, layers in the network, filters in a layer, or instances of a filter response. We explore
the effect of these varieties of normalizations in conjunction with regularization, on the prediction
performance compared to baseline models. The paper thus provides the first study of divisive
normalization in a range of neural network architectures, including convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), and tasks such as image classification, language
modeling and image super-resolution. We find that DN can achieve results on par with BN in CNN
networks and out-performs it in RNNs and super-resolution, without having to store batch statistics.
We show that casting LN as a form of DN by incorporating a smoothing parameter leads to significant
gains, in both CNNs and RNNs. We also find advantages in performance and stability by being able
to drive learning with higher learning rate in RNNs using DN. Finally, we demonstrate that adding an
L1 regularizer on the activations before normalization is beneficial for all forms of normalization.

2 RELATED WORK

In this section we first review related work on normalization, followed by a brief description of
regularization in neural networks.

2.1 NORMALIZATION

Normalization of data prior to training has a long history in machine learning. For instance, local
contrast normalization used to be a standard effective tool in vision problems (Pinto et al., 2008;
Jarrett et al., 2009; Sermanet et al., 2012; Le, 2013). However, until recently, normalization was
usually not part of the machine learning algorithm itself. Two notable exceptions are the original
AlexNet by Krizhevsky et al. (2012) which includes a divisive normalization step over a subset of
features after ReLU at each pixel location, and the work by Jarrett et al. (2009) who demonstrated that
a combination of nonlinearities, normalization and pooling improves object recognition in two-stage
networks.

Recently Ioffe & Szegedy (2015) demonstrated that standardizing the activations of the summed
inputs of neurons over training batches can substantially decrease training time in deep neural
networks. To avoid covariate shift, where the weight gradients in one layer are highly dependent
on previous layer outputs, Batch Normalization (BN) rescales the summed inputs according to their
variances under the distribution of the mini-batch data. Specifically, if zj,n denotes the activation of
a neuron j on example n, and B(n) denotes the mini-batch of examples that contains n, then BN
computes an affine function of the activations standardized over each mini-batch:

z̃n,j = γ
zn,j − E[zj ]√
1

|B(n)| (zn,j − E[zj ])2
+ β E[zj ] =

1

|B(n)|
∑

m∈B(n)

zm,j

However, training performance in Batch Normalization strongly depends on the quality of the
aquired statistics and, therefore, the size of the mini-batch. Hence, Batch Normalization is harder
to apply in cases for which the batch sizes are small, such as online learning or data parallelism.
While classification networks can usually employ relatively larger mini-batches, other applications
such as image segmentation with convolutional nets use smaller batches and suffer from degraded
performance. Moreover, application to recurrent neural networks (RNNs) is not straightforward and
leads to poor performance (Laurent et al., 2015).

Several approaches have been proposed to make Batch Normalization applicable to RNNs. Cooijmans
et al. (2016) and Liao & Poggio (2016) collect separate batch statistics for each time step. However,
neither of this techniques address the problem of small batch sizes and it is unclear how to generalize
them to unseen time steps.

More recently, Ba et al. (2016) proposed Layer Normalization (LN), where the activations are
normalized across all summed inputs within a layer instead of within a batch:

z̃n,j = γ
zn,j − E[zn]√
1

|L(j)| (zn,j − E[zn])2
+ β E[zn] =

1

|L(j)|
∑

k∈L(j)

zn,k

where L(j) contains all of the units in the same layer as j. While promising results have been shown
on RNN benchmarks, direct application of layer normalization to convolutional layers often leads to
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a degradation of performance. The authors hypothesize that since the statistics in convolutional layers
can vary quite a bit spatially, normalization with statistics from an entire layer might be suboptimal.

Ulyanov et al. (2016) proposed to normalize each example on spatial dimensions but not on channel
dimension, and was shown to be effective on image style transfer applications (Gatys et al., 2016).

Liao et al. (2016a) proposed to accumulate the normalization statistics over the entire training phase,
and showed that this can speed up training in recurrent and online learning without a deteriorating
effect on the performance. Since gradients cannot be backpropagated through this normalization
operation, the authors use running statistics of the gradients instead.

Exploring the normalization of weights instead of activations, Salimans & Kingma (2016) proposed a
reparametrization of the weights into a scale independent representation and demonstrated that this
can speed up training time.

Divisive Normalization (DN) on the other hand modulates the neural activity by the activity of a pool
of neighboring neurons (Heeger, 1992; Bonds, 1989). DN is one of the most well studied and widely
found transformations in real neural systems, and thus has been called a canonical computation of
the brain (Carandini & Heeger, 2012). While the exact form of the transformation can differ, all
formulations model the response of a neuron z̃j as a ratio between the acitivity in a summation field
Aj , and a norm-like function of the suppression field Bj

z̃j = γ

∑
zi∈Aj

uizi(
σ2 +

∑
zk∈Bj

wkz
p
k

) 1
p

, (1)

where {ui} are the summation weights and {wk} the suppression weights.

Previous theoretical studies have outlined several potential computational roles for divisive normal-
ization such as sensitivity maximization (Carandini & Heeger, 2012), invariant coding (Olsen et al.,
2010), density modelling (Ballé et al., 2016), image compression (Malo et al., 2006), distributed
neural representations (Simoncelli & Heeger, 1998), stimulus decoding (Ringach, 2009; Froudarakis
et al., 2014), winner-take-all mechanisms (Busse et al., 2009), attention (Reynolds & Heeger, 2009),
redundancy reduction (Schwartz & Simoncelli, 2001; Sinz & Bethge, 2008; Lyu & Simoncelli, 2008;
Sinz & Bethge, 2013), marginalization in neural probabilistic population codes (Beck et al., 2011),
and contextual modulations in neural populations and perception (Coen-Cagli et al., 2015; Schwartz
et al., 2009).

2.2 REGULARIZATION

Various regularization techniques have been applied to neural networks for the purpose of improving
generalization and reduce overfitting. They can be roughly divided into two categories, depending on
whether they regularize the weights or the activations.

Regularization on Weights: The most common regularizer on weights is weight decay which just
amounts to using the L2 norm squared of the weight vector. An L1 regularizer (Goodfellow et al.,
2016) on the weights can also be adopted to push the learned weights to become sparse. Scardapane
et al. (2016) investigated mixed norms in order to promote group sparsity.

Regularization on Activations: Sparsity or group sparsity regularizers on the activations have
shown to be effective in the past (Roz, 2008; Kavukcuoglu et al., 2009) and several regularizers have
been proposed that act directly on the neural activations. Glorot et al. (2011) add a sparse regularizer
on the activations after ReLU to encourage sparse representations. Dropout developed by Srivastava
et al. (2014) applies random masks to the activations in order to discourage them to co-adapt. DeCov
proposed by Cogswell et al. (2015) tries to minimize the off-diagonal terms of the sample covariance
matrix of activations, thus encouraging the activations to be as decorrelated as possible. Liao et al.
(2016b) utilize a clustering-based regularizer to encourage the representations to be compact.
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(a) Batch-Norm (b) Layer-Norm (c) Div-Norm

Figure 1: Illustration of different normalization schemes, in a CNN. Each H ×W -sized feature map is depicted
as a rectangle; overlays depict instances in the set of C filters; and two examples from a mini-batch of size N
are shown, one above the other. The colors show the summation/suppression fields of each scheme.

3 A UNIFIED FRAMEWORK FOR NORMALIZING NEURAL NETS

We first compare the three existing forms of normalization, and show that we can modify batch
normalization (BN) and layer normalization (LN) in small ways to make them have a form that
matches divisive normalization (DN). We present a general formulation of normalization, where
existing normalizations involve alternative schemes of accumulating information. Finally, we propose
a regularization term that can be optimized jointly with these normalization schemes to encourage
decorrelation and/or improve generalization performance.

3.1 GENERAL FORM OF NORMALIZATION

Without loss of generality, we denote the hidden input activation of one arbitrary layer in a deep
neural network as z ∈ RN×L. HereN is the mini-batch size. In the case of a CNN, L = H×W ×C,
where H,W are the height and width of the convolutional feature map and C is the number of filters.
For an RNN or fully-connected layers of a neural net, L is the number of hidden units.

Different normalization methods gather statistics from different ranges of the tensor and then perform
normalization. Consider the following general form:

zn,j =
∑
i

wi,jxn,i + bj (2)

vn,j = zn,j − EAn,j
[z] (3)

z̃n,j =
vn,j√

σ2 + EBn,j
[v2]

(4)

where Aj and Bj are subsets of z and v respectively. A and B in standard divisive normalization
are referred to as summation and suppression fields (Carandini & Heeger, 2012). One can cast each
normalization scheme into this general formulation, where the schemes vary based on how they
define these two fields. These definitions are specified in Table 1. Optional parameters γ and β can
be added in the form of γj z̃n,j + βj to increase the degree of freedom.

Fig. 1 shows a visualization of the normalization field in a 4-D ConvNet tensor setting. Divisive
normalization happens within a local spatial window of neurons across filter channels. Here we set
d(·, ·) to be the spatial L∞ distance.

3.2 NEW MODEL COMPONENTS

Smoothing the Normalizers: One obvious way in which the normalization schemes differ is in
terms of the information that they combine for normalizing the activations. A second more subtle
but important difference between standard BN and LN as opposed to DN is the smoothing term σ,
in the denominator of Eq. (1). This term allows some control of the bias of the variance estimation,
effectively smoothing the estimate. This is beneficial because divisive normalization does not utilize
information from the mini-batch as in BN, and combines information from a smaller field than LN. A
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Model Range Normalizer Bias

BN
An,j = {zm,j : m ∈ [1, N ], j ∈ [1, H]× [1,W ]}
Bn,j = {vm,j : m ∈ [1, N ], j ∈ [1, H]× [1,W ]}

σ = 0

LN An,j = {zn,i : i ∈ [1, L]} Bn,j = {vn,i : i ∈ [1, L]} σ = 0

DN An,j = {zn,i : d(i, j) ≤ RA} Bn,j = {vn,i : d(i, j) ≤ RB} σ ≥ 0

Table 1: Different choices of the summation and suppression fields A and B, as well as the constant σ in
the normalizer lead to known normalization schemes in neural networks. d(i, j) denotes an arbitrary distance
between two hidden units i and j, and R denotes the neighbourhood radius.
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Figure 2: Divisive normalization followed by ReLU can be viewed as a new activation function. Left: Effect
of varying σ in this activation function. Right: Two units affect each other’s activation in the DN+ReLU
formulation.

similar but different denominator bias term max(σ, c) appears in (Jarrett et al., 2009), which is active
when the activation variance is small. However, the clipping function makes the transformation not
invertible, losing scale information.

Moreover, if we take the nonlinear activation function after normalization into consideration, we find
that σ will change the overall properties of the non-linearity. To illustrate this effect, we use a simple
1-layer network which consists of: two input units, one divisive normalization operator, followed by
a ReLU activation function. If we fix one input unit to be 0.5, varying the other one with different
values of σ produces different output curves (Fig. 2, left). These curves exhibit different non-linear
properties compared to the standard ReLU. Allowing the other input unit to vary as well results in
different activation functions of the first unit depending on the activity of the second (Fig. 2, right).
This illustrates potential benefits of including this smoothing term σ, as it effectively modulates the
rectified response to vary from a linear to a highly saturated response.

In this paper we propose modifications of the standard BN and LN which borrow this additive term σ
in the denominator from DN. We study the effect of incorporating this smoother in the respective
normalization schemes below.

L1 regularizer: Filter responses on lower layers in deep neural networks can be quite correlated
which might impair the estimate of the variance in the normalizer. More independent representations
help disentangle latent factors and boost the networks performance (Higgins et al., 2016). Empirically,
we found that putting a sparse (L1) regularizer

LL1 = α
1

NL

∑
n,j

|vn,j | (5)

on the centered activations vn,j helps decorrelate the filter responses (Fig. 5). Here, N is the batch
size and L is the number of hidden units, and LL1 is the regularization loss which is added to the
training loss.

A possible explanation for this effect is that the L1 regularizer might have a similar effect as maximum
likelihood estimation of an independent Laplace distribution. To see that, let pv (v) ∝ exp (−‖v‖1)
and x = W−1v, with W a full rank invertible matrix. Under this model px (x) = pv (Wx) |detW |.
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Then, minimization of the L1 norm of the activations under the volume-conserving constraint detA =
const. corresponds to maximum likelihood on that model, which would encourage decorrelated
responses. We do not enforce such a constraint, and the filter matrix might even not be invertible.
However, the supervised loss function of the network benefits from having diverse non-zero filters.
This encourages the network to not collapse filters along the same direction or put them to zero, and
might act as a relaxation of the volume-conserving constraint.

3.3 SUMMARY OF NEW MODELS

DN and DN*: We propose DN as a new local normalization scheme in neural networks. In
convolutional layers, it operates on a local spatial window across filter channels, and in fully connected
layers it operates on a slice of a hidden state vector. Additionally, DN* has a L1 regularizer on the
pre-normalization centered activation (vn,j).

BN-s and BN*: To compare with DN and DN*, we also propose modifications to original BN: we
denote BN-s with σ2 in the denominator’s square root, and BN* with the L1 regularizer on top of
BN-s.

LN-s and LN*: We apply the same changes as from BN to BN-s and BN*. In order to narrow the
differences in the normalization schemes down to a few parameter choices, we additionally remove
the affine transformation parameters γ and β from LN such that the difference between LN* and
DN* is only the size of the normalization field. γ and β can really be seen as a separate layer and in
practice we find that they do not improve the performance in the presence of σ2.

4 EXPERIMENTS

We evaluate the normalization schemes on three different tasks:

• CNN image classification: We apply different normalizations on CNNs trained on the
CIFAR-10/100 datasets for image recognition, each of which contains 50,000 training
images and 10,000 test images. Each image is of size 32 × 32 × 3 and has been labeled an
object class out of 10 or 100 total number of classes.

• RNN language modeling: We apply different normalizations on RNNs trained on the
Penn Treebank dataset for language modeling, containing 42,068 training sentences, 3,370
validation sentences, and 3,761 test sentences.

• CNN image super-resolution: We train a CNN on low resolution images and learn cascades
of non-linear filters to smooth the upsampled images. We report performance of trained
CNN on the standard Set 14 and Berkeley 200 dataset.

For each model, we perform a grid search of three or four choices of each hyperparameter including
the smoothing constant σ, and L1 regularization constant α, and learning rate ε on the validation set.

4.1 CIFAR EXPERIMENTS

We used the standard CNN model provided in the Caffe library. The architecture is summarized in
Table 2. We apply normalization before each ReLU function. We implement DN as a convolutional
operator, fixing the local window size to 5× 5, 3× 3, 3× 3 for the three convolutional layers in all
the CIFAR experiments.

We set the learning rate to 1e-3 and momentum 0.9 for all experiments. The learning rate schedule is
set to {5K, 30K, 50K} for the baseline model and to {30K, 50K, 80K} for all other models. At every
stage we multiply the learning rate by 0.1. Weights are randomly initialized from a zero-mean normal
distribution with standard deviation {1e-4, 1e-2, 1e-2} for the convolutional layers, and {1e-1, 1e-1}
for fully connected layers. Input images are centered on the dataset image mean.

Table 3 summarizes the test performances of BN*, LN* and DN*, compared to the performance
of a few baseline models and the standard batch and layer normalizations. We also add standard
regularizers to the baseline model: L2 weight decay (WD) and dropout. Adding the smoothing
constant and L1 regularization consistently improves the classification performance, especially for
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Table 2: CIFAR CNN specification

Type Size Kernel Stride
input 32× 32× 3 - -
conv +relu 32× 32× 32 5× 5× 3× 32 1
max pool 16× 16× 32 3× 3 2
conv +relu 16× 16× 32 5× 5× 32× 32 1
avg pool 8× 8× 32 3× 3 2
conv +relu 8× 8× 64 5× 5× 32× 64 1
avg pool 4× 4× 64 3× 3 2
fully conn. linear 64 - -
fully conn. linear 10 or 100 - -

Table 3: CIFAR-10/100 experiments

Model CIFAR-10 Acc. CIFAR-100 Acc.
Baseline 0.7565 0.4409
Baseline +WD +Dropout 0.7795 0.4179
BN 0.7807 0.4814
LN 0.7211 0.4249
BN* 0.8179 0.5156
LN* 0.8091 0.4957
DN* 0.8122 0.5066

the original LN. The modification of LN makes it now better than the original BN, and only slightly
worse than BN*. DN* achieves comparable performance to BN* on both datasets, but only relying
on a local neighborhood of hidden units.
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Figure 3: Input scale (|x|) vs. learned
σ at each layer, color coded by the
layer number in ResNet-32, trained
on CIFAR-10 (left), and CIFAR-100
(right).

ResNet Experiments. Residual networks (ResNet) (He
et al., 2016), a type of CNN with residual connections be-
tween layers, achieve impressive performance on many image
classification benchmarks. The original architecture uses BN
by default. If we remove BN, the architecture is very difficult
to train or converges to a poor solution. We first reproduced the
original BN ResNet-32, obtaining 92.6% accuracy on CIFAR-
10, and 69.8% on CIFAR-100. Our best DN model achieves
91.3% and 66.6%, respectively. While this performance is
lower than the original BN-ResNet, there is certainly room to
improve as we have not performed any hyperparameter opti-
mization. Importantly, the beneficial effects of sigma (2.5%
gain on CIFAR-100) and the L1 regularizer (0.5%) are still
found, even in the presence of other regularization techniques
such as data augmentation and weight decay in the training.

Since the number of sigma hyperparameters scales with the
number of layers, we found that setting sigma as a learnable
parameter for each layer helps the performance (1.3% gain on
CIFAR-100). Note that training this parameter is not possible
in the formulation by Jarrett et al. (2009). The learned sigma
shows a clear trend: it tends to decrease with depth, and in the
last convolution layer it approaches 0 (see Fig. 3).

4.2 RNN EXPERIMENTS

To apply divisive normalization in fully connected layers of
RNNs, we consider a local neighborhood in the hidden state vector hj−R:j+R, where R is the radius
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Table 4: PTB Word-level language modeling experiments

Model LSTM TanH RNN ReLU RNN
Baseline 115.720 149.357 147.630
BN 123.245 148.052 164.977
LN 119.247 154.324 149.128
BN* 116.920 129.155 138.947
LN* 101.725 129.823 116.609
DN* 102.238 123.652 117.868

of the neighborhood. Although the hidden states are randomly initialized, this structure will impose
local competition among the neighbors.

vj = zj −
1

2R+ 1

R∑
r=−R

zj+r (6)

z̃j =
vj√

σ2 + 1
2R+1

∑R
r=−R v

2
j+r

(7)

We follow Cooijmans et al. (2016)’s batch normalization implementation for RNNs: normalizers
are separate for input transformation and hidden transformation. Let BN(·), LN(·), DN(·) be
BatchNorm, LayerNorm and DivNorm, and g be either tanh or ReLU.

ht+1 = g(Wxxt +Whht−1 + b) (8)

h
(BN)
t+1 = g(BN(Wxxt + bx) +BN(Whh

(BN)
t−1 + bh)) (9)

h
(LN)
t+1 = g(LN(Wxxt +Whh

(LN)
t−1 + b)) (10)

h
(DN)
t+1 = g(DN(Wxxt +Whh

(DN)
t−1 + b)) (11)

Note that in recurrent BN, the additional parameters γ and β are shared across timesteps whereas the
moving averages of batch statistics are not shared. For the LSTM version, we followed the released
implementation from the authors of layer normalization 1, and apply LN at the same places as BN and
BN*, which is after the linear transformation of Wxx and Whh individually. For LN* and DN, we
modified the places of normalization to be at each non-linearity, instead of jointly with a concatenated
vector for different non-linearity. We found that this modification improves the performance and
makes the formulation clearer since normalization is always a combined operation with the activation
function. We include details of the LSTM implementation in the Appendix.

The RNN model is provided by the Tensorflow library (Abadi et al., 2016) and the LSTM version was
originally proposed in Zaremba et al. (2014). We used a two-layer stack-RNN of size 400 (vanilla
RNN) or 200 (LSTM). R is set to 60 (vanilla RNN) and 30 (LSTM). We tried both tanh and ReLU as
the activation function for the vanilla RNN. For unnormalized baselines and BN+ReLU, the initial
learning rate is set to 0.1 and decays by half every epoch, starting at the 5th epoch for a maximum of
13 epochs. For the other normalized models, the initial learning rate is set to 1.0 while the schedule is
kept the same. Standard stochastic gradient descent is used in all RNN experiments, with gradient
clipping at 5.0.

Table 4 shows the test set perplexity for LSTM models and vanilla models. Perplexity is defined as
ppl = exp(−

∑
x log p(x)). We find that BN and LN alone do not improve the final performance

relative to the baseline, but similar to what we see in the CNN experiments, our modified versions
BN* and LN* show significant improvements. BN* on RNN is outperformed by both LN* and DN.
By applying our normalization, we can improve the vanilla RNN perplexity by 20%, comparable to
an LSTM baseline with the same hidden dimension.

1https://github.com/ryankiros/layer-norm
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Table 5: Average test results of PSNR and SSIM on Set14 Dataset.

Model PSNR (x3) SSIM (x3) PSNR (x4) SSIM (x4)
Bicubic 27.54 0.7733 26.01 0.7018
A+ 29.13 0.8188 27.32 0.7491
SRCNN 29.35 0.8212 27.53 0.7512
BN 22.31 0.7530 21.40 0.6851
DN* 29.38 0.8229 27.64 0.7562

Table 6: Average test results of PSNR and SSIM on BSD200 Dataset.

Model PSNR (x3) SSIM (x3) PSNR (x4) SSIM (x4)
Bicubic 27.19 0.7636 25.92 0.6952
A+ 27.05 0.7945 25.51 0.7171
SRCNN 28.42 0.8100 26.87 0.7378
BN 21.89 0.7553 21.53 0.6741
DN* 28.44 0.8110 26.96 0.7428

4.3 SUPER RESOLUTION EXPERIMENTS

We also evaluate DN on the low-level computer vision problem of single image super-resolution.
We adopt the SRCNN model of Dong et al. (2016) as the baseline which consists of 3 convolutional
layers and 2 ReLUs. From bottom to top layers, the sizes of the filters are 9, 5, and 5 2. The number
of filters are 64, 32, and 1, respectively. All the filters are initialized with zero-mean Gaussian and
standard deviation 1e-3. Then we respectively apply batch normalization (BN) and our divisive
normalization with L1 regularization (DN*) to the convolutional feature maps before ReLUs. We
construct the training set in a similar manner as Dong et al. (2016) by randomly cropping 5 million
patches (size 33× 33) from a subset of the ImageNet dataset of Deng et al. (2009). We only train our
model for 4 million iterations which is less than the one adopted by SRCNN, i.e., 15 million, as the
gain of PSNR and SSIM by spending that long time is marginal.

We report the average test results, utilizing the standard metrics PSNR and SSIM (Wang et al., 2004),
on two standard test datasets Set14 (Zeyde et al., 2010) and BSD200 (Martin et al., 2001). We
compare with two state-of-the-art single image super-resolution methods, A+ (Timofte et al., 2013)
and SRCNN (Dong et al., 2016). All measures are computed on the Y channel of YCbCr color space.
We also provide a visual comparison in Fig. 4.

As show in Tables 5 and 6 DN* outperforms the strong competitor SRCNN, while BN does not
perform well on this task. The reason may be that BN applies the same statistics to all patches of
one image which causes some overall intensity shift (see Figs. 4). From the visual comparisons, we
can see that our method not only enhances the resolution but also removes artifacts, e.g., the ringing
effect in Fig. 4.

4.4 ABLATION STUDIES AND DISCUSSION

Finally, we investigated the differential effects of the σ2 term and the L1 regularizer on the perfor-
mance. We ran ablation studies on CIFAR-10/100 as well as PTB experiments. The results are listed
in Table 7.

We find that adding the smoothing term σ2 and the L1 regularization consistently increases the
performance of the models. In the convolutional networks, we find that L1 and σ both have similar
effects on the performance. L1 seems to be slightly more important. In recurrent networks, σ2 has a
much more dramatic effect on the performance than the L1 regularizer.

Fig. 5 plots randomly sampled pairwise pre-normalization responses (after the linear transform)
in the first layer at the same spatial location of the feature map, along with the average pair-wise

2We use the setting of the best model out of all three SRCNN candidates.
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PSNR 29.84dB PSNR 31.33dB PSNR 23.94dB PSNR 31.46dB

PSNR 29.41dB PSNR 33.14dB PSNR 21.88dB PSNR 33.43dB

PSNR 27.46dB
(a) Bicubic

PSNR 30.12dB
(b) SRCNN

PSNR 23.91dB
(c) BN

PSNR 30.19dB
(d) DN*

Figure 4: Comparisons at a magnification factor of 4.

correlation coefficient (Corr) and mutual information (MI). It is evident that both σ and L1 encourages
independence of the learned linear filters.

There are several factors that could explain the improvement in performance. As mentioned above,
adding the L1 regularizer on the activations encourages the filter responses to be less correlated.
This can increase the robustness of the variance estimate in the normalizer and lead to an improved
scaling of the responses to a good regime. Furthermore, adding the smoother to the denominator
in the normalizer can be seen as implicitly injecting zero mean noise on the activations. While
noise injection would not change the mean, it does add a term to the variance of the data, which is
represented by σ2. This term also makes the normalization equation invertible. While dividing by
the standard deviation decreases the degrees of freedom in the data, the smoothed normalization
equation is fully information preserving. Finally, DN type operations have been shown to decrease
the redundancy of filter responses to natural images and sound (Schwartz & Simoncelli, 2001; Sinz &
Bethge, 2008; Lyu & Simoncelli, 2008). In combination with the L1 regularizer this could lead to a
more independent representation of the data and thereby increase the performance of the network.

5 CONCLUSIONS

We have proposed a unified view of normalization techniques which contains batch and layer
normalization as special cases. We have shown that when combined with a sparse regularizer on
the activations, our framework has significant benefits over standard normalization techniques. We
have demonstrated this in the context of both convolutional neural nets as well as recurrent neural
networks. In the future we plan to explore other regularization techniques such as group sparsity. We
also plan to conduct a more in-depth analysis of the effects of normalization on the correlations of
the learned representations.
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Table 7: Comparison of standard batch and layer normalation (BN and LN) models, to those with only L1
regularizer (+L1), only the σ smoothing term (-s), and with both (*). We also compare divisive normalization
with both (DN*), versus with only the smoothing term (DN).

Model CIFAR-10 CIFAR-100 LSTM Tanh RNN ReLU RNN
Baseline 0.7565 0.4409 115.720 149.357 147.630
Baseline +L1 0.7839 0.4517 111.885 143.965 148.572
BN 0.7807 0.4814 123.245 148.052 164.977
BN +L1 0.8067 0.5100 123.736 152.777 166.658
BN-s 0.8017 0.5005 123.243 131.719 139.159
BN* 0.8179 0.5156 116.920 129.155 138.947
LN 0.7211 0.4249 119.247 154.324 149.128
LN +L1 0.7994 0.4990 116.964 152.100 147.937
LN-s 0.8083 0.4863 102.492 133.812 118.786
LN* 0.8091 0.4957 101.725 129.823 116.609
DN 0.8058 0.4892 103.714 132.143 118.789
DN* 0.8122 0.5066 102.238 123.652 117.868

Baseline

Corr. 0.19
MI 0.37

BN

Corr. 0.43
MI 1.20

BN +L1

Corr. 0.17
MI 0.66

BN-S

Corr. 0.23
MI 0.80

BN*

Corr. 0.17
MI 0.66

LN

Corr. 0.55
MI 1.41

LN +L1

Corr. 0.17
MI 0.67

LN-S

Corr. 0.20
MI 0.74

LN*

Corr. 0.16
MI 0.64

DN

Corr. 0.21
MI 0.81

DN*

Corr. 0.20
MI 0.73

Figure 5: First layer CNN pre-normalized activation joint histogram

Acknowledgements RL is supported by Connaught International Scholarships. FS would like to
thank Edgar Y. Walker, Shuang Li, Andreas Tolias and Alex Ecker for helpful discussions. Supported
by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior
Business Center (DoI/IBC) contract number D16PC00003. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of IARPA, DoI/IBC, or the U.S. Government.

11



Published as a conference paper at ICLR 2017

REFERENCES

Sparse coding via thresholding and local competition in neural circuits. Neural Computation, 20(10):
2526–63, 2008. ISSN 08997667. doi: 10.1162/neco.2008.03-07-486.

Abadi, Martı́n, Barham, Paul, Chen, Jianmin, Chen, Zhifeng, Davis, Andy, Dean, Jeffrey, Devin,
Matthieu, Ghemawat, Sanjay, Irving, Geoffrey, Isard, Michael, Kudlur, Manjunath, Levenberg,
Josh, Monga, Rajat, Moore, Sherry, Murray, Derek Gordon, Steiner, Benoit, Tucker, Paul A.,
Vasudevan, Vijay, Warden, Pete, Wicke, Martin, Yu, Yuan, and Zhang, Xiaoqiang. Tensorflow: A
system for large-scale machine learning. CoRR, abs/1605.08695, 2016.

Ba, Jimmy Lei, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization. CoRR,
abs/1607.06450, 2016.
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A EFFECT OF SIGMA AND L1 ON CIFAR-10/100 VALIDATION SET

We plot the effect of σ and L1 regularization on the validation performance in Figure 6. While sigma
makes the most contributions to the improvement, L1 also provides much gain for the original version
of LN and BN.
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Figure 6: Validation accuracy on CIFAR-10/100 showing effect of sigma constant (a, b) and L1 regularization
(c, d) on BN, LN, and DN

B LSTM IMPLEMENTATION DETAILS

In LSTM experiments, we found that have an individual normalizer for each non-linearity (sigmoid
and tanh) helps the performance for both LN and DN. Eq. 12-14 are the standard LSTM equations,
and let N be the normalizer function, our new normalizer is replacing the nonlinearity with Eq. 15-16.
This modification can also be thought as combining normalization and activation as a single activation
function.

This is different from the released implementation of LN and BN in LSTM, which separately
normalized the concatenated vector Whht−1 and Wxxt. For all LN* and DN experiments we choose
this new formulation, whereas LN experiments are consistent with the released version. ft

it
ot

gt

 = Whht−1 +Wxxt + b (12)

ct = σ(ft)� ct−1 + σ(it)� tanh(gt) (13)
ht = σ(ot)� tanh(ct) (14)

σ̄(x) = σ(N(x)) (15)

tanh(x) = tanh(N(x)) (16)

C MORE RESULTS ON IMAGE SUPER-RESOLUTION

We include results on another standard dataset Set5 Bevilacqua et al. (2012) in Table 8 and show
more visual results in Fig. 7.
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Table 8: Average test results of PSNR and SSIM on Set5 Dataset.

Model PSNR (x3) SSIM (x3) PSNR (x4) SSIM (x4)
Bicubic 30.41 0.8678 28.44 0.8097

A+ 32.59 0.9088 30.28 0.8603
SRCNN 32.83 0.9087 30.52 0.8621

BN 22.85 0.8027 20.71 0.7623
DN* 32.83 0.9106 30.62 0.8665

PSNR 21.69dB PSNR 22.62dB PSNR 20.06dB PSNR 22.69dB

PSNR 31.55dB
(a) Bicubic

PSNR 32.29dB
(b) SRCNN

PSNR 19.39dB
(c) BN

PSNR 32.31dB
(d) DN*

Figure 7: Comparisons at a magnification factor of 4.
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