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Abstract

We propose a framework for rotation and translation covariant deep learning using
SE(2) group convolutions. The group product of the special Euclidean motion
group SE(2) describes how a concatenation of two roto-translations results in a
net roto-translation. We encode this geometric structure into convolutional neural
networks (CNNs) via SE(2) group convolutional layers. We introduce three layers:
a lifting layer which lifts a 2D (vector valued) image to an SE(2)-image, i.e., 3D
(vector valued) data whose domain is SE(2); a group convolution layer from and to
an SE(2)-image; and a projection layer from an SE(2)-image to a 2D image. The
lifting and group convolution layers are SE(2) covariant (the output roto-translates
with the input). The final projection layer, a maximum intensity projection over
rotations, makes the full CNN rotation invariant. We show with three different
problems in histopathology, retinal imaging, and electron microscopy that with the
proposed group CNNs, state-of-the-art performance can be achieved, without the
need for data augmentation by rotation and with increased performance compared
to standard CNNs that do rely on augmentation.

1 Introduction

Here we summarize the method and results of our recent [1] generalization of R2 convolutional
neural networks (CNNs) to SE(2) group CNNs (G-CNNs), in which the data lives on position
orientation space and in which the convolution layers are defined in terms of representations of the
special Euclidean motion group SE(2). In essence this means that we replace the convolutions
(with translations of a kernel) by SE(2) group convolutions (with roto-translations of a kernel). The
advantage of the proposed approach compared to standard R2 CNNs is that rotation covariance is
encoded in the network design and does not have to be learned by the convolution kernels. E.g., a
feature that may appear in the data under several orientations does not have to be learned for each
orientation, but only once. As a result, there is no need for data augmentation by rotation and the
kernel weights (that no longer need to learn rotation covariance) become available to increase the
CNNs expressive capacity. Moreover, the proposed group convolution layers are compatible with
standard CNN modules, allowing for easy integration in popular CNN designs.

A main objective of medical image analysis is to develop models that are invariant to the shape and
appearance variability of the structures of interest, including their arbitrary orientations. Rotation-
invariance is a desired property which our G-CNN framework generically deals with. We show
state-of-the-art results with improvement over standard 2D CNNs on three different medical imaging
tasks: mitosis detection in histopathology images, vessel segmentation in retinal images and cell
boundary segmentation in electron microscopy (EM).
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In relation to other approaches that incorporate rotation invariance/covariance in the network design,
group convolution approaches [2, 3, 4, 5, 6] most naturally extend standard CNNs by replacing the
convolution operators. In contrast to these G-CNN methods, we rely on kernel rotation via linear
interpolation which simply appears in the CNN architecture as a (sparse) matrix-vector multiplication
that maps a set of base weights to a full set of rotated kernels. As such our method allows to sample an
arbitrary number of rotations (in contrast to N = 4 in [2] and [3]) and we do not have any constraints
on the shape of the kernel (in contrast to steerable kernels [4] or separable [5] kernels).

2 SE(2) convolutional neural networks

On R2 we define cross-correlation via inner products of translated kernels: (k ?R2 f)(x) :=
(Txk, f)L2(R2) :=

∫
R2 k(x

′ − x)f(x′)dx′,with Tx the translation operator, the left-regular rep-
resentation of the translation group (R2,+). In the SE(2) lifting layer we now simply replace
translations of k by roto-translations via the SE(2) representation Ug , see e.g. in [1, Eq. (2)].

The SE(2) lifting layer: Let f, k : R2 → RNc be a vector valued 2D image and kernel (with Nc
channels), with f = (f1, . . . , fNc) and k = (k1, . . . , kNc), then the group lifting correlations for
vector valued images are defined by

(k ?̃f)(g) :=

Nc∑
c=1

(Ugkc, fc)L2(R2) =

Nc∑
c=1

∫
R2

kc(R
−1
θ (y − x))fc(y)dy. (1)

These correlations lift 2D image data to data that lives on the 3D position orientation space R2 ×
S1 ≡ SE(2). The lifting layer that maps from a vector image f (l−1) : R2 → RNl−1 , with Nl−1
channels at layer l − 1, to an SE(2) vector image F (l) : SE(2) → RNl using a set of Nl kernels
k(l) := (k

(l)
1 , . . . , k

(l)
Nl
), each with Nl−1 channels, is then defined by

F (l) = k(l)?̃f (l−1) :=
(
k
(l)
1 ?̃f (l−1) , . . . , k

(l)
Nl
?̃f (l−1)

)
. (2)

The SE(2) group convolution layer: Let F ,K : SE(2)→ RNc be a vector valued SE(2) image
and kernel, with F = (F1, . . . , FNc

) and K = (K1, . . . ,KNc
), then the group correlations are

(K ? F )(g) :=

Nc∑
c=1

(LgKc, Fc)L2(SE(2)) =

Nc∑
c=1

∫
SE(2)

Kc(g
−1 · h)Fc(h)dh, (3)

with Lg the left-regular representation on L2(SE(2)) and with g−1 and g ·h denoting resp. the group
inverse and group product, see e.g. [1, Ch. 2.1]. Here (K,F )L2(SE(2)) :=

∫
SE(2)

K(h)F (h)dh

denotes the inner product on L2(SE(2)). A set of SE(2) kernels K(l) := (K
(l)
1 , . . . ,K

(l)
Nl
) defines a

group convolution layer, mapping from F (l−1) with N(l−1) channels to F (l) with N(l) channels, via

F (l)=K(l)?F (l−1) :=
(
K

(l)
1 ?F (l−1) , . . . , K

(l)
Nl
?F (l−1)

)
. (4)

The projection layer: Projects a multi-channel SE(2) image back to R2 via

f (l)(x)= max
θ∈[0,2π]

F (l)(x, θ). (5)

3 Experiments, Results and Conclusion

Experiment: Based on the layers defined in Eqs. (2), (4) and (5) we define a straight forward G-CNN
chain in which the first 4 layers are G-conv layers with 5x5 kernels, followed by a projection layer,
and the last 2 layers are standard 1x1 2D conv layers. After each layer we apply batch normalization
and a ReLU, see [1] for full details. We consider three different tasks in three different modalities:
mitosis detection in histopathology images (validated on the AMIDA13 data using F1-scores [7]),
vessel segmentation in retinal images (validated on the DRIVE data using AUC values [8]) and cell
boundary segmentation in EM (validated on the ISBI-EM data using the Rand metric [9]).
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We consider the sampling of SE(2) with N ∈ {1, 2, 4, 8, 16} number of orientations. The 2D input
is augmented at train and test time with transposed versions. For reference we also include transpose
plus 90◦ rotation augmentation for the N = 1 experiment (which coincides with a standard 2D CNN)
to show that these are not necessary in our SE(2) networks for N ≥ 4. Each experiment is repeated
3 times with random initialization and sampling to get an estimate of the mean and variance on the
performance. For a fair comparison for different N the overall number of weights is matched. The
number of "2D" activations in the last three layers is also matched. See [1, Table 1] for full details.
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Figure 1: Mean results (±1 std. dev.).

Results: See Fig. 1. In each experiment we see that the performance of the baseline with extra
rotation augmentations is reached by the non-augmented G-CNNs for N ≥ 4, and even is surpassed
for N ≥ 8. In the first two experiments we also observe that the variance on the output is reduced
with increasing N . Our results on the public datasets match or improve upon the state of the art with
the following scores: F1-score=0.628 ± 0.006 for mitosis detection, AUC = 0.9784 ± 0.0001 for
vessel segmentation, Rand = 0.962± 0.008 for cell boundary segmentation.

Conclusion: We conclude that it is beneficiary to include SE(2) group convolution layers in CNN
network design, as this avoids the need for rotation augmentation and it improves overall performance.
In all three medical imaging problems we achieved state-of-the-art results with the same (basic)
network design. Based on these results we expect that SE(2) layers may lead to a further performance
increase when embedded in more complex network designs, such as the popular UNets and ResNets.
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