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ABSTRACT

Deep learning has become the state of the art approach in many machine learn-
ing problems such as classification. It has recently been shown that deep learning
is highly vulnerable to adversarial perturbations. Taking the camera systems of
self-driving cars as an example, small adversarial perturbations can cause the sys-
tem to make errors in important tasks, such as classifying traffic signs or detect-
ing pedestrians. Hence, in order to use deep learning without safety concerns a
proper defense strategy is required. We propose to use ensemble methods as a de-
fense strategy against adversarial perturbations. We find that an attack leading one
model to misclassify does not imply the same for other networks performing the
same task. This makes ensemble methods an attractive defense strategy against
adversarial attacks. We empirically show for the MNIST and the CIFAR-10 data
sets that ensemble methods not only improve the accuracy of neural networks on
test data but also increase their robustness against adversarial perturbations.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) led to significant improvements in many areas ranging
from computer vision (Krizhevsky et al., 2012; LeCun et al., 2015) to speech recognition (Hinton
et al., 2012; Dahl et al., 2012). Some applications that can be solved with DNNs are sensitive from
the security perspective, for example camera systems of self driving cars for detecting traffic signs
or pedestrians (Papernot et al., 2016b; Sermanet & LeCun, 2011). Recently, it has been shown
that DNNs can be highly vulnerable to adversaries (Szegedy et al., 2013; Goodfellow et al., 2014;
Papernot et al., 2016a;b). The adversary produces some kind of noise on the input of the system
to mislead its output behavior, producing undesirable outcomes or misclassification. Adversarial
perturbations are carefully chosen in order to be hard, if not impossible, to be detected by the human
eye (see figure 1). Attacks occur after the training of the DNN is completed. Furthermore, it has
been shown that the exact structure of the DNN does not need to be known in order to mislead the
system as one can send inputs to the unknown system in order to record its outputs to train a new
DNN that imitates its behavior (Papernot et al., 2016b). Hence, in this manuscript it is assumed that
the DNN and all its parameters are fully known to the adversary.

There are many methods on how to attack neural networks appearing in the literature. Some of
the most well-known ones are the Fast Gradient Sign Method (Goodfellow et al., 2014) and its
iterative extension (Kurakin et al., 2016), DeepFool (Moosavi-Dezfooli et al., 2016), Jacobian-Based
Saliency Map Attack (Papernot et al., 2016c), and the L-BFGS Attack (Szegedy et al., 2013). This
shows the need of building neural networks that are themselves robust against any kind of adversarial
perturbations.

Novel methods on defending against adversarial attacks are appearing more and more frequently
in the literature. Some of those defense methods are to train the network with different kinds of
adversarially perturbated training data (Goodfellow et al., 2014; Papernot et al., 2016c), the use
of distillation to reduce the effectiveness of the perturbation (Papernot et al., 2016d) or to apply
denoising autoencoders to preprocess the data used by the DNN (Gu & Rigazio, 2014). It also has
been noted that adversarial attacks can be detected (Metzen et al., 2017; Feinman et al., 2017), but
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Figure 1: The first line shows original and correctly classified MNIST test data images. In the
second line are the corresponding adversarial BIM attacks on a single classifier (ε = 0.2, α = 0.025,
n = 8) which predicts (from left to right): 6, 8, 1, 5, 9, 3, 0, 2, 2, and 4. Analogously, the third line
corresponds to correctly predicted examples of the CIFAR-10 test data set. In the bottom line are the
corresponding adversarial BIM attacks on a single classifier (ε = 0.02, α = 0.0025, n = 8) which
predicts (from left to right): deer, cat, deer, ship, bird, deer, deer, frog, automobile, and automobile.

these detection systems are again vulnerable to adversarial attacks. To our knowledge, there is no
method that can reliably defend or detect all kinds of adversarial attacks.

In this manuscript, ensemble methods are used to obtain a classification system that is more robust
against adversarial perturbations. The term ensemble method refers to constructing a set of classi-
fiers used to classify new data points by the weighted or unweighted average of their predictions.
Many ensemble methods have been introduced in the literature such as Bayesian averaging, Bag-
ging (Breiman, 1996) and boosting (Dietterich et al., 2000). These methods frequently win machine
learning competitions, for example the Netflix prize (Koren, 2009). Initial results on using ensem-
bles of classifiers in adversarial context can be found in (Abbasi & Gagné, 2017; He et al., 2017).
However, to the best of our knowledge this is the first manuscript that empirically evaluates the
robustness of ensemble methods to adversarial perturbations.

One advantage of using ensemble methods as defense against adversarial perturbations is that they
also increase the accuracy on unperturbed test data. This is not the case in general for other defense
methods (see Table 4). However, in most applications a perturbated input can be considered as
exception. Hence, it is desirable to obtain a state of the art result on unperturbed test data while
making the model more robust against adversarial attacks. Another advantage is that ensemble
methods can easily be combined with other defense mechanisms to improve the robustness against
adversarial perturbations further (see Table 4). However, the advantages come at a cost of an increase
of computational complexity and memory requirements which are proportional to the number of
classifiers in the ensemble.

This paper is organized as follows: In section 2, some methods for producing adversarial perturba-
tions are briefly introduced. Section 3 describes the defense strategy proposed in this manuscript.
In section 4, the previous methods are tested on the MNIST and CIFAR-10 data sets and are com-
pared to other defense strategies appearing in the literature. Finally, in section 5 the conclusions are
presented.

2 ADVERSARIAL ATTACK

In this section, two methods for producing adversarial attacks shall be briefly described. In the
following, let θ be the parameters of a model, x the input of the model and y the output value
associated with the input value x. Further, let J(θ, x, y) be the cost function used to train the DNN.
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FAST GRADIENT SIGN METHOD

The fast gradient sign method (FGSM) by Goodfellow et al. (2014) simply adds some small pertur-
bations of size ε > 0 to the input x,

xFGSM = x+ ε sign[∇xJ(θ, x, y)] ,
where the gradient∇xJ(θ, x, y) can be computed using backpropagation. This relatively cheap and
simple adversarial perturbation performs well on many DNNs. It is believed that this behavior is
due to linear elements such as ReLUs or maxout networks in the DNNs (Goodfellow et al., 2014).

BASIC ITERATIVE METHOD

The basic iterative method (BIM) by Kurakin et al. (2016) is an iterative extension of FGSM. The
idea is to choose ε ≥ α > 0 and then apply some perturbations similar to FGSM to the input x and
repeat the process n times:

x0 = x,

xi = clipx,ε
(
xi−1 + α sign[∇xi−1

J(θ, xi−1, y)]
)
,

xBIM = xn.

Here, clipx,ε(·) refers to clipping the values of the adversarial sample so that they remain within an
ε-neighborhood of x.

3 ENSEMBLE METHODS

Ensemble methods are widely used to improve classifiers in supervised learning (Dietterich et al.,
2000). The idea is to construct a set of classifiers that is used to classify a new data point by the
weighted or unweighted average of their predictions. In order for an ensemble to outperform a single
classifier it must be both accurate and diverse (Hansen & Salamon, 1990). A classifier is said to be
accurate if it is better than random guessing, and a set of classifiers is said to be diverse if different
classifiers make different errors on new data points.

As expected, when performing adversarial perturbations on new data points different classifiers per-
form quite differently on these points. Hence, we conclude that diversity on adversarial perturbations
is given. Furthermore, for adversarial perturbations with small ε > 0, the vast majority of classifiers
was accurate. In other words, for any small ε > 0, we could not find an adversarial attack that would
turn the majority of classifiers into non-accurate classifiers.

In section 4, the following ensemble methods are used. Note that random initialization of the model
parameters is used in all methods.

(i) The first method is to train multiple classifiers with the same network architecture but with
random initial weights. This results in quite diverse classifiers with different final weights
(Kolen & Pollack, 1991).

(ii) The second method is to train multiple classifiers with different but similar network architec-
tures to ensure obtaining a set of even more diverse classifiers. That is, extra filters are used in
one classifier or an extra convolution layer is added to another classifier.

(iii) Third, Bagging (Breiman, 1996) is used on the training data. The term Bagging is derived from
bootstrap aggregation and it consists of drawingm samples with replacement from the training
data set ofm data points. Each of these new data sets is called a bootstrap replicate. At average
each of them contains 63.2% of the training data, where many data points are repeated in the
bootstrap replicates. A different bootstrap replicate is used as training data for each classifier
in the ensemble.

(iv) The last method is to add some small Gaussian noise to the training data so that all classifiers
are trained on similar but different training sets. Note that adding Gaussian noise to the training
data also makes each classifier somewhat more robust against adversarial perturbations.

Once an ensemble of classifiers is trained, it predicts by letting each classifier vote for a label. More
specifically, the predicted value is chosen to be the label that maximizes the average of the output
probabilities from the classifiers in the ensemble.
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In order to attack a network with the methods from section 2 the gradient ∇xJ(θ, x, y) must be
computed. However, obtaining the gradient for an ensemble requires to calculate the gradient of
each of its classifiers. Nevertheless, the following two methods are used to estimate the gradient of
an ensemble, which are referred to as Grad. 1 and Grad. 2 for the rest of this manuscript:

Grad. 1 Use ∇xJ(θi, x, y) of the i-th classifier. This is clearly not the correct gradient for an
ensemble. But the question is whether an attack with this gradient can already mislead all
classifiers in the ensemble in a similar manner.

Grad. 2 Compute the average of the gradients 1
n

∑
i∇xJ(θi, x, y) from all classifiers in the en-

semble.

A comparison of the effects of these two gradients for attacking ensembles can be found in section 4.

4 EXPERIMENTS

In this section the ensemble methods from section 3 are empirically evaluated on the MNIST (LeCun
et al., 1998) and the CIFAR-10 (Krizhevsky & Hinton, 2009) data sets which are scaled to the unit
interval. All experiments have been performed on ensembles of 10 classifiers. Note that this choice
has been done for comparability. That is, in some cases the best performance was already reached
with ensembles of less classifiers while in others more classifiers might improve the results.

A summary of the experimental results can be found in Table 2 and the corresponding visualization
in Figure 2. A comparison of ensembles with other defense methods and a combination of those
with ensembles can be found in Table 4. In the following all FGSM perturbations are done with
ε = 0.3 on MNIST and with ε = 0.03 on CIFAR-10. Furthermore, all BIM perturbations are done
with ε = 0.2, α = 0.025 and n = 8 iterations on MNIST and with ε = 0.02, α = 0.0025 and n = 8
on CIFAR-10. The abbreviations in Table 2 and in Figure 2 shall be interpreted in the following way:
Rand. Ini. refers to random initialization of the weights of the neural network, Mix. Mod. means
that the network architecture was slightly different for each classifier in an ensemble, Bagging refers
to classifiers trained on bootstrap replicates of the training data, and Gauss noise implies that small
Gaussian noise has been added to the training data. Each ensemble is attacked with FGSM and BIM
based on the gradients from Grad. 1 and Grad. 2. In Table 2, the term Single refers to evaluating a
single classifier.

MNIST

The MNIST data set consists of 60,000 training and 10,000 test data samples of black and white
encoded handwritten digits. The objective is to classify these digits in the range from 0 to 9. A
selection of images from the data set and some adversarial perturbations can be found in the top two
rows of figure 1. In the experiments, the network architecture in Table 1 is used and it is trained with
10 epochs. All results from the experiments are summarized in Table 2.

On unperturbed test data the classification accuracy is roughly 99%. The difference between single
classifiers and ensembles is below one percent throughout. The ensembles slightly outperform the
single classifiers in all cases.

Table 1: MNIST Network Architecture

Layer Type Parameters

Relu Convolutional 32 filters (3×3)
Relu Convolutional 32 filters (3×3)
Max Pooling 2×2
Relu Fully Connected 128 units
Dropout 0.5
Relu Fully Connected 10 units
Softmax 10 units
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Table 2: Experimental results on the MNIST and the CIFAR-10 data sets

MNIST Accuracy

Test Data No Attack Grad. 1 Grad. 2

Type Method Single Ensemble Single Ensemble Ensemble

FGSM
Rand. Ini. 0.9912 0.9942 0.3791 0.6100 0.4517
Mix. Mod. 0.9918 0.9942 0.3522 0.5681 0.4609
Bagging 0.9900 0.9927 0.4045 0.6738 0.5716
Gauss Noise 0.9898 0.9920 0.5587 0.7816 0.7043

BIM
Rand. Ini. 0.9912 0.9942 0.0906 0.6518 0.8875
Mix. Mod. 0.9918 0.9942 0.0582 0.6656 0.9076
Bagging 0.9900 0.9927 0.1110 0.7068 0.9233
Gauss Noise 0.9898 0.9920 0.5429 0.9152 0.9768

CIFAR-10 Accuracy

Test Data No Attack Grad. 1 Grad. 2

Type Method Single Ensemble Single Ensemble Ensemble

FGSM
Rand. Ini. 0.7984 0.8448 0.1778 0.4538 0.3302
Mix. Mod. 0.7898 0.8400 0.1643 0.4339 0.3140
Bagging 0.7815 0.8415 0.1822 0.4788 0.3571
Gauss Noise 0.7160 0.7687 0.2966 0.6097 0.4707

BIM
Rand. Ini. 0.7984 0.8448 0.1192 0.5232 0.6826
Mix. Mod. 0.7898 0.8400 0.1139 0.5259 0.6768
Bagging 0.7815 0.8415 0.1280 0.5615 0.7166
Gauss Noise 0.7160 0.7687 0.3076 0.6735 0.7277

This picture changes dramatically if the networks are attacked by one of the methods described in
section 2. Using the FGSM attack with gradients from Grad. 1 on a single classifier, the classification
rate drops down to a range of roughly 35%–56%. The ensembles perform significantly better by
producing an accuracy of 57%–78%. Evaluating the same with gradients from Grad. 2 it turns out
that ensemble methods still obtain an accuracy of 45%–70%. The higher accuracy of Grad. 1 is
expected since in contrast to Grad. 2 it computes the gradients with respect to just one classifier.
Nevertheless, the ensembles outperform single classifiers in each case by approximately 7%-22%.

The decrease of the accuracy is even more extreme for single classifiers if the BIM method is used.
Here, the accuracy can be as low as around 6% and only the classifiers trained with Gaussian noise
significantly exceed the 10%. The accuracy of the ensemble methods against attacks using Grad. 1
is considerably higher with 65%–92%. Furthermore, ensembles are even more robust against BIM
attacks based on Grad. 2 with a correct classification rate of 89%–98%. It is surprising that BIM
attacks using Grad. 1 are more successful than those using Grad. 2, because Grad. 1 only attacks a
single classifier in the ensemble. Concluding, the ensemble methods outperform single classifiers
significantly by 37%-85% on BIM attacks.

Focusing on the different defense strategies, we observe that using random initialization of the net-
work weights as well as using several networks of similar architectures for an ensemble generally
improves the robustness against adversarial attacks considerably in comparison with single classi-
fiers. Bagging outperforms both of the previous methods on adversarial perturbations, but performs
slightly worse on unperturbed test data. Using ensembles with small Gaussian noise on the training
data results in the best defense mechanism against adversarial attacks. This may be due to the fact
that using additive noise on the training data already makes every single classifier in the ensem-
ble more robust against adversarial perturbations. On the down-side, adding Gaussian noise to the
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Figure 2: Visual comparisons of the accuracies presented in Table 2. Compared are the MNIST (top
row) and CIFAR-10 (bottom row) data sets on the FGSM (left column) and the BIM (right column)
attacks. Grad. 1 Single refers to attacks based on Grad. 1 on single classifiers, Grad. 1 Ensemble
refers to attacks based on Grad. 1 on ensembles, Grad. 2 Ensemble refers to attacks based on Grad. 2
on ensemble classifiers, No Attack Single refers to single classifier on unperturbed data, and finally
No Attack Ensemble refers to ensemble classifiers on unperturbed data.

training data performs worst from all considered ensemble methods on test data. However, such an
ensemble still performs better than all single classifiers on MNIST.

CIFAR-10

The CIFAR-10 data set consists of 50,000 training and 10,000 test data samples of three-color com-
ponent encoded images of ten mutually exclusive classes: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. A selection of images from the data set and some adversarial perturba-
tions can be found in the two bottom rows of figure 1. In all experiments the network architecture
described in Table 3 is used and the networks are trained with 25 epochs.

In general, the observations on the MNIST data set are confirmed by the experiments on CIFAR-
10. Since the latter data set is more demanding to classify, the overall classification rate is already
lower in the attack-free case, where single classifiers reach an accuracy of roughly 72%–80%, while
ensembles show a higher accuracy of 77%–84%. Note that there are network architectures in the
literature that outperform our classifiers considerably on test data (Graham, 2014).

The FGSM attacks on single classifiers using method Grad. 1 show a drop-down of the accuracy
to 16%-30%. In contrast, ensembles are significantly better reaching accuracies of 43%-61% when
attacked using Grad. 1 and 31%-47% when attacked with Grad. 2.
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Table 3: CIFAR-10 Network Architecture

Layer Type Parameters

Relu Convolutional 32 filters (3×3)
Relu Convolutional 32 filters (3×3)
Max Pooling 2×2
Dropout 0.2
Relu Convolutional 64 filters (3×3)
Relu Convolutional 64 filters (3×3)
Max Pooling 2×2
Dropout 0.3
Relu Convolutional 128 filters (3×3)
Relu Convolutional 128 filters (3×3)
Max Pooling 2×2
Dropout 0.4
Relu Fully Connected 512 units
Dropout 0.5
Relu Fully Connected 10 units
Softmax 10 units

When using BIM attacks accuracies for single classifiers lie between 11% and 31%. Again, the
ensemble methods outperform the single classifiers reaching accuracies of 52%-67% when attacked
using Grad. 1 and 68%-73% when attacked with Grad. 2.

The same observations as on the MNIST data set can be made on the CIFAR-10 data set. All
ensemble methods outperform single classifiers when comparing their robustness against adversarial
perturbations. FGSM attacks on an ensemble using Grad. 2 outperform those using Grad. 1, as
expected. Similar to the MNIST experiments, when using BIM attacks, ensembles are surprisingly
more robust against gradient attacks from Grad. 2 than against gradient attacks from Grad. 1. The
reason for this might be that the gradient portion from different classifiers using Grad. 2 in the
ensemble try to reach a different local maximum and block each other in the following iterations.

As already observed on the MNIST data set, Bagging performs better than random initialization
and than using similar but different network architectures. Again, adding small Gaussian noise on
the training data performs best on adversarial perturbations but relatively poor on real test data on
CIFAR-10.

COMPARISON WITH OTHER METHODS

In this section, we compare the previous results with two of the most popular defense methods:
adversarial training (Goodfellow et al., 2014; Papernot et al., 2016c) and defensive distillation (Pa-
pernot et al., 2016d). Furthermore, we show the positive effects of combining those methods with
ensembles. For simplicity, we only consider the gradient Grad. 2 whenever an ensemble is attacked.
The results are summarized in Table 4. Here, the content shall be interpreted in the following way:
Bagging refers to ensembles trained with bagging, Adv. Train. to adversarial training, Def. Dist. to
defensive distillation, the operator + to combinations of the previous methods, bold text to the best
performance of the first three methods, and the asterisk to the best method including combinations
of defensive strategies.

Adversarial training (AT) is a method that uses FGSM as regularizer of the original cost function:

JAT (θ, x, y) = ρJ(θ, x, y) + (1− ρ)J(θ, x+ ε sign(∇xJ(θ, x, y)), y),

where ρ ∈ [0, 1]. This method iteratively increases the robustness against adversarial perturbations.
In our experiments, we use ρ = 1

2 as proposed in Goodfellow et al. (2014).
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Table 4: Accuracies of different defense mechanisms

MNIST CIFAR-10

Methods No Attack FGSM BIM No Attack FGSM BIM

Bagging 0.9927∗ 0.5716 0.9233 0.8415∗ 0.3571 0.7166∗
Adv. Train. 0.9902 0.3586 0.5420 0.7712 0.1778 0.3107
Def. Dist. 0.9840 0.0798 0.3829 0.7140 0.1828 0.3635

Bagging + Adv. Train. 0.9927∗ 0.8703∗ 0.9840∗ 0.8320 0.5010∗ 0.7017
Bagging + Def. Dist. 0.9875 0.0954 0.4514 0.7323 0.1839 0.4569

In defensive distillation a teacher model F is trained on a training data set X . Then smoothed labels
at temperature T are computed by

FT (X) =

[
exp(Fi(X)/T )∑N
i=1 exp(Fi(X)/T )

]
i∈{1,...,N}

,

where Fi(X) refers to the probability of the i-th out of N possible classes. A distilled network is a
network that is trained on the training data X using the smoothed labels FT (X). In the following,
we use T = 10 based on the experimental results in Papernot et al. (2016d).

We found that single networks trained with adversarial training or defensive distillation have a lower
accuracy than ensembles trained with bagging (see the top three rows in Table 4). This is not only
the case on the considered attacked data but also on unperturbated test data. Combining ensembles
with adversarial training can improve the robustness against adversarial perturbations further, while
a combination with defensive distillation does not reveal the same tendency (see the two bottom rows
in Table 4). We emphasize that already the standard ensemble method does not only outperform both
adversarial training and defensive distillation throughout but also has the overall highest accuracy
on unperturbated test data.

5 CONCLUSION

With the rise of deep learning as the state-of-the-art approach for many classification tasks, re-
searchers noted that neural networks are highly vulnerable to adversarial perturbations. This is
particularly problematic when neural networks are used in security sensitive applications such as
autonomous driving. Hence, with the development of more efficient attack methods against neu-
ral networks it is desirable to obtain neural networks that are themselves robust against adversarial
attacks.

In this manuscript, it is shown that several ensemble methods such as random initialization or Bag-
ging do not only increase the accuracy on the test data, but also make the classifiers considerably
more robust against certain adversarial attacks. We consider ensemble methods as sole defense
methods, but more robust classifiers can be obtained by combining ensemble methods with other
defense mechanisms such as adversarial training. Although only having tested simple attack scenar-
ios, it can be expected that ensemble methods may improve the robustness against other adversarial
attacks.
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