
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SIMPLE EFFICIENCY INCREMENTAL LEARNING
FRAMEWORK VIA VISION-LANGUAGE MODEL WITH
MULTI-ADAPTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Incremental Learning (IL) aims to learn new tasks while preserving previously
acquired knowledge. Integrating the zero-shot learning capabilities of pre-trained
vision-language models into IL methods has marked a significant advancement.
However, these methods face three primary challenges: (1) the need for improved
training efficiency; (2) reliance on a memory bank to store previous data; and
(3) the necessity of a strong backbone to augment the model’s capabilities. In
this paper, we propose SimE, a Simple and Efficient framework that employs a
vision-language model with an adapter designed specifically for the IL task. We
report a remarkable phenomenon: there is not always a direct positive correlation
between the number of adaptive adapter connections and the model’s IL capabilities.
While increasing the number of adapter connections between transformer blocks
positively impacts model performance, adding more adaptive connections within
transformer blocks during smaller incremental steps does not enhance, and may
even degrade the model’s IL ability. Such improvements only occur at more
advanced incremental stages. Extensive experimental results show that SimE
surpasses traditional methods by 9.6% on TinyImageNet and outperforms other
CLIP-based methods by 5.3% on CIFAR-100. Notably, SimE, with only thousands
of parameters and no memory bank, outperforms ZSCL, which has 140 million
parameters, and surpasses CoOP, which requires a memory bank of size 1000.
Furthermore, we conduct a systematic study to enhance the utilization of the zero-
shot capabilities of CLIP. We suggest that the backbone encoder in SimE should use
the image encoder from CLIP pre-trained on larger datasets, such as LAION-2B,
and larger model architectures, such as ViT-L/14, for IL tasks.

1 INTRODUCTION

Deep learning models have achieved significant success when fully trained on domain-specific tasks.
However, in real-world scenarios, new data often come from diverse sources. Training a deep learning
model on such new data typically leads to the model forgetting previously learned information—a
phenomenon known as catastrophic forgetting (Goodfellow et al., 2013). To address this issue,
Incremental Learning (IL) methods have been proposed, drawing inspiration from the human ability
to learn continuously. These methods enable models to preserve existing knowledge while acquiring
new skills (De Lange et al., 2021; Masana et al., 2022). Traditional IL approaches, which start training
from scratch (Li & Hoiem, 2017; Serra et al., 2018; Rebuffi et al., 2017), fail to leverage the zero-shot
learning capabilities of pre-trained vision-language models. For example, Contrastive Language-
Image Pre-training (CLIP) models (Radford et al., 2021), trained on extensive datasets, exhibit strong
feature extraction abilities. Consequently, integrating CLIP’s zero-shot learning capabilities into
continual learning approaches has become a subject of keen interest (Thengane et al., 2022; Ding
et al., 2022; Zheng et al., 2023; Zhou et al., 2022; Wang et al., 2023; Yu et al., 2024).

Despite the success of recent CLIP-based IL methods, several challenges remain. For example, the
CoOP framework (Zhou et al., 2022) preserves historical knowledge by utilizing a memory bank
that is periodically accessed and updated during IL tasks. However, the ever-expanding volume
of accumulated data can overburden the memory bank, thereby constraining CoOP’s capacity for
lifelong learning. In contrast, Continual CLIP (Thengane et al., 2022) leverages a frozen pre-trained

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The overall framework of SimE. The green represents trainable and the grey denotes
frozen components. A) illustrates the incremental learning tasks, which include t tasks. Specifically,
we finetune the trainable parameters in SimE for task 1, while freezing all the parameters in SimE
for the remaining tasks. B) The learning process for Task 1 can be divided into three stages: in the
Adapter stage, the image encoder is finetuned using adapters; in the Prototype 1 stage, prototypes are
computed based on the finetuned image encoder, and the classifier is updated; in the Test 1 stage, the
classification performance of the model is evaluated. C) In the computation process for subsequent
tasks i (1 < i < t), all weights are frozen, only the prototypes are computed, and the classifier is
updated. D) depicts the architectures of various image encoders.

CLIP to facilitate the model’s continual learning capability, eliminating the need for replay memory
but also limiting CLIP’s zero-shot capabilities. Additionally, ZSCL (Zheng et al., 2023) employs
parameter regularization through knowledge distillation to maintain the model’s performance across
IL tasks. However, ZSCL is not entirely efficient for IL endeavors, as it requires a substantial
number of finetuning parameters to learn new data features and demands significant GPU resources
during training. Moreover, the efficacy of CLIP’s feature extraction is significantly influenced by the
pre-trained datasets and the size of its backbone architecture (e.g., ViT). Despite this, there has been
no systematic exploration into optimizing CLIP’s zero-shot learning potential, which also affects the
performance of IL methods. Collectively, the main challenges faced by these approaches include: (1)
the need for enhanced training efficiency; (2) reliance on a memory bank to store previous data;
and (3) the need for a robust backbone to enhance the model’s capabilities.

To address these challenges, we introduce SimE (see Fig.1), a Simple and Efficient IL framework
that combines a vision-language model with an adapter designed for efficient IL tasks. The adapter
(Houlsby et al., 2019; Chen et al., 2022) is a lightweight module inserted into transformer blocks,
enabling finetuning of the pre-trained model using minimal parameters. During training, the pre-
trained model’s parameters are frozen; we finetune only the adapter’s trainable parameters, enhancing
the model’s parameter efficiency and adaptability without requiring a memory bank. We conduct
a comprehensive evaluation of various backbones and pre-trained datasets to ascertain the most
effective CLIP configurations for IL tasks using SimE. CLIP offers a spectrum of backbones, ranging
from base to large models, as described by Radford et al. (2021), each with its own set of parameters.
Additionally, the scope of pre-trained datasets is vast, as evidenced by works such as Gadre et al.
(2024) and Cherti et al. (2023), which span from 400 million to 2 billion samples. Our systematic
investigation delves into the influence of these disparate backbones and pre-trained datasets on the
performance of CLIP in IL scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Comparison of previous and current finetuning approaches: The previous approach,
AdaptFormer (A), is contrasted with our Multi-Adapter finetuning (B, C, and D). The modules
colored in green are trainable, while those in gray are frozen. In AdaptFormer and Multi-Adapter,
the AdaptMLP, AdaptAtten, and AdaptAll modules are parameterized by a bottom-up bottleneck
module with trainable parameters, whereas the original MLP and Self-Attention modules remain
frozen. The AdaptFormer consists of the original frozen branch coupled with AdaptMLP. In contrast,
our Multi-Adapter incorporates various trainable modules alongside the frozen branch for enhanced
adaptability. And B× is represented by B Blocks.

In SimE, by simply combining CLIP and AdaptFormer, we observe that increasing the number of
adapters between transformer blocks can improve model performance. To explore better methods of
adapter connections, we propose a new adapter design named Multi-Adapter (see Fig.2), which aims
to increase the number of adaptive connections beyond the constraints imposed by the AdaptFormer
architecture. Surprisingly, we find that within transformer blocks, increasing the number of adaptive
connections in smaller incremental steps does not enhance, and may even degrade the model’s IL
capabilities. This improvement only occurs in larger incremental stages. Extensive experiments
across various settings demonstrate the effectiveness of SimE on IL tasks. Our contributions can be
summarized as follows:

• We introduce SimE, which surpasses existing baseline IL models in class-incremental
learning tasks. SimE is distinguished by its efficiency in three key areas: GPU usage, the
number of trainable parameters, and memory size (as illustrated in Fig.5). Furthermore,
SimE achieves competitive or superior accuracy with fewer additional parameters compared
to other methods leveraging pre-trained models. (as shown in Fig.4(a)).

• We propose Multi-Adapter to explore better methods of adapter connections and observe a
significant phenomenon: there is not always a direct positive correlation between the number
of adaptive connections and the model’s IL capabilities. While increasing the number of
adapter connections between transformer blocks positively impacts model performance,
within transformer blocks, adding more adaptive connections in smaller incremental steps
does not enhance, and may even degrade the model’s IL ability. Such improvement only
occurs at more advanced incremental stages.

• We conduct a systematic study to enhance the utilization of the zero-shot capabilities of CLIP
under SimE, pinpointing the most suitable backbone for CIFAR-100 and TinyImageNet. We
advocate for the use of CLIP models that have been pre-trained on expansive datasets, such
as LAION-2B, and possess larger architectures like ViT-L/14, to facilitate IL processes via
SimE.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Conventional Continual Learning Methods: Traditional continual learning methods can be di-
vided into three categories: regularization-based, architecture-based, and replay-based approaches.
Regularization-based methods (Aljundi et al., 2018; Kirkpatrick et al., 2017; Li & Hoiem, 2017)
mitigate forgetting by incorporating regularization terms into the loss function, encouraging the
model to retain weights important for previous tasks. However, these methods may diminish the
model’s ability to learn new categories effectively. Architecture-based methods (Mallya & Lazebnik,
2018; Serra et al., 2018; Wang et al., 2020) adjust the network’s structure to accommodate new tasks
by expanding it or altering its configuration. While effective, these methods may not be ideal for
task-agnostic continual learning and can lead to increased memory usage. Replay-based methods
(Rebuffi et al., 2017; Buzzega et al., 2020; Cha et al., 2021) involve storing and periodically revisiting
data from previous tasks to help the model retain prior knowledge. Although useful, these methods
can raise privacy concerns and may be less effective with smaller data buffers. Moreover, tradi-
tional continual learning models are typically trained from scratch, which may limit the maximum
achievable performance by not leveraging pre-trained models.

Continual Learning Methods Using CLIP: Recently, pre-trained models have been increasingly
adopted in continual learning due to their powerful feature extraction capabilities (Wang et al.,
2022c;b; Thengane et al., 2022). CLIP (Radford et al., 2021), renowned for its impressive zero-shot
abilities, excels in feature extraction through contrastive learning on vast amounts of image-text
pairs. Consequently, several studies (Thengane et al., 2022; Ding et al., 2022; Zheng et al., 2023;
Zhou et al., 2022; Wang et al., 2023; Yu et al., 2024) have integrated CLIP into continual learning
models to enhance performance. Continual-CLIP (Thengane et al., 2022) directly applies CLIP
to continual learning without any finetuning, maintaining CLIP’s feature extraction capacity but
potentially suffering from domain gaps between pre-trained datasets and downstream tasks. LwF-VR
(Ding et al., 2022) and ZSCL (Zheng et al., 2023) finetune the entire model using traditional continual
learning methods to adapt to specific tasks. This process is computationally expensive due to the
large size of pre-trained models and may also lead to the forgetting of previously learned knowledge.
Thus, the finetuning strategy significantly impacts model performance.

Continual Learning Methods Using Adapter Finetuning: Adapters were initially introduced in
natural language processing (Houlsby et al., 2019) to finetune pre-trained models for specific tasks by
modifying a minimal set of weights. This approach has gained traction across various fields due to its
notable efficiency (Chen et al., 2022; Dong et al., 2024). In the realm of continual learning, recent
studies (Liu et al., 2023; Ermis et al., 2022b;a; Yu et al., 2024) have explored integrating adapters,
placing them after the encoder or within the model’s blocks. These adapters enable learning new
tasks with a limited number of trainable parameters while preserving the core feature extraction
functions. AdaptFormer (Chen et al., 2022), known for its lightweight parameterization, enhances
model efficiency but is limited by the number of adaptive connections it can establish. In this paper,
we introduce a Multi-Adapter that expands the number of adaptive connections, thereby extending
the model’s flexibility.

3 THE SIME FRAMEWORK VIA VISION-LANGUAGE MODELS WITH ADAPTERS

In this section, we first introduce the definition of the incremental learning (IL) task. Next, in Section
3.1, we present SimE, a framework that combines the image encoder in vision-language models
with an adapter. Then, we introduce the formulation of the Multi-Adapter in Section 3.2. Finally,
in Section 3.3, we describe implementations of SimE using the image encoder from CLIP and the
adapters from AdaptFormer and Multi-Adapter. Incremental learning (IL) methods enable a model to
learn new tasks while retaining knowledge from previous ones.

Consider a sequence of tasks D = D1, D2, . . . , DT , where the t-th task is defined as Dt =
(xt

i,y
t
i)i = 1mt . Here, Dt contains mt samples xt

i and their corresponding labels yt
i . During

the learning of task Dt, we have access only to the data from Dt; the data from previous tasks
D1, D2, . . . , Dt− 1 are unavailable. Furthermore, we focus on task-agnostic class-incremental
learning (class-IL), where historical data cannot be used for rehearsal, and the task ID is not known
during inference. In this setting, the model must learn to classify samples from all classes seen so far
without explicit information about which task a sample belongs to.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 SIME FORMULATION

SimE is structured into three primary phases: data pre-processing, feature extraction, and image classi-
fication. In the initial phase, raw image data are transformed into a format compatible with the model’s
requirements. This is followed by the feature extraction phase, where an encoder—specifically the
image encoder from a pre-trained vision-language model equipped with an adapter and prototype
extractors—processes the formatted images. The process culminates in the image classification phase,
where a fully connected (FC) layer acts as the classifier. This classifier is intricately designed to
support class-incremental learning (class-IL), facilitating the seamless incorporation of new classes.

The Encoder. Image encoders are utilized to extract visual features from preprocessed images.
Commonly used image encoder architectures include ResNet and ViT. Taking ViT as an example, the
ith block of basic transformer module can be described as follows: 1) self-attention fi : Xi → Ai,
which computes the attention among elements and learns global information through their interactions;
2) MLP gi : Ai → H, which applies nonlinear transformations to the input sequence to enhance the
model’s expressive capacity. Formally, this can be represented as:

i th Self-Attention: ai = fi(θi,xi), i th MLP: hi = gi(ϕi,ai). (1)

Here, hi contains the visual features of the original image xi, Self-Attention and MLP are instantiated
with the parameters θi and ϕi respectively. For the pre-trained encoder, both θi and ϕi are pre-trained
weights that are frozen.

The Adapter. An adapter is a lightweight module designed to finetune pre-trained models for
downstream datasets with a minimal number of additional parameters. The parameters of adapters are
trainable and will be updated during the finetuning process, while the weights of pre-trained models
are frozen. The adapter in the ith blocks extracts features as di : Xi → Hi,

i th Adapter: hi = di(η̃i,xi). (2)

Here, adapter i is instantiated with parameters η̃i, where η̃i are trainable. The visual features extracted
by the adapter are integrated into the pre-trained encoder, enhancing its ability to extract visual
features of downstream datasets. It is noteworthy that, unlike the modules of the pre-trained encoder,
both the number and positions of adapters are variable. By introducing adapter into pre-trained
encoder, we get the general form of the encoder with adapter E(x):

E(x) =

B∑
i

(gi(ϕi, fi(θi,xi)) + di(η̃i,xi)), (3)

where B is the number of the block in the encoder. Especially, when i = 0, the xi is the reprocessed
image x .

The Prototype extractor. In image classification, we follow Snell et al. (2017), setting the average
features of the classes as the weights of the classifier. For the t-th task (t = 2, . . . , T), we do not
update the weights of E(x) in Eq.3; instead, we use the E(x) directly to calculate the average value
of features and set it as prototypes in datasets {x1

i , . . . ,x
t
i}

nt
i=1:

pk =
1

K

|Dt|∑
j=1

I(yj = k)E(x), (4)

where pk ∈ Rd is the prototype of increment class k in t-th task, K =
∑||Dt||

j=1 I(yj = k), I(·) is the
indicator function. pk contains the average features of class k, implying that the images of class k
should exhibit the greatest similarity with pk among all prototypes.

The Classifier. In Class IL, the classifier is dynamic and can be implemented in various ways(Mai
et al., 2021; Wang et al., 2023). In this paper, we use a FC layer as our classifierSnell et al. (2017).
For the t-th task, the classifier is an FC layer Wt ∈ RD×(N+M), where D is the feature dimension,
N is the number of classes at (t-1)-th task, M is the number of increment classes in t-th task.
We use the training set data xpro = {(xt

i,y
t
i)}

nt
i=1 from the t-th task to calculate the prototype

Wpro = mean(E(xpro)), where nt is the number of samples in the training set of the t-th task, then
update the FC layer Wt: Wt = Wt−1 + Wpro, where Wt−1 ∈ RD×N and Wpro ∈ RD×M . The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

cosine similarity for classification is then calculated as:

f(x) =

(
W

∥W∥2

)⊤ (
E(x)

∥E(x)∥2

)
(5)

given that prototype pi is most similar to instances of class i, it is expected that the classifier will
assign a higher probability to the correct class label.

3.2 MULTI-ADAPTER FORMULATION

We propose the Multi-Adapter, which comprises three adapter sub-modules: AdaptAtten, AdaptMLP,
and AdaptAll as shown in Fig.2. The sub-modules AdaptAtten, AdaptMLP, and AdaptAll share the
same structure, each containing a down-projection, a non-linear activation function (e.g., ReLU) and
an up-projection. Thus, we can derive a more specific form of the ith adapter ri : Ci → Ŝ,

sij = rij(η̃ij , cij), where cij =

{
ai j = 1 and sij = hi; rij is AdaptMLP
xi j = 2 and sij = ai; rij is AdaptAtten
xi j = 3 and sij = hi; rij is AdaptAll

, (6)

here cij can be equal to the initial input xi or an intermediate variable ai, in Eq.1, and j ∈ {1, 2, 3},
correspond to AdaptMLP, AdaptAtten, and AdaptAll, respectively. Thus, the i th block in ViT can be
represented as a combination of the pre-trained modules and the adapter sub-modules:

E′(c) =

B∑
i

Z∑
j

(fij(θij , gij(ϕij , cij)) + rij(η̃ij , cij)), (7)

where B is the number of the block in the encoder and Z is a subset of {1, 2, 3} (Z ⊆ {1, 2, 3}).
Especially, when i = 0, the c0j is the reprocessed image x. By identifying the trainable parameters,
the adapter can be instantiated. Lastly, the optimisation of adapter for domain adaptation can see in
Appendix A.

3.3 REALIZATIONS OF SIMES VIA CLIP WITH DIFFERENT ADAPTERS

In SimE, there are numerous implementations for the encoder and adapter. Here, we first employ the
CLIP visual encoder as the encoder and AdaptFormer or Multi-Adapter as the adapter to establish
a toy model of SimE. Subsequently, we explore various specific implementations of SimE. CLIP
(Radford et al., 2021) is a powerful visual-language contrastive learning model comprising an image
encoder and a text encoder. It is trained on 400 million image-text pairs and possesses strong feature
extraction capabilities. In this paper, we employ the CLIP pre-trained visual encoder as our backbone,
i.e., we instantiate our encoder using the CLIP pre-trained weights θ and ϕ. Additionally, there exist
CLIP models pre-trained on different datasets, corresponding to different encoder instances. It is
noteworthy that during the continual learning process, the pre-trained weights of CLIP are frozen and
do not participate in weight updates. Adaptformer Chen et al. (2022) containing a down-projection
Wdown ∈ RD×R to reduce the feature dimension, a non-linear activation function(ReLU) and an
up-projection Wup ∈ RR×D to project the features back to their original dimension, where D is the
feature dimension and R is the dimension of bottleneck. The specific form of the AdaptFormer is:

di(η̃i,hi) = αReLU(hi ·Wdown) ·Wup (8)

Here α is the scaling factor in the residual connection, which is set to 0.1 by default in AdapterFormer.
Multi-Adapter is represented by Eq.7. The Adaptformer is a special case in Multi-Adapter and we
employ the same down-up projects in Eq.8 to initialize the Multi-Adapter.

4 EXPERIMENTAL RESULTS

In this section, we begin by comparing the performance of the proposed SimE method with that of
other Class-Incremental Learning (CIL) methods. Next, we evaluate the efficiency of these models
by examining their number of trainable parameters, GPU usage, and memory bank size. Furthermore,
we conduct ablation experiments to investigate the impact of various components within SimE. Lastly,
the details of the experimental settings are provided in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Last accuracy of every Task in 10 steps. The Last accuracy of Task t, t ∈ {1, 2, ..., 10} is
the Top-1 accuracy over all the previous Tasks (i.e., Tasks 1, 2, ..., t). The results in left and middle
are conducted on CIFAR100. The result of "Ours" in left is based on ViT-L/14 and in middle and
right are based on ViT-B/16.

4.1 COMPARISON ON THE ACCURACY OF DIFFERENT CIL METHODS

SimE outperforms most Other CIL methods at various steps on both CIFAR-100 and Tiny-
ImageNet datasets. First, we compare the performance of our method with other CIL methods
across all tasks and present the results in Tab.1, where the best results are highlighted in grey. The
results, measured by the average accuracy across tasks, show that our method achieves the highest
scores among recent state-of-the-art methods, demonstrating the significant effectiveness of incorpo-
rating adapters into a pre-trained model. Specifically, our method and other CLIP-based methods
(CoOP(Zhou et al., 2022), Continual-CLIP(Thengane et al., 2022)) have a substantial advantage over
traditional continual learning methods initially, reflecting the superior feature extraction capabilities
of pre-trained models.

However, the accuracy of other CLIP-based methods drops quickly as training progresses, indicating
that they are severely affected by domain gaps or catastrophic forgetting. Our method not only
outperforms CLIP-based methods at the start, showing that finetuning helps the model adapt to
downstream tasks, but also exhibits a slower decline in performance because it retains the original
feature extractor, thus preserving the pre-trained model’s prior knowledge. In addition to splitting
CIFAR-100 into 10 tasks, we also experimented with 20 and 50 tasks and have listed the results in
Tab.1. Our method consistently performs the best across all settings, outperforming current state-of-
the-art methods by at least 3%. Furthermore, we conducted experiments on TinyImageNet, where
we split the dataset into multiple tasks with 100 classes as base classes, and reported these results in
Tab.1. Our method remains superior in most settings, further demonstrating its effectiveness.

Table 1: Comparison on the accuracy of different CIL methods. The Average and Last accuracy of
different CIL methods on CIFAR100 and TinyImageNet benchmark. Among them, UCIR(Hou et al.,
2019), PASS(Zhu et al., 2021), DyTox(Douillard et al., 2022), and DER(Yan et al., 2021) train from
scratch, while the remaining methods use CLIP ViT-B/16 as the backbone, where † indicates the
result based on the CLIP ViT-L/14 pre-trained on Laion-2B. The 100 classes of TinyImageNet are
used as base classes. The best results are coloured grey.

CIFAR100 TinyImageNet
10 Steps 20 Steps 50 Steps 5 Steps 10 Steps 20 Steps

Methods Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

UCIR(Hou et al., 2019) 58.66 43.39 58.17 40.63 56.86 37.09 50.30 39.42 48.58 37.29 42.84 30.85
PASS(Zhu et al., 2021) - - - - - - 49.54 41.64 47.19 39.27 42.01 32.93

DyTox(Douillard et al., 2022) 67.33 51.68 67.30 48.45 64.39 43.47 55.58 47.23 52.26 42.79 46.18 36.21
DER(Yan et al., 2021) 74.64 64.35 73.98 62.55 72.05 59.76 - - - - - -

CLIP(Radford et al., 2021) 74.47 65.92 75.20 65.74 75.67 65.94 69.62 65.30 69.55 65.59 69.49 65.30
Fien-tune 65.46 53.23 59.69 43.13 39.23 18.89 61.54 46.66 57.05 41.54 54.62 44.55

iCaRL(Rebuffi et al., 2017) 79.35 70.97 73.32 64.55 71.28 59.07 77.02 70.39 73.48 65.97 69.65 64.68
LwF(Li & Hoiem, 2017) 65.86 48.04 60.64 40.56 47.69 32.90 60.97 48.77 57.60 44.00 54.79 42.26

Continual-CLIP(Thengane et al., 2022) 75.17 66.72 75.95 66.72 76.49 66.72 70.49 66.43 70.55 66.43 70.51 66.43
LwF-VR(Ding et al., 2022) 78.81 70.75 74.54 63.54 71.02 59.45 77.56 70.89 74.12 67.05 69.94 63.89
ZSCL(Zheng et al., 2023) 82.15 73.65 80.39 69.58 79.92 67.36 80.27 73.57 78.61 71.62 77.18 68.30

SimE(Ours) 85.94 77.10 85.67 76.61 84.16 73.88 79.35 75.37 79.32 75.37 79.29 75.37
SimE(Ours)† 91.66 86.03 92.27 86.64 91.64 85.35 86.47 83.33 86.41 83.33 86.39 83.33

We further compare the results of each task with traditional and CLIP-based CIL methods, as shown in
Fig.3 & Tab.5, and our method consistently outperforms other methods across all tasks. Additionally,
in Fig.3 & Fig.6, we compare the performance of each task on CIFAR100 and TinyImageNet, reveal-
ing differences in the generalization ability of the backbone across different datasets. Consequently,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

Figure 4: Comparison on the efficiency of different CIL methods. The dotted line and right axis
coloured orange present the Last accuracy and Avg accuracy. (a)(b)(c) denote the Training parameters,
GPU usage, Memory bank size and Last accuracy of different CIL methods respectively, (d)(e) is the
Training parameters and Avg accuracy of Ours under different bottleneck dimensions and number of
adapters. (f) show the comparison between Ours and other CIL methods in training parameters and
Avg accuracy. All the experiments are conducted on CIFAR100, and (a)-(e) are conducted in 10steps.

we conduct further experiments to identify the optimal backbone for different datasets, as detailed in
Sec. 4.4.

4.2 COMPARISON ON THE EFFICIENCY OF DIFFERENT CIL METHODS

We compare the efficiency of our proposed SimE method with other Class-Incremental Learning
(CIL) methods by examining the number of trainable parameters, GPU usage, and replay data size.
The experimental settings are the same as those described in Appendix B and the results are shown in
Fig.4. As illustrated in Fig.4(a) and Fig.4, our method requires only thousands of trainable parameters
while achieving competitive results compared to other CIL methods that utilize millions of parameters,
significantly reducing training costs.Furthermore, as shown in Fig.4(b) and Fig.4(c), our method uses
only one-third of the parameters and does not require a buffer to store replay data. We also study the
influence of the bottleneck dimension and the number of adapters, as depicted in Figures Fig.4(d) and
Fig.4(e). Despite varying these parameters, our method still achieves competitive performance with
minimal trainable parameters. These results demonstrate that our method can achieve performance
comparable to or even exceeding that of other CIL methods with minimal training costs, thereby
strongly validating the efficiency of the proposed SimE method.

4.3 ABLATION STUDY ON THE INFLUENCE OF ADAPTER COMPONENTS IN SIME

The influence of adapter connection between transformer blocks. We investigated the impact
of the position and number of adapters inserted between transformer blocks, presenting the results
in Fig.5 & Tab.6 & Tab.7. In our notation, "1-3" indicates that adapters are inserted only into the
first three blocks of the feature extractor. From Fig.5, it is evident that inserting the same number of
adapters into the earlier blocks significantly improves model performance. This suggests that learning
primary features plays a more crucial role in model finetuning. Additionally, we varied the number of
adapters between transformer blocks from 0 to 12. Inserting adapters into every block (totaling 12
adapters) consistently yielded the best performance across all steps. Therefore, a larger number of
adapters between transformer blocks leads to better model performance, indicating that increasing
the number of adapter connections between transformer blocks positively impacts model outcomes.

The influence of adapter connection within transformer blocks. We also tested different imple-
mentations of the Multi-Adapter by inserting adapters within all 12 transformer blocks. The results

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

are reported in Tab.2 & Fig.7 & Tab.8 & Tab.9. Interestingly, we found that in smaller incremental
steps, increasing the number of adaptive connections within transformer blocks does not improve
model performance; in fact, it can even degrade it. The previously observed positive correlation only
occurs in larger incremental steps. This suggests that a higher number of adapter connections within
transformer blocks does not necessarily lead to better outcomes. In SimE, we explore the optimal
implementation of adapters across various task configurations.

(a) Avg accuracy on different numbers of adapters (b) Last accuracy on different numbers of adapters

(c) Averaged Avg accuracy on different numbers
of adapters

(d) Averaged Last accuracy on different numbers
of adapters

Figure 5: Influence of adapters’ position and number between transformer blocks. The x-axis
represents the number of adapters in the encoder, with the numerical ranges indicating the positions
of the adapters. For example, "1-3" signifies that adapters are inserted in the first 3 blocks. The
accuracy shown in (c) and (d) represents the average results for different adapter positions with the
same number of adapters. All results are based on CIFAR100.

Table 2: The results of different implementations of Multi-Adapter. The structures of Adapter-MLP,
Adapter-Atten and Adapt-All are shown in Fig2. "Para" refers to trainable parameters, with "M"
standing for million. All experiments are conducted on CIFAR100 and the best results are coloured
grey

10 steps 20 steps 50 steps
Adapt-MLP Adapt-Atten Adapt-All Para(M) Avg Last Avg Last Avg Last

% % % 0 79.69 70.08 80.41 70.08 80.80 70.08
" % % 1.19 85.60 76.70 85.30 76.02 84.09 73.77
% " % 1.19 85.94 77.10 85.67 76.61 84.16 73.88
% % " 1.19 85.77 76.83 85.48 76.16 84.16 73.86
" " % 2.38 85.73 76.79 85.42 76.09 84.76 74.66
% " " 2.38 85.84 76.98 85.36 76.03 84.75 74.69
" % " 2.38 85.63 76.65 85.12 75.66 84.75 74.76
" " " 3.57 85.54 76.51 85.05 75.53 85.00 75.16

4.4 ABLATION STUDIES ON THE INFLUENCE OF CLIP COMPONENTS IN SIME

The influence of pre-trained datasets. CLIP has attracted significant attention due to its powerful
zero-shot capabilities, leading many studies to retrain CLIP from scratch on other image-text pair
datasets, such as Datacomp (Gadre et al., 2024) and LAION (Schuhmann et al., 2022). These datasets
are comparable in size to or even larger than the original pre-training dataset (WIT-400M). We evalu-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ated their performance on CIFAR-100 and TinyImageNet. As shown in Tab.3, pre-training models on
larger datasets generally enhances their feature extraction capabilities, leading to better generalization.
However, there are instances where smaller pre-trained datasets yield higher accuracy, indicating that
dataset quality and preprocessing techniques also significantly impact model performance.

Table 3: The influence of CLIP pre-trained datasets. WIT-400M is the closed-source dataset of
OpenAI while others are from Open_CLIP. All results are conducted on ViT-B/16 and the 100 classes
of TinyImageNet are used as base classes. The best results are coloured grey.

CIFAR100 TinyImageNet
10 steps 20 steps 50 steps 10 steps 20 steps 50 steps

Blocks Avg Last Avg Last Avg Last Avg Last Avg Last Avg Last

WIT-400M(Radford et al., 2021) 85.60 76.70 85.30 76.02 84.09 73.77 79.35 75.37 79.32 75.37 79.29 75.37
Laion-400M(Schuhmann et al., 2022) 87.14 79.54 86.86 78.82 85.95 77.63 80.62 78.01 80.46 77.48 81.06 79.22

Laion-2B(Schuhmann et al., 2022) 88.34 81.33 88.47 80.89 87.91 80.09 81.98 79.99 81.83 79.77 82.78 81.63
DataComp-1B(Gadre et al., 2024) 88.04 80.77 87.89 79.88 87.57 79.25 81.38 79.11 81.49 78.70 82.51 80.89

CommonPool-1B(Gadre et al., 2024) 86.96 78.74 86.58 77.88 86.21 77.10 80.13 76.95 80.26 76.69 81.24 78.70

The influence of ViT backbone size. In addition to examining pre-trained datasets, we investigated
the impact of different ViT backbones in CLIP. Our default model uses ViT-B/16. As shown in Tab.4,
increasing the backbone size significantly improves model performance. Specifically, the accuracy of
ViT-L consistently surpasses that of ViT-B across various settings, demonstrating superior feature
extraction capabilities. When the model size is held constant, the size of the image patches plays
a crucial role in feature extraction, with smaller patch sizes better capturing semantic information.
In contrast, the size of the images during pre-processing has a relatively minor impact on model
performance.

Table 4: The influence of CLIP ViT backbones size. The experiments use the corresponding data
preprocessing while "336px" indicates the images are resized to 336. All experiments conducted on
CIFAR100 and the best results are highlighted in grey.

10 steps 20 steps 50 steps
Blocks Avg Last Avg Last Avg Last

ViT-B/16 85.94 77.10 85.67 76.61 84.16 73.88
ViT-B/32 83.60 74.43 82.02 71.74 81.18 70.06
ViT-L/14-336px 88.53 80.85 88.02 80.45 89.12 81.65
ViT-L/14 88.79 81.44 88.57 81.01 89.73 82.60

5 CONCLUSION

In this paper, we propose SimE, a simple yet efficient incremental learning (IL) framework. SimE
utilizes a pre-trained model as the encoder and incorporates adapters for finetuning, thereby achieving
robust feature extraction capabilities while adapting to IL tasks without the need to store replay data.
Our experiments demonstrate that SimE achieves competitive results, validating its effectiveness.
To explore better methods of adapter connections, we introduce the Multi-Adapter and observe a
remarkable phenomenon: there is not always a direct positive correlation between the number of
adaptive adapter connections and the model’s IL capabilities. Specifically, while increasing the
number of adapter connections between transformer blocks positively impacts model performance,
adding more adaptive connections within transformer blocks during small incremental steps does
not enhance,and may even degrade the model’s IL ability. Such improvements occur only at more
advanced incremental stages. We also conducted a systematic study on CLIP and identified the
optimal CLIP model for CIFAR-100 and TinyImageNet. Based on our findings, we recommend that
SimE’s backbone encoder utilize the image encoder from CLIP models pre-trained on larger datasets
like LAION-2B and larger architectures such as ViT-L/14 for CIL tasks. In future work, we will
explore combining SimE with different pre-trained large models and various types of adapters for
other tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818–2829, 2023.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Yuxuan Ding, Lingqiao Liu, Chunna Tian, Jingyuan Yang, and Haoxuan Ding. Don’t stop learning:
Towards continual learning for the clip model. arXiv preprint arXiv:2207.09248, 2022.

Wei Dong, Dawei Yan, Zhijun Lin, and Peng Wang. Efficient adaptation of large vision transformer
via adapter re-composing. Advances in Neural Information Processing Systems, 36, 2024.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9285–9295, 2022.

Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cédric Archambeau. Continual
learning with transformers for image classification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3774–3781, 2022a.

Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. Memory
efficient continual learning with transformers. Advances in Neural Information Processing Systems,
35:10629–10642, 2022b.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. Advances in Neural Information Processing Systems, 36,
2024.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Journal of Example Studies, 2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Xialei Liu, Xusheng Cao, Haori Lu, Jia-wen Xiao, Andrew D Bagdanov, and Ming-Ming Cheng. Class
incremental learning with pre-trained vision-language models. arXiv preprint arXiv:2310.20348,
2023.

Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting
the nearest class mean classifier in online class-incremental continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3589–3599, 2021.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost Van
De Weijer. Class-incremental learning: survey and performance evaluation on image classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):5513–5533, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak Shah.
itaml: An incremental task-agnostic meta-learning approach. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13588–13597, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548–4557. PMLR, 2018.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11909–11919, 2023.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30, 2017.

Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient
continual learner. arXiv preprint arXiv:2210.03114, 2022.

Runqi Wang, Yuxiang Bao, Baochang Zhang, Jianzhuang Liu, Wentao Zhu, and Guodong Guo.
Anti-retroactive interference for lifelong learning. In European Conference on Computer Vision,
pp. 163–178. Springer, 2022a.

Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu Lü,
and Baochang Zhang. Attriclip: A non-incremental learner for incremental knowledge learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3654–3663, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang, Jennifer Dy, and Stratis Ioannidis.
Learn-prune-share for lifelong learning. In 2020 IEEE International Conference on Data Mining
(ICDM), pp. 641–650. IEEE, 2020.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pp. 631–648.
Springer, 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022c.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3014–3023, 2021.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Dong Wang, Huchuan Lu, and You He. Boosting continual learn-
ing of vision-language models via mixture-of-experts adapters. arXiv preprint arXiv:2403.11549,
2024.

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
with classifier alignment for continual learning on a pre-trained model. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 19148–19158, 2023.

Zangwei Zheng, Mingyuan Ma, Kai Wang, Ziheng Qin, Xiangyu Yue, and Yang You. Preventing
zero-shot transfer degradation in continual learning of vision-language models. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 19125–19136, 2023.

Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental
learning with pre-trained models: Generalizability and adaptivity are all you need. arXiv preprint
arXiv:2303.07338, 2023.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation
and self-supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5871–5880, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Supplementary Material
In the Supplement Material, we provide additional method details and experiment settings mentioned
in the main text, as well as experiment results. The contents of supplementary material are organized
as follows:

• Section A describes the update process of the encoder. The model starts with a pre-trained CLIP
encoder, and after finetuning in the Adapter stage, a finetuned encoder is obtained. To maximize
the feature extraction capability of the pre-trained model, we also include an additional pre-trained
encoder. Together, these two encoders form the encoder of the model.

• Section B outlines the various experimental settings, including datasets, model backbone, evaluation
metrics, CIL methods for comparison, and the training configurations of model. In the paper, unless
otherwise specified, the experimental setup should be consistent with what is described here.

• Section C presents a comparison of our method with other CIL methods in terms of accuracy and
efficiency, including accuracy comparisons across various tasks and between different datasets.
This serves as a supplement to the experimental results in the main paper.

• Section D supplements the results of ablation experiments, including between transformer blocks
and within blocks. In these experiments, "CLIP" represents the results when only the pre-trained
encoder is used without an adapter.

• Section E supplement the comparison of SImE with state-of-the-art parameter-efficient methods
across a wide range of datasets. Additionally, there are also visualize the representations of CLIP
models pre-trained on different datasets via t-SNE.

A ADDITIONAL OPTIMISATION OF ADAPTER FOR DOMAIN ADAPTATION

The CLIP possesses exceptional zero-shot capabilities, enabling it to achieve performance comparable
to supervised models on new datasets without finetuning. This underscores CLIP’s powerful feature
extraction abilities. However, CLIP still faces a domain gap between pre-trained datasets and
downstream task datasets. For instance, while CLIP excels on datasets like ImageNet, its performance
on MNIST(Radford et al., 2021) is poor. To bridge this gap, it is necessary to finetune CLIP
for incremental learning downstream tasks. During the finetuning process, the weights θi, ϕi of
pre-trained CLIP image encoder E′(c) in Eq.3 are frozen, and only the adapters and classifier are
updated:

E∗(c) = F (E′(c), D), (9)

where E∗(x) is the adapted CLIP image encoder, F denotes the finetuning process, D represents
the data of the incremental tasks, η refers to the trainable parameters, η = ∪Z

j η̃ij ∪ θWt. Through
finetuning, the pre-trained encoder can better adapt to downstream datasets. However, continuously
finetuning on a series of tasks D = {D1, . . . , DT } would diminish its feature extraction capabilities
due to Catastrophic Forgetting. Therefore, in this paper, we finetune the pre-trained encoder only on
the first task D1 to maximise the retention of the encoder’s previous knowledge:

E∗(c) = F (E′(c1), D1). (10)

By finetuning on the first task, the encoder can better adapt to downstream datasets. However, the
finetuning process will inevitably diminish the zero-shot capabilities of the pre-trained encoder. To
better preserve the feature extraction capabilities of the pre-trained encoder, we concatenate the
features output by the pre-trained encoder and the finetuned encoder and feed this combined feature
set into the classifier for image classification.

Ec(c) = {E∗(c);E(c)} (11)

Here, Ec(c) represents the composite encoder, and {·; ·} denotes the concatenation of the features
output by the pre-trained encoder and the finetuned encoder. It is important to note that the concatena-
tion is performed after finetuning, and encoder Ec(c) will be frozen in subsequent tasks to maximise
the retention of its feature extraction capabilities.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL SETTING

Datasets. The experiments are implemented on CIFAR100 (Krizhevsky et al., 2009) and TinyIma-
geNet (Zheng et al., 2023). CIFAR100 consist of 60K images with size of 32× 32 from 100 classes,
which are split on 2 classes, 5 classes and 10 classes in each step. Each class consist of 500 training
and 100 testing samples. TinyImageNet, as a subset of ImageNet, consist of 100K images with size
of 64 × 64 from 200 classes and each class consist of 500 training and 50 testing images. In our
experiment, the 100 classes of TinyImageNet are split as base classes which are used for finetuning,
and the rest 100 classes are split on 5 classes, 10 classes and 20 classes in each step.

Network architectures in the SimE. We have developed SimE, leveraging CLIP and adapters
(Adaptformer (Chen et al., 2022) and Multi-Adapter) for class-incremental learning tasks. Within
SimE, the CLIP image processor is utilized for data preprocessing. The image encoder, featuring
various backbone sizes such as ViT-B/16, ViT-B/32, and ViT-L/14, is finetuned using adapters across
different pre-trained datasets, including WIT-400B, Laion-400M, Laion-2B, Datacomp-1B, and
CommonPool-1B. The classifier employs a fully connected (FC) layer, which uses class prototypes
as weights.

Evaluation metrics. Following the methodology of Rebuffi et al. (2017), we assess SimE and
compare it with other baseline methods using two metrics: Average Accuracy (Avgt) and Last
Accuracy (Lastt). (Avgt) represents the mean of the Top-1 accuracy for every task, while (Lastt)
denotes the Top-1 accuracy of final task. Mathematically, for the t-th task, Average Accuracy is
calculated as follows: Avgt = 1

T

∑T
t=1 Lastt.

Others IL methods. We compare the SimE with existing CLIP-based methods (e.g., CoOp(Zhou
et al., 2022), ZSCL(Zheng et al., 2023), Continual-CLIP(Thengane et al., 2022), AttriCLIPWang et al.
(2023), and Boosting-CL(Yu et al., 2024)) and typical continual learning methods (e.g., LwF(Li &
Hoiem, 2017), iCaRL(Rebuffi et al., 2017), DER(Yan et al., 2021), iTAML(Rajasegaran et al., 2020)
and ARI(Wang et al., 2022a), UCIR(Hou et al., 2019), PASS(Zhu et al., 2021), and DyTox(Douillard
et al., 2022)).

Training procedures. In this study, our experiments utilize the image encoder from CLIP(Radford
et al., 2021). We finetune the SimE over 20 epochs on the first task for every datasets. Subsequently,
all model weights, except the classifier, remain unchanged. During finetuning, we employ Stochastic
Gradient Descent (SGD) as the optimizer. The starting learning rate is set at 0.01, adhering to a
cosine decay schedule. We apply a weight decay of 0.0005, a batch size of 64, and the adapter’s
bottleneck dimension is set to 64.

C ADDITIONAL COMPARISON ON ACCURACY

In this section, we present additional accuracy comparisons of different CIL methods and datasets.
Tab.5 shows the Last accuracy for each task over 10 steps on CIFAR-100, compared with other CIL
methods. We also compare the performance of our method on CIFAR-100 and TinyImageNet over
10 and 20 steps, as reported in Fig.6.

Table 5: Last accuracy of different CIL methods on CIFAR100. The accuracy of Task t, t ∈
{1, 2, ..., 10} reported here is the last accuracy over all the previous tasks (i.e., Tasks 1, 2, ..., t). If
not otherwise specified, the method uses ResNet as the backbone, where † indicates the result based
on the CLIP ViT-L/14 pre-trained on Laion-2B. The best results are coloured grey.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
LwF(Li & Hoiem, 2017) 89.3 70.1 54.3 45.8 39.8 36.1 31.7 28.9 24.4 23.9

iCaRL(Rebuffi et al., 2017) 88.7 78.1 72.4 67.2 63.7 60.2 56.4 54.4 51.9 49.5
iTAML(Rajasegaran et al., 2020) 89.2 89.0 87.3 86.2 84.3 82.1 80.7 79.1 78.4 77.8

ARI(Wang et al., 2022a) 88.6 86.9 85.8 84.6 83.1 81.8 81.6 81.0 80.2 80.9

CoOp(W ViT-L/14)(Zhou et al., 2022) 95.8 90.7 85.2 83.4 80.8 75.8 74.7 71.7 71.3 67.6
Continual-CLIP(ViT-L/14)(Thengane et al., 2022) 96.7 92.2 86.0 80.4 77.5 75.8 73.0 71.4 69.8 66.7

AttriCLIP(ViT-L/14)(Wang et al., 2023) 97.8 93.7 91.0 87.5 84.7 82.5 82.3 81.9 81.7 81.4

Ours(ViT-B/16 & AdaptMLP) 97.1 94.4 90.4 87.9 86.1 84.0 82.0 79.5 78.0 76.7
Ours(ViT-L/14 & AdaptMLP) 98.2 95.6 91.9 90.2 89.5 87.9 85.6 83.5 82.7 81.3
Ours(ViT-B/16 & AdaptAtten) 97.0 94.5 90.7 88.4 86.7 84.6 82.4 79.8 78.3 77.1
Ours(ViT-L/14 & AdaptAtten) 98.3 95.9 92.0 90.2 89.6 88.0 85.8 83.7 82.9 81.4

Ours†(V iT − L/14&AdaptAtten&Laion − 2B) 98.2 96.9 94.6 93.1 92.5 91.1 89.4 87.7 87.2 86.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: Avg accuracy and Last accuracy of every Task on CIFAR100 and TinyImageNet with CLIP
ViT-B/16. The Last accuracy of Task t, t ∈ {1, 2, ..., 20} is the Top-1 accuracy over all the previous
Tasks (i.e., Task 1, 2, ..., t). and the Avg accuracy is the average value of Last accuracy over all the
previous Tasks. The 100 classes of TinyImageNet are used as base classes.

(a) Last accuracy of 10 steps (b) Last accuracy of 20 steps

(c) Avg accuracy of 10 steps (d) Avg accuracy of 20 steps

D ADDITIONAL INFLUENCE OF ADAPTER COMPONENTS IN SIME VIA
ABLATION STUDIES

In this section, we report additional experiments on the influence of adapter components in SimE. We
first study the influence of adapters connections between transformer blocks and report it in Tab6 &
Tab.7, where "CLIP" indicates no adapter inserted in transformer blocks. ALL the ecperiments are
conducted on CIFAR100 with CLIP ViT-B/16.

Table 6: Average accuracy of different continual learning methods on CIFAR100 with CLIP ViT-B/16.
For example, "1-3" signifies that adapters are inserted in the first 3 blocks. The accuracy of Task t,
t ∈ {1, 2, ..., 10} reported here is the Top-1 accuracy over all the previous tasks (i.e., Tasks 1, 2, ..., t).
’CLIP’ means no adapter in model.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10
CLIP(Radford et al., 2021) 91.6 89.6 85.3 82.6 80.48 78.13 75.17 72.65 71.3 70.08

1-3 95.60 93.55 89.77 87.50 85.70 83.48 81.49 79.35 77.77 76.47
1-6 95.80 93.20 89.90 87.45 85.84 83.87 81.94 79.66 78.04 76.65
1-9 97.00 93.95 89.87 87.40 85.64 83.30 81.17 78.91 77.28 76.00
1-12 97.10 94.35 90.37 87.90 86.10 84.02 82.00 79.49 78.00 76.70
4-6 95.20 92.90 89.43 87.00 85.50 83.48 81.61 79.34 77.63 76.26
4-9 96.60 93.80 89.73 87.15 85.30 82.90 80.89 78.62 77.16 75.60
4-12 96.80 94.05 90.13 87.48 85.66 83.43 81.37 78.97 77.39 75.93
7-9 95.40 92.90 89.13 86.28 84.22 81.82 79.57 76.81 75.17 73.72
7-12 95.40 93.25 89.60 86.55 84.66 82.25 80.06 77.26 75.81 74.31

10-12 94.20 92.00 88.53 85.65 83.62 81.15 78.74 76.11 74.53 73.18

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Effect of number and position of adapters loaded in CLIP image encoder. For example, "1-3"
signifies that adapters are inserted in the first 3 blocks. All experiments are conducted on CIFAR100
with CLIP ViT-B/16, ’CLIP’ means no adapter in model. The best results are coloured gray

10 steps 20 steps 50 steps
Blocks Avg Last Avg Last Avg Last

CLIP(Radford et al., 2021) 79.69 70.08 80.41 70.08 80.80 70.08
1-3 85.07 76.47 84.76 75.66 83.10 72.86
1-6 85.23 76.65 85.40 75.84 83.86 73.50
1-9 85.05 76.00 85.26 75.70 84.01 73.66

1-12 85.60 76.70 85.30 76.02 84.09 73.77
4-6 84.84 76.26 85.08 75.58 82.30 71.59
4-9 84.78 75.60 84.60 74.65 82.94 72.31

4-12 85.12 75.93 84.81 75.03 83.09 72.46
7-9 83.50 73.72 83.40 73.26 81.79 71.14

7-12 83.91 74.31 83.50 73.54 81.96 71.42
10-12 82.77 73.18 82.86 72.89 81.66 71.16

We also investigate the influence of adapter connections within transformer blocks, as illustrated in
Fig.7 &Tab.8 &Tab.9. Fig.7 presents the model performance on classes 70-100 during advanced
steps (50 steps) with various Multi-Adapter implementations. Tab.8 report the results of different
Multi-Adapter implementations across all steps, with the first row indicating the absence of an adapter
in the encoder. Furthermore, we examine the influence of the bottleneck dimension of the adapter
within the Multi-Adapter framework and report the results in Tab.9, with experiments conducted on
Adapt-Atten.

Figure 7: The Last accuracy of different Multi-Adapter implementations on classes 70-100 in 50 step.
Every step contains 2 classes, so numbers like "36" means classes 70-72. Experiments are conducted
on CIFAR100 with CLIP ViT-B/16 and the classes are tested with the same sequence.

Table 8: The results of different implementations of Multi-Adapter with the bottleneck dimension
being 1. The structures of Adapter-MLP, Adapter-Atten and Adapt-All are shown in Fig2. "Para"
refers to trainable parameters, with "M" standing for million. All experiments are conducted on
CIFAR100 and the best results are coloured grey

10 steps 20 steps 50 steps
Adapt-MLP Adapt-Atten Adapt-All Para(M) Avg Last Avg Last Avg Last

% % % 0 79.69 70.08 80.41 70.08 80.80 70.08
" % % 1.19 85.31 76.72 85.47 76.20 83.93 73.59
% " % 1.19 85.94 77.61 85.33 75.98 83.80 73.50
% % " 1.19 85.48 76.19 85.48 76.19 83.93 73.60
" " % 2.38 85.98 77.41 85.67 76.42 84.60 74.54
% " " 2.38 85.90 77.36 85.53 76.29 84.60 74.53
" % " 2.38 85.76 77.20 85.31 75.90 84.51 74.50
" " " 3.57 85.92 77.25 85.02 75.48 84.72 74.80

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: The influence of bottleneck dimension of adapters. All experiments are conducted on
CIFAR100 with CLIP ViT-B/16. "Bottleneck Dimension" means the projection dimension of adapters.
Other experiment settings are the same as B

10 steps 20 steps
Bottleneck Dimension Avg Last Avg Last

1 85.94 77.61 85.33 75.98
2 86.14 77.68 85.50 76.16
4 85.84 77.01 85.56 76.44
8 85.85 77.10 85.63 76.58

16 85.92 77.14 85.64 76.6
32 85.88 77.06 85.61 76.47
64 85.93 77.09 85.67 76.61
128 85.89 77.03 85.53 76.32
256 85.91 76.93 85.44 76.21

E ADDITIONAL COMPARASION AND VISULIATION

we extend our experiments to include several SOAT parameter-efficient CIL methods that utilize pre-
trained models on multiple datasets, including CIFAR-100, CUB-200, ImageNet-R(IN-R, ImageNet-
100 (IN-100) and ImageNet 1000(IN-1K). The updated results are summarized in the table 10:

Table 10: Comparwssion between SimE and SOAT parameter-efficient CIL methods that utilize
pre-trained models on multiple datasets. All experiments are conducted based on CLIP ViT-B/16.

CIFAR 10 steps CUB 10 steps IN-R 10 steps IN-100 10 steps IN-1K 10steps
Methods Avg Last Avg Last Avg Last Avg Last Avg Last

L2PWang et al. (2020) 81.90 73.08 71.90 62.99 81.67 75.98 80.51 67.22 79.30 69.60
DualPromptWang et al. (2022b) 81.45 72.51 71.74 62.14 82.01 75.77 80.65 67.38 79.39 69.79

CODA-PromptSmith et al. (2023) 76.98 62.25 66.61 50.88 78.00 67.52 64.13 34.76 76.99 66.96
SLCAZhang et al. (2023) 80.53 67.58 73.30 60.39 75.92 70.37 78.63 59.92 79.10 68.27
APERZhou et al. (2023) 75.76 65.50 78.80 70.61 78.62 71.35 85.84 76.40 76.60 68.74

SimE(Ours) 85.94 77.10 84.98 76.68 83.19 75.82 89.77 80.94 80.14 69.72

Figure 8: The t-SNE visualization of CLIP pre-trained on different datasets. All results are conducted
on CIFAR100 with ViT-B/16 as backbone.

(a) Laion400M (b) Laion2B

(c) Datacomp1B (d) CommonPool1B

we also use t-SNE to visualize CLIP models trained on different datasets, as shown in Fig.8. It can
be seen that the CLIP pre-trained on the larger dataset (LAION2B) clusters data points of the same
class more tightly, indicating that it has a better ability to distinguish between different classes of
data. Therefore, based on the t-SNE visualization results, we could selected CLIP models pre-trained
on different datasets.

18

	Introduction
	Related work
	The SimE framework via vision-language models with adapters
	SimE formulation
	Multi-Adapter formulation
	Realizations of SimEs via CLIP with different adapters

	Experimental results
	Comparison on the accuracy of different CIL methods
	Comparison on the efficiency of different CIL methods
	Ablation study on the influence of adapter components in SimE
	Ablation studies on the influence of CLIP components in SimE

	Conclusion
	Additional optimisation of adapter for domain adaptation
	Additional experimental setting
	Additional comparison on accuracy
	Additional influence of adapter components in SimE via ablation studies
	Additional comparasion and visuliation

