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Abstract

Medical image segmentation is often constrained by the availability of labelled
training data. ‘Data augmentation’ helps to prevent memorisation of training data
and helps the network’s performance on data from outside the training set. As
such, it is vital in building robust deep learning pipelines. Augmentation in medical
imaging typically involves applying small transformations to images during training
to create variety. However, it is also possible to use linear combinations of training
images and labels to augment the dataset using the recently-proposed ‘mixup’
algorithm. Here, we apply this algorithm for use in medical imaging segmentation.
We show that it increases performance in segmentation tasks, and also offer a
theoretical suggestion for the efficacy of this technique.

1 Introduction

‘Data augmentation’ is used to artificially increase the size of the training dataset. In medical
imaging, this is typically done with transformations that are applied to both the images and labels
equally, creating warped versions of the training data. Augmentation methods commonly employ
transformations such as rotations, reflections, and elastic deformations, which produce training
images that closely resemble one particular training example. While the intuitive motivation behind
augmentation strategies is appealing, a recently-proposed technique, ‘mixup’ [8] works by training
on linear combinations of existing training data: the training labels are also linear combinations of
the ground-truth labels. Although images generated in this manner are noticeably different than
training images (looking like two images super-posed), this augmentation technique has been shown
to improve performance on a variety of machine-learning tasks.

In this work, we apply mixup to medical image data for the purpose of semantic segmentation.
We also introduce a variant on the technique, which we label ‘mixmatch’. This variant takes class
prevalence into account when deciding which patches to mix. Both mixup and mixmatch improve
segmentation results on the BraTS dataset. Code for this work will be made available via the
open-source medical imaging software NiftyNet [2].

2 Methods

In mixup [8], images from the training set are combined such that a mixup sample is a linear
combination of two training data: (xi, yi) and (xj , yj). The mixup sample is given by: (xmixup =
λxi + (1− λ)xj , ymixup = λyi + (1− λ)yj). The parameter λ ∈ [0, 1] and is distributed according
to a Beta distribution: λ ∼ β(α, α) for α ∈ (0,∞). In mixup, the samples to be combined are chosen
randomly from all available images (in our case, patches). Here, we use mixup and also a proposed
we call ‘mixmatch’, in which the mixing is not totally random.
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The motivation for mixmatch comes from noting that datasets in medical imaging are often highly
imbalanced. For instance, in the BraTS dataset, the majority of voxels in the image contain no
tumour. We thus propose a simple alteration: instead of xi,j being chosen at random from all the
loaded image patches, we instead match the patches with highest foreground amounts with the lowest.
Implementation-wise, for each minibatch of size n that we use, we load 2n patches. From the first
set of n patches, we select the highest concentration of foreground and match it with the lowest
concentration from the 2nd n patches.

2.1 Performance on BraTS training set

Mixup has been used on whole-image classification problems, but not semantic segmentation. Firstly,
we test whether mixup benefits training in semantic segmentation. We then test our proposed variant,
mixmatch. For data, we use the BraTS 2017 dataset [1, 4] — a multi-modal MRI dataset of labelled
brain gliomas. We used the network architecture of the 2nd-placed entry in BraTS 2017: A cascaded
neural network [7] (the winning entry was an ensemble of networks rather than a single network[3],
which would have increased the training burden). We trained the network to predict the label ‘whole
tumour’ binary label and trained using the Dice loss [5], fixing the mixup α = 0.4 in all experiments.

Good augmentation should increase the generalisability of the learned network. To test the effects of
this, we independently trained the network on a small fraction of the BraTS dataset (10/285 subjects
chosen at random).

In total we trained 4 networks on large (199 subjects) and small (10) subsets of the BraTS dataset. In
labelling these results, ‘no mix’ refers to no augmentation; ‘aug’ refers to augmenting with rotations,
random flips (left-right) and zoom; ‘mixup’ is vanilla mixup and ‘mixmatch’ has patches being
matched depending on the amount of foreground label in the image.

2.2 Effect of mixup/mixmatch samples on training

Training neural networks relies on the backpropagation algorithm. By using the chain rule, the effect
of a given pixel’s value, pi, on the final loss function is propagated to update the network’s parameters.
We wanted to investigate whether ∂L

∂pi
(λxi + (1 − λ)xj) ≈ λ ∂L∂pi (xi) + (1 − λ) ∂L∂pi (xj). If this

holds, it may suggest that mixing samples acts somewhat like increasing the batch-size. To perform a
first check of this idea, we combined two images with varying λ to observe the effects on ∂L

∂pi
. We

calculate this derivative using a trained network from 2.1.

3 Results

In Figure 1, we see the performance of the various methods, plotted against the iteration. Mixup and
mixmatch both outperform both un-augmented training and augmented training at every iteration.
Mixmatch has similar performance to mixup.

Figure 1: Results on withheld subjects for Section 2.1. For each of the plotted boxes, the performance
is measured on the same random subjects from outside of the training set. The results from the small
training set are denoted by ‘(s)’. Mixup and mixmatch improve the Dice scores over the alternatives.
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Figure 2: Left-Right: λ is varied between 0 and 1 to make a mixed image. Top row: the computed
∂L(λxi+(1−λ)xj)

∂pi
. Bottom row: the weighted average λ∂L(xi)

∂pi
+(1−λ)∂L(xj)

∂pi
of the unmixed images.

The top and bottom rows are similar, especially at either end of this spectrum.

In terms of the effects of mixup/mixmatch on ∂L
∂pi

, see Figure 2. We observe that especially for
small mixing fractions, the values of ∂L

∂pi
are noticeably similar to the weighted averages of their

independent loss derivatives. This may suggest that some of the benefits of mixup could be seen
as analogous to mini-batch training: the dice loss derivatives are close to a weighted sum of the
derivatives from mixed patches. At λ = 0.5, this would be comparable to a mini-batch of size 2,
although more experiments would be required to further validate this suggestion.

4 Discussion

Mixup is an augmentation technique with low computational overhead that improves semantic
segmentation results. These early results suggest performance increases with little overhead. Although
the theoretical justification for this non-intuitive augmentation technique is not settled, we believe that
Figure 2 sheds some light on its success by relating it to mini-batch training. This benefit could be
especially relevant in medical imaging, where our large images mean batch-sizes are far below their
typical values in other computer-vision settings. We also note that mixup acts to smooth the labels,
which is a regularisation technique in its own right [6]. In future, we will investigate whether variants
of mixup (including the proposed mixmatch) may help to address issues such as class imbalance
which are prevalent in medical imaging studies. To this end, we note that mixmatch may benefit from
insight from the curriculum-learning literature in terms of which patches should be matched.
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