
Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Makoto Takamoto 1 Francesco Alesiani 1 Mathias Niepert 1 2

Abstract

Scientific Machine Learning (SciML) is con-
cerned with the development of learned emulators
of physical systems governed by partial differ-
ential equations (PDE). In application domains
such as weather forecasting, molecular dynamics,
and inverse design, ML-based surrogate models
are increasingly used to augment or replace in-
efficient and often non-differentiable numerical
simulation algorithms. While a number of ML-
based methods for approximating the solutions of
PDEs have been proposed in recent years, they
typically do not adapt to the parameters of the
PDEs, making it difficult to generalize to PDE
parameters not seen during training. We propose
a Channel Attention mechanism guided by PDE
Parameter Embeddings (CAPE) component for
neural surrogate models and a simple yet effective
curriculum learning strategy. The CAPE module
can be combined with neural PDE solvers allow-
ing them to adapt to unseen PDE parameters. The
curriculum learning strategy provides a seamless
transition between teacher-forcing and fully auto-
regressive training. We compare CAPE in conjunc-
tion with the curriculum learning strategy using
a popular PDE benchmark and obtain consistent
and significant improvements over the baseline
models. The experiments also show several ad-
vantages of CAPE, such as its increased ability
to generalize to unseen PDE parameters with-
out large increases inference time and parameter
count. An implementation of the method and ex-
periments are available at https://github.
com/nec-research/CAPE-ML4Sci.

1NEC Laboratories Europe, Heidelberg, Germany 2University
of Stuttgart, Stuttgart, Germany. Correspondence to: Makoto
Takamoto <makoto.takamoto@neclab.eu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
Many real-world phenomena, ranging from weather fore-
casts to molecular dynamics and quantum systems, can be
modeled with partial differential equations (PDEs). While
for some problems the mathematical description of these
equations is available, finding its solutions is complex and
usually needs some numerical approximations. Numerical
simulation methods have been developed for many years
and have achieved a high level of accuracy in solving these
equations. However, numerical methods are resource inten-
sive and time-consuming even when run on larger super-
computers to obtain sufficiently accurate results. Especially
high-resolution and high-dimensional hydrodynamic-type
field equations are computationally demanding. Even more
challenging are simulations with various PDE parameters
since a numerical simulation is required for each of the
initial conditions and for each of the PDE parameter’s con-
figurations.

Recently, there has been a rapidly growing interest in ma-
chine learning methods for the problem of solving PDEs
due to their various applications in science and engineering
(Guo et al., 2016; Lusch et al., 2018; Sirignano & Spiliopou-
los, 2018; Raissi, 2018; Kim et al., 2019; Hsieh et al., 2019;
Bar-Sinai et al., 2019; Bhatnagar et al., 2019; Pfaff et al.,
2020; Wang et al., 2020; Khoo et al., 2021). For example,
several prior studies reported that ML models can estimate
solutions more efficiently than classical numerical simula-
tors (Li et al., 2021a; Stachenfeld et al., 2021). Moreover,
using neural networks as surrogate models allows us to
compute derivatives with respect to the input variables. Dif-
ferentiable surrogate models enable the use of automatic
differentiation to solve inverse problems which have numer-
ous real-world applications but are difficult to solve using
traditional numerical methods (Coros et al., 2013; Allen
et al., 2022). A considerable number of papers have shown
the advantage of ML-based surrogate models (Li et al., 2020;
2021a; Stachenfeld et al., 2021; Lu et al., 2021). The ma-
jority of these methods, however, are purely data-driven,
which does not allow us to change PDE parameters. The
existing approaches taking PDE parameters into account,
are tailored to specific neural network architectures. For
instance, message-passing PDE solvers (Brandstetter et al.,
2022) use PDE parameters as input but transform these pa-
rameters into node embedding and, therefore, cannot be

1

https://github.com/nec-research/CAPE-ML4Sci
https://github.com/nec-research/CAPE-ML4Sci

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

used with other methods, in particular, CNN based mod-
els. To overcome the shortcomings of existing data-driven
SciML models, a straightforward approach would include
the PDE parameters as additional input. However, this naive
method requires modification of the BASE network which is
potentially harmful to its accuracy. An alternative approach
attaches an external parameter embedding module to the
network. However, there are too many possible module
structures and methods to provide the embedded parame-
ter information to the base network, and it is in general
non-trivial to select the best one. Still, to ensure a direct
comparison, we implemented an extension of said node
embedding method to convolution-based methods.

We propose a new and effective parameter embedding mod-
ule by utilizing the channel-attention method inspired by
classical numerical solvers using the implicit discretization
method (see Sec. 2.3 and Sec. 2.4). The crucial idea is that a
neural network generates intermediate (approximated) field
data for future time steps which are then interpolated by a
BASE model such as the FNO (Li et al., 2021a) to predict
the field data for the next time step. CAPE can be combined
with any existing autoregressive neural PDE solvers. Fig. 1
illustrates the proposed CAPE framework.

We make the following contributions. First, we propose a
CAPE module which can be combined with any existing
neural PDE solvers and can effectively transfer the PDE
parameter information to the base network (BASE). Sec-
ond, we propose a simple but effective curriculum learn-
ing strategy that seamlessly bridges the teacher-forcing and
auto-regressive methods. Third, we perform extensive exper-
iments using various PDEs with a large number of different
parameters evaluating the effectiveness and efficiency of
the proposed method in comparison with state-of-the-art
methods.

2. CAPE: A Framework for Neural PDE
Solvers

2.1. Background: Partial Differential Equations

Following the notation by (Brandstetter et al., 2022), we
consider Partial Differential Equations (PDEs) over time
dimension t ∈ [0, T] and over spatial dimensions x =
[x1, . . . , xD] ∈ X ⊆ RD which can be written as

∂tu = F (t,x,u, ∂xu, ∂x,xu, . . .), (1)

u(0,x) = u0(x), x ∈ X, B[u](t,x) = 0, (2)

where (t,x) ∈ [0, T] × ∂X, and u : [0, T] × X → Rc

is the solution of the PDE, where c is the field dimension,
used to describe various field quantities such as velocity,
pressure, and density, while u0(x) is the initial condition at
time t = 0, and B[u](t,x) = 0 are the boundary conditions
at x in ∂X, which is the boundary of the domain X. Here,

∂xu, ∂xxu, . . . are the partial derivatives of the solution u
with respect to the domain, while ∂tu is the partial derivative
with respect to time. The functional F describes the possibly
non-linear interactions between the PDE’s terms.

2.2. Problem Definition

We consider PDEs (Sec. 2.1) whose solution is described
as a temporal sequence of field data

{
uk
}
k=0,...,N

:=

u0,u1, ...,uN where uk is the field data at time step tk,
that is, the state of the physical system governed by the PDE
under consideration at time tk discretized using ∆t = T/N .
Each u ∈ X ⊆ Rc×x1,...,xD represents the field tensor data
with c, the number of physical variables such as density and
velocity, and xi the spatial dimensions of the i-th coordi-
nate. For example, for a 1-d problem we have X ⊆ Rc×x1 ,
for a 2-d problem X ⊆ Rc×x1×x2 , and for a 3-d problem
X ⊆ Rc×x1×x2×x3 . We will often refer to c as the chan-
nel dimension. We aim to emulate numerical simulators of
PDEs which iteratively mapM : X → X from uk to uk+1.
The emulator (or surrogate model) is a learnable function
modeled as a neural network NN with weights θ. We refer
to the parameters of a neural network as weights to avoid
a conflict in terminology with the parameters of PDEs. In
the following, we denote the emulator’s prediction at time
index k as ũk. Auto-regressive neural networks predict the
next time step’s field data based on a sequence of field data
tensors of length ℓ

ũk+1 = NN(ũk−ℓ+1, ..., ũk;θ).

Given the length of the input sequence N ∈ N, and an
initial input sequence

(
u0, ...,uℓ−1

)
=
(
ũ0, ..., ũℓ−1

)
of

length ℓ < N , the ML model auto-regressively generates
the remaining sequence

(
ũℓ, ..., ũN

)
. The training loss is

typically the normalised root-mean-square error (RMSE)
between the predicted and the true field data tensors

L(θ) =

N∑
k=ℓ

nRMSE
(
uk, ũk

)
≡

N∑
k=ℓ

||ũk − uk||2
||uk||2

, (3)

where ||u||2 is the L2-norm of a (vector-valued) variable u.
Since we are training an auto-regressive neural network, the
gradients of the above loss can be backpropagated in time
in various ways. We discuss this in the following sections.
Figure 1(left) illustrates this auto-regressive approach to
solving PDEs. In the vast majority of experimental setups,
the assumption is made that ℓ > 1, and, therefore, an initial
input sequence of length ℓ is available to the model; in
practice, this would require a numerical simulation to be run
for ℓ− 1-time steps from the initial condition and for each
PDE parameter λ. The main idea of CAPE is to learn to
generate these sequences based on the current field data and
parameter values λ and use those as input to an off-the-shelf
neural surrogate model such as an FNO (Li et al., 2021a) or

2

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

N0
Time

S
pace

Autoregressive PDE Solver CAPE𝝀

Neural base model

Step 1 Step 2

Figure 1. The standard autoregressive approach (left) and the proposed CAPE approach (right) which consists of two interdependent steps.

an U-Net (Ronneberger et al., 2015) to perform a complex
interpolation.

2.3. Combining Neural PDE Solvers with the CAPE
Module

The proposed approach is motivated by the need for neural
PDE solvers to generalize to PDE parameters unseen during
training. We propose CAPE, a novel neural network archi-
tecture that takes the prior state of the system ũk and PDE
parameters λ as input and predicts the ℓ-intermediate future
states

{
ûk→k+i
cape

}
i=1,...,ℓ

= CAPE(uk,λ;θCAPE)
1. The out-

put of CAPE is then used by the BASE network. The overall
structure is provided in Fig. 1(right). The intuition behind
this approach is that the intermediate future states capture
information about the PDE parameters’ impact by attending
to the results of the convolutional operations. While we do
not change the architecture of the base neural PDE solvers,
we propose to use them to predict, given the past temporal
states and the intermediate future states, the state for the
next time step. This is contrary to the typical use of neural
PDE solvers. The base network is trained jointly with the
CAPE module. As shown in Sec. 3, this choice improves the
prediction capability of the BASE network.

During training, the output of CAPE is augmented with an
the additional loss term

Lcape(θCAPE) =

N∑
k=ℓ

min(ℓ,N−k)∑
i=1

nRMSE
(
ûk→k+i
cape ,uk+i

)
,

which forces the CAPE module to predict a temporal se-
quence of future field data

{
uk+i

}
i=1,...,ℓ

.

Finally, the intermediate sequence
{
ûk→k+i
cape

}
i=1,...,ℓ

is con-

catenated with uk, the field data at time tk, and given to
the base network to make the final prediction. In sum-
mary, the CAPE module transforms the input variables{
uk,λ

}
into temporal-sequential intermediate field data

{uk, ûk→k+1
cape , . . . , ûk→k+ℓ

cape } which is then interpolated by
the base neural network. Before we introduce the inductive
bias of the CAPE module, we motivate the general approach

1In principle it is possible for CAPE to also predict field data
of past time steps:

{
ûk→k+i

cape

}
i=±1,...,±ℓ

.

from a classical numerical simulation perspective.

CAPE as an implicit discretization method. Let us con-
sider the following simple PDE:

∂tu = F (u;λ). (4)

The base neural network can be expressed with the equation

uk+1 = fbase

(
uk,

{
ûk→k+i
cape

}
i=1,..,ℓ

;θBASE

)
, (5)

where fbase is the function expressed by the base neural
surrogate model and{

ûk→k+i
cape

}
i=1,...,ℓ

= CAPE(uk,λ;θCAPE) (6)

are the approximated intermediate future states predicted by
the CAPE module generated for time index k. The CAPE
module acts as a pre-processor network providing sequential
data uk, {uk+i}i=1,...,ℓ, while Eq. 5 can be interpreted as
an interpolation network whose input is the current state of
the physical system uk and future extrapolated states of the
system {ûk+i

cape}i=1,...,ℓ (see the last figure of Fig. 5).

Now, these equations can be understood from a numeri-
cal method perspective, where using implicit discretization
(Anderson et al., 2016), Eq. 4 reduces to:

uk+1 = uk +∆tF (uk+1;λ) ≡ F̃ (uk,uk+1;λ). (7)

Eq. 5 with ℓ = 1 can be seen as a neural network approxi-
mation of the function F̃ used withing the implicit method
of Eq. 7. When ℓ > 1 CAPE can therefore be seen as a
generalized ML-based variant of the implicit method for
solving PDEs.

Generally, the implicit method is known to be independent
of the Courant–Friedrichs–Lewy (CFL) condition (Lewy
et al., 1928) which enables it to utilize a larger time step
size, ∆t, than the explicit method. However, the implicit
method usually necessitates either an iterative method or a
computationally expensive matrix inversion to obtain the
value of uk+1 due to the existence of the unknown variable
on the right-hand side of the equation. In contrast, our
CAPE method allows us to evaluate uk+1 in Eq. 7 in a
data-driven manner. We consider that our approach can

3

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

potentially result in more accurate and stable predictions
of uk+1 even using a large time step size by reflecting the
implicit method’s behavior but with significantly reduced
numerical costs.

2.4. PDE Parameter-Guided Channel Attention

CAPE computes 3 different d-dimensional channel attention
masks aα ∈ Rd, α = 1, 2, 3 from the parameters of the
PDE λ using a 2-layer MLP

aα = W2,ασ(W1,αλ), (8)

where W1/2,α is the weight matrics of the MLPs , d is the
channel dimension in the feature space and σ is the GeLU
activation function (Hendrycks & Gimpel, 2016). Here the
bias terms are omitted for simplicity . Wα = (W1,α ,W2,α)
are the weights associated with three operators: a 1 × 1-
convolution (g1), a depth-wise convolution (g2), and a
spectral convolution (Li et al., 2021a) (g3), that are used
to compute the tensor representations zk

α ∈ Rd×nx... as
zk
α = gα(u

k,Wα). The tensors are then multiplied by the
attention

vk
α = ak

α ⊙1 z
k
α (9)

using the Hadamard operator (⊙1) over the first dimension
(the channel dimension) which is equivalent to the broadcast
operation of ML programming languages, such as Numpy
and PyTorch . The three convolutions can be interpreted
as a finite difference method since convolution operations
accumulate local information of a mesh, which, in principle,
can simulate local interactions such as advection and diffu-
sion. Intuitively, channel attention is equivalent to choosing
an appropriate physical process for each PDE parameter.
A similar mechanism has been proposed for visual tasks,
called the squeeze-and-excitation networks (Hu et al., 2018)
which enhances useful channels of the feature vector of con-
volutional networks through an attention mechanism. The
feature vk

α ∈ Rd×nx..., α = 1, , 2, 3 are combined to form
an intermediate feature yk ∈ Rc×ℓ×nx... as

yk = h1×1,d→c×ℓ

(
σ

(
h1×1,c→d(u

k) +
∑
α

vk
α

))
(10)

where h1×1,∗ are 1× 1 convolutions that adjust the number
of dimensions, in particular h1×1,c→d : c× nx · · · → d×
nx . . . , while h1×1,d→c×ℓ : d × nx · · · → c × ℓ × nx
Finally, the sequence of predictions is computed{

uk→k+i
cape

}
i=1,...,ℓ

= (uk + LayerNorm(yk
i))i=1,...,ℓ

(11)
where yk

i is the i-th element of the data tensor yk, selected
from the second dimension 2. For the sake of presentation,

2We found that in the case of FNO, the LayerNormalization
in Eq. 11 is harmful (see also Tab. 15). We also found that in the

we omitted the batch dimension. Figure 2 illustrates the ar-
chitecture of the CAPE module 3. Visualization of the kernel
after channel-attention and a short discussion of the role of
the channel-attention in CAPE is provided in Appendix I.

2.5. Curriculum Learning

For each initial condition u0, the BASE and CAPE models
(referred to as NN(uk;θ)) jointly predict the full temporal
sequence {uk}k=1,..,N . We propose the following curricu-
lum learning strategy, Fig. 3. For each training epoch, we
split the temporal sequence into two parts. For the first
part (u0, ...,uktrans) we use auto-regressive training using
ũk, the prediction of the model at time index k, as input to
predict the solution for time index k + 1, that is, ũk+1 =
NN(ũk;θ). For the second part (uktrans+1, ...,uN), we
train the model using teacher-forcing. The teacher-forcing
strategy (Williams & Zipser, 1989; Bengio et al., 2015)
computes the prediction for time index k + 1 using a
noisy version of the true value at time index k, that is,
ũk+1 = NN(uk + ϵ;θ) where ϵ is random noise increas-
ing the stability at inference time (Sanchez-Gonzalez et al.,
2018; 2020; Pfaff et al., 2020; Stachenfeld et al., 2021).
The time index ktrans determines the time step where we
switch from auto-regressive training to teacher-forcing and
is computed using the following monotonically increasing
function of the epoch number n

ktrans =

⌊
N

2

(
1 + tanh

[n
N − 0.5

∆

])⌋
, (12)

where N is the total epoch number, and ∆ is a hyper-
parameter controlling the steepness of the transition func-
tion. A plot of the function is provided in Fig. 7) and a
detailed algorithm of the training strategy is provided in
Appendix (Algorithm 1).

The strategy is based on the following two assumptions:
(1) the prediction error decreases as the number of training
epochs increases, (2) the accumulated error increases as the
number of auto-regressive rollout steps increases. Teacher-
forcing training is usually more stable since it avoids the
accumulation of prediction errors and should be used ex-
clusively in the first phase of training. The auto-regressive
strategy simulates the behavior at test time and exposes
the model to inputs that evolved further from the true data,
making it more robust to error accumulation. For the same
reasons, however, it tends to be less stable, especially in the
early phase of training. The proposed curriculum-learning
strategy is used to combine the advantages of both ap-

case of 2D NS we obtain improved results when modifying the
right-hand side of Eq. 11 as: uk(1 + LN(yk

i)) and we applied it
to obtain the 2D NS results in this paper.

3The results with other possible CAPE structures are provided
in Appendix G which shows our proposed structure is the best
choice.

4

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

M
L

P

Conv

1x1 Conv
Channel
attention

d channels

kernels

d attention weights

c channels

Figure 2. The CAPE module for one type of convolution (residual connections are omitted).

PDE training parameters testing (unseen) parameters in Fig. 6

1D Advection β = (0.2, 0.4, 0.7, 2.0, 4.0) β = (0.1, 1.0, 7.0)
1D Burgers ν = (0.002, 0.007, 0.02, 0.04, 0.2, 0.4, 2.0) ν = (0.001, 0.01, 0.1, 1.0, 4.0)
2D NS η = ζ = (10−8, 0.001, 0.004, 0.01, 0.04, 0.1) η = ζ = (0.007, 0.07)

Table 1. PDE parameters used in the experiments.

epoch

auto-regressive

teacher-forcing

tim
e

Figure 3. The proposed curriculum learning strategy leads to a
smooth transition between one time-step learning (teacher-forcing)
and fully autoregressive training (auto-regressive).

proaches.

3. Experiments
We used datasets provided by PDEBench (Pradita et al.,
2022) a benchmark for SciML from which we selected the
following PDEs 4:

1D Advection Equation. This equation describes the pure-
advection of waves

∂tu(t, x) + β∂xu(t, x) = 0, (13)

where β is the PDE parameter describing advection velocity.
The exact solution of this equation is: u(t, x) = u0(t, x−
βt) where u0 is the initial condition. Hence, this PDE can
be used to check if the ML models understand the property
of advection, updating the solution by just advecting the
initial profile without changing it.

1D Burgers Equation. Burgers’ equation is a mathematical
model equation simulating the non-linearity and diffusivity
in the hydrodynamic equation by a scalar variable

∂tu(t, x) + u(t, x)∂xu(t, x) = ν/π∂xxu(t, x), (14)

4An additional experiment results conducted on 2D Burgers
equation is provided in Appendix C.

where ν is the diffusion coefficient and the parameter of this
equation. This PDE can be used to check if ML models can
understand the non-linear behavior from the second term in
the left-hand side of Eq. 14 and the diffusion process whose
strength is controlled by the parameter ν.

2D Compressible Navier-Stokes Equations (2D NS). The
compressible Navier-Stokes equations (NS eqs., in the fol-
lowing) is one of the basic physics equations describing
classical fluid dynamics

∂tρ+∇ · (ρv) = 0, (15)
ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v),

(16)

∂t

[
ϵ+

ρv2

2

]
+∇ ·

[(
ϵ+ p+

ρv2

2

)
v − v · σ′

]
= 0,

(17)

where ρ is the mass density, v is the velocity, p is the gas
pressure, ϵ = p/(Γ− 1) is the internal energy, Γ = 5/3, σ′

is the viscous stress tensor, and η, ζ are the shear and bulk
viscosity, respectively.

For 1-dimensional PDEs, we used N = 9000 training in-
stances and 1000 test instances for each PDE parameter with
resolution 128. For 2-dimensional NS equations, we used
N = 900 training instances and 100 test instances for each
PDE parameter with spatial resolution 64× 64.

Experiment Setup. We evaluated the neural models U-Net
(Ronneberger et al., 2015) and FNO (Li et al., 2021a) with
datasets provided by PDEBench (Takamoto et al., 2022)
for various parameters for the 1D Advection equation, 1D
Burgers equation, and 2D compressible Navier-Stokes equa-
tions. We also evaluated the message passing neural PDE
Solvers (MPNN) (Brandstetter et al., 2022) as a baseline
allowing conditional treatment of PDE parameters. As a
baseline for multi-dimensional turbulent flow, we evaluated

5

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

FNO Unet
Model

0.00

0.25

0.50

0.75

1.00
nM

SE
Advection

Base PINO 2-step Cond. CAPE

FNO Unet
Model

0.00

0.25

0.50

0.75

1.00

nM
SE

Burgers

Base PINO 2-step Cond. CAPE

FNO Unet
Model

0.6

0.8

1.0

nM
SE

2D NS

Base 2-step Cond CAPE

Figure 4. Plots of the normalized MSE (smaller is better) with an error bar for Advection eq. (Left), Burgers eq. (Middle), and 2D
Compressible NS equations (Right).

PDE model BASE BASE (PINO) Conditional prev. 2-steps CAPE

1D Advection FNO 0.69±2.2×10−3

0.70±1.6×10−4

0.05±1.2×10−3

0.13±3.9×10−2

0.03±2.5×10−3

Unet 0.72±1.0×10−2

0.76±1.8×10−2

0.33±2.0×10−2

0.33±3.9×10−2

0.11±8.3×10−3

MPNN 0.32±2.5×10−2

– 0.07±2.0×10−3

– –

1D Burgers FNO 0.54±0.40 0.49±1.3×10−1

0.23±2.3×10−2

0.17±2.1×10−2

0.09±7.8×10−3

Unet 0.53±4.9×10−2

0.85±3.2×10−1

0.51±5.1×10−2

0.50±6.3×10−2

0.45±3.8×10−2

MPNN 0.27±0.11 – 0.13±3.7×10−3

– –

2D NS FNO 1.06±2.5×10−2

– 0.86±0.18 0.91±0.10 0.80±8.3×10−2

Unet 0.77±3.6×10−2

– 0.74±0.02 0.74±3.5×10−2

0.70±3.7×10−2

MPNN N/A – N/A – –
TF-Net N/A N/A N/A 1.28±0.19 N/A

Table 2. List of the normalized RMSE (the smaller, the better) for Advection eq., Burgers eq., and 2D Compressible NS equations.

the performance of the TF-Net (Wang et al., 2020) on 2D
compressible Navier-Stokes equations. We trained each of
the neural models (1) Base: without any changes (vanilla
model), (2) PINO: with a PINO loss (Li et al., 2021b), (3)
Conditional: the parameters are added to the input data
as new channel-dimensions, (4) 2-step: with the field data
for the current and previous time-steps as input (uk,uk−1),
and (5) CAPE: with the CAPE module. Other than case (4),
we only provided field data for one time step to the models
and, therefore, the models cannot obtain PDE parameters’
information from the given data. The PINO loss function
regularizes the ML models to satisfy the residuals of the
PDEs and might lead to an improved generalization behav-
ior for unseen PDE parameters. The CAPE module predicts
intermediate field data for one future time step and this is
used as the input to the BASE model together with the field
data of the current time step.5. The amount of field data
provided to the BASE network in cases (4) and (5) is the
same: in case (4) the model always obtains field data for
time steps k and k − 1 as input to predict the field data for
time step k + 1 while in case (5) the BASE model obtains
field data for time step k and intermediate field data for time
step k + 1 generated by the CAPE model to predict the field

5First introduced in (Li et al., 2021a) with twenty steps as input.

data for time step k + 1. Hence, the model in case (4) ob-
tains two true field data for 2 initial steps and, therefore, has
the opportunity to adapt to different PDE parameter values.
Hence, while case (4) is more expensive, we consider it a
strong baseline for the problem.

Since the solutions of each PDE are not normalized and
based on prior results on evaluating PDE solvers (Pradita
et al., 2022), we measure the normalized RMSE (nRMSE).
We used the normalized RMSE loss function LnRMSE with
the auxiliary loss function of the CAPE module Lcape :=
LnMSE + αLcape where α is the weight coefficient. The
optimization was performed with Adam (Kingma & Ba) for
100 epochs. The learning rate was divided by 2.0 every 20
epochs. For a fair comparison, we made the model size of
the different methods as similar as possible. A table with
model parameter sizes is provided in Tab. 7 in the appendix.
A more detailed description of the hyper-parameters is pro-
vided in Appendix B 6.

Varying PDE parameters. Fig. 4 shows bar plots compar-
ing the BASE models with and without CAPE module, the
models with PINO loss, and the models with the 2-steps as

6CAPE’s hyper-parameters was determined using a smaller
train-validation split, details of which are provided in Sec. B.2.

6

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

0.0 0.5 1.00

1

2

3
1D Advection, t=2.0

initial
True
base
CAPE
CAPE module

0.0 0.5 1.0
1.0

0.5

0.0

0.5
1D Burgers, t=1.0

initial
True
base
CAPE
CAPE module

True Base CAPE CAPE module

Figure 5. Visualization of the results: Advection eq. at the final time-step (t = 2.0) (Left), Burgers eq. at tk = 20(t = 1.0) (2nd-left) at
the final time-step, and Vx of 2D NS equations at tk = 5(t = 0.25) (Right). Here “Base” is the vanilla FNO, “CAPE ” is the FNO with
CAPE, “CAPE module” is the direct output from CAPE module only; the CAPE module provides a higher frequency proposal to the BASE

model which then more accurately predicts the field data.

input (see also Tab. 2)7 . The CAPE module results in the
lowest error in all cases. In particular, the CAPE module
leads to an impressible error reduction ranging from 20 %
(2D NS equation) to 95 % (1D Advection). We partly at-
tribute this to the BASE network’s ability to capture physical
dynamics from the PDE parameter-dependent data provided
by the CAPE module. The vanilla FNO is a state-of-the-
art model and is superior to the U-net as a BASE model 8.
Interestingly, the PINO loss provides almost no benefit in
our setting. We hypothesize that the PINO loss is heavily
affected by and dependent on the time-step size. A more de-
tailed explanation of this observation is given in Appendix D.
Interestingly, the CAPE module provides either comparable
or a little better results than the case with 2-step information.
This indicates that the CAPE module succeeded in providing
equivalent and even more useful information to the BASE
network.

Generalization Ability. Fig. 6 plots the normalized MSE
for each parameter value of the PDEs using FNO as the
BASE network. The parameter of the 1D Advection PDE
controls the advection velocity and the parameters of the
remaining equations control the strength of the diffusion
process. First, the 1D-Advection result shows that the
CAPE module overfits with the trained parameter (β =
0.2, 0.4, 0.7, 2.0, 4.0), though it showed a very nice gener-
alization performance to the trained PDE parameters. This
could also be indicated by the fact that only the CAPE re-
sult for the 1D Advection equation showed a much lower
error than the approach receiving the 2-step field data which
in theory provides a similar amount of information as the
CAPE module. Hence, to evaluate generalization to the

7The N/A for the results of 2D MPNN are because only 1D
examples are provided in the official repository. Also TF-Net
assumes to include more than one temporal steps, so the results
other than ”prev. 2-steps” becomes N/A.

8For the 2D NS PDE, the U-net achieves a smaller error than
the FNO. We hypothesize that this is partly due to the difference in
model size (the number of weights of the U-net is nearly 10 times
larger) and partly because the U-net typically excels at image-to-
image mapping problems.

Model Ablation nMSE

FNO

curriculum strategy 8.0× 10−1

fully autoregressive 1.3× 10+0 (+0.5)
only teacher-forcing 3.2× 10+0 (+2.4)

Unet

curriculum strategy 7.0× 10−1

fully autoregressive 1.0× 10+0 (+0.3)
only teacher-forcing 1.0× 10+0 (+0.3)

Table 3. Ablation study for the 2D CFD equations with FNO and
Unet as BASE model.

unseen PDE parameters, we expect the difference of these
errors to be correlated with the CAPE module overfitting to
the trained parameters.

On the other hand, the other cases (the parameter describes
the diffusion process) showed a good generalization to un-
seen PDE parameters. Note that the plots also indicate that
vanilla models show a preference for the parameter regime;
in all the cases, the vanilla models exhibit better results
on smaller diffusion coefficients but lose accuracy as the
diffusion coefficients increase.

Ablation experiments. In this section, we performed an ab-
lation study to separate the impact of the curriculum learning
strategy. The ablation study on CAPE structure is provided
in Tab. 15 in Appendix. Tab. 3 lists the result for the 2D
NS equations using FNO and Unet as the BASE network.
The proposed curriculum learning strategy drastically im-
pacts the accuracy of the model in all cases, indicating the
effectiveness of seamlessly bridging teacher-forcing and
auto-regressive training. The full ablation study results are
provided in Tab. 14 in Appendix.

Qualitative analysis of the CAPE module. In Fig. 5 we
plot some representative outputs of the vanilla FNO, the
CAPE module, and the overall CAPE model, and compare
them with the true solutions. Interestingly, we can see that
the BASE network often interpolates a higher noise approxi-
mation of the CAPE module into the typical shape (style) of

7

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
Model

10 1

100

nM
SE

Advection

Base CAPE

0.0
01

0.0
02

0.0
04

0.0
070.0
1

0.0
2

0.0
4

0.0
70.1 0.2 0.4 0.7 1.0 2.0 4.0

Model

10 1

100

nM
SE

Burgers

Base CAPE

0.0
01

0.0
04

0.0
07 0.0
1

0.0
4

0.0
7 0.1

inv
isc

id

Model

0

2

4

nM
SE

2D NS (M=0.1)

Base CAPE

0.0
01

0.0
04

0.0
07 0.0
1

0.0
4

0.0
7 0.1

inv
isc

id

Model

0

1

2

nM
SE

2D NS (M=1.0)

Base CAPE

Figure 6. Plots of the normalized MSE (smaller is better) in terms of each PDE parameter for Advection eq. (Left), Burgers eq. (Middle-
Left), 2D NS with M = 0.1 (Middle-right), and 2D NS with M = 1 (Right). The results were obtained using the FNO.

the final solution.

Inference time. We provide the comparison of the inference
time between the hybrid approach (including 2 initial steps
as input as done in the FNO paper) and CAPE (only using the
initial step as the input). Here we only consider a scenario
where the initial time steps are obtained from a numerical
simulation. Tab. 4 lists the inference time for solving the 2D
NS equation. The inference time of the FNO with the CAPE
module is much shorter than the hybrid method where the
inference time is dominated by the simulation time 9.

4. Related Work
Scientific Machine Learning Models Scientific Machine
Learning aims at data-driven modeling of physical systems.
A notable example is Physics Informed Neural Networks
(Raissi et al., 2019; Cai et al., 2022) (PINNs) that, having
access to the PDE of a system, learns a neural network
over the domain X → Rd by enforcing small residual,
i.e. the error when the solution is evaluated by the PDE
or the boundary conditions, over a set of sampled points.
While PINNs have the capacity to model various physical
systems, they need to be trained for each new condition
or parameter. After several pioneering work (Long et al.,
2018; 2019; Wang et al., 2020; Belbute-Peres et al., 2020),
Neural Operators (Li et al., 2021b), as FNO (Li et al., 2021a)
or Graph NO (Li et al., 2020), was proposed to model the
continuous operators over an infinite space and have shown
the ability to generalization at multiple scales. Also, more
traditional image-to-image neural networks such as the U-
Net (Ronneberger et al., 2015) can be adopted to model
NOs. Physics-Informed Neural Operators (PINO) (Li et al.,
2021b) improve the representational power of PINNs by
pre-training a NO but having similar limitations to NOs.
Message passing neural PDE solver (Brandstetter et al.,
2022) extends the message passing principle to solve PDEs.
In signal processing, for the artificial bandwidth extension
(ABE) task, the Time-Frequency Network(Dong et al., 2020)

9The experiments were run using an Nvidia GeForce RTX 3090
with CUDA-11.6. The ML models are implemented using PyTorch
1.12.1 and the numerical simulations with JAX-0.3.17.

PDE Resolution Total Inference simulation
time [sec] time [sec]

Simulation + FNO 5122 582.8 582.6
CAPE + FNO 5122 1.3 –

Table 4. Inference time comparison of simulation (initial steps=10)
+ FNO and CAPE + FNO in the case of 2D CFD (η = ζ =
0.1). The time-step size is ∆t = 0.05 and the computations were
performed until t = 1.0 as in this paper’s other experiments.

(TFNet) has been proposed, which shares a similar concept
of channel attention.

Training Autoregressive Models As was discussed in
Sec. 2.5, there are two representative training strategies for
SciML, that is, teacher-forcing and auto-regressive training.
The teacher-forcing strategy was originally developed in nat-
ural language processing (Williams & Zipser, 1989; Bengio
et al., 2015) which predicts n+1-th step data (word) using the
true n-th step information (word). This method is known to
prevent from the error-accumulation in the predicted sequen-
tial data during the model training. In the case of Scientific
ML, it was found that it is profitable to add a random noise
for improving the robustness against the accumulated error
at the inference time (Sanchez-Gonzalez et al., 2018; 2020;
Pfaff et al., 2020; Stachenfeld et al., 2021). On the other
hand, the auto-regressive strategy uses the previous predic-
tion of the model as n-th timestep information. Because of
the error accumulation problem, not so many works were
adopted, e.g. (Li et al., 2021a). Recently, (Brandstetter et al.,
2022) proposed a reconciling method for this problem which
is the so-called ”pushforward trick”. To increase stability,
this method uses an adversarial-style loss which predicts the
next timestep data using the previous prediction which is
calculated using true data. Note that our method adopted a
curriculum training strategy to prevent error accumulation
instead of using an additional loss function.

5. Conclusion and Limitations
The CAPE module allows any data-driven SciML models to
incorporate PDE parameters. We propose a simple but ef-

8

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

fective curriculum training strategy that allows us to bridge
teacher-forcing and auto-regressive learning. We performed
an extensive set of experiments and showed the effectiveness
and efficiency of our method from various aspects: gener-
alization of seen/unseen PDE parameters during training,
parameter efficiency, and inference time.

One of our key findings is the behavior of ML models with-
out parameter embeddings which either (1) exhibit poor
performance uniformly for all the PDE parameters (1D Ad-
vection eq.), or (2) overfit to a specific parameter regime
(1D Burgers eq. and 2D NS eqs.). Hence, the ML model in
this case does not generalization to PDE parameters unseen
during training. On the other hand, the models with CAPE
module generalized well for 1D Burgers’ eq. and 2D NS eqs.
whose parameters govern the physical systems’ diffusion
behavior. CAPE cannot be generalized for 1D Advection
eq., and we consider it necessary to formulate CAPE to be
more physics-informed which we consider for future work.

Limitations CAPE’s scope is restricted to classical field
equation problems such as solving hydrodynamic equations.
It cannot be applied to particle simulations such as molecular
dynamics simulations. Since CAPE is using convolution
attention, it is limited to regular grids.

ACKNOWLEDGMENTS

We thank Marimuthu Kalimuthu for many fruitful comments
on our manuscript. We acknowledge support by the Stuttgart
Center for Simulation Science (SimTech).

9

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

References
Allen, K. R., Lopez-Guevara, T., Stachenfeld, K., Sanchez-

Gonzalez, A., Battaglia, P., Hamrick, J., and Pfaff, T.
Physical Design using Differentiable Learned Simulators.
arXiv e-prints, art. arXiv:2202.00728, February 2022.

Anderson, D., Tannehill, J. C., and Pletcher, R. H. Com-
putational fluid mechanics and heat transfer. Taylor &
Francis, 2016.

Bar-Sinai, Y., Hoyer, S., Hickey, J., and Brenner, M. P.
Learning data-driven discretizations for partial differen-
tial equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

Belbute-Peres, F. D. A., Economon, T., and Kolter, Z. Com-
bining differentiable pde solvers and graph neural net-
works for fluid flow prediction. In international confer-
ence on machine learning, pp. 2402–2411. PMLR, 2020.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent
neural networks. In Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 28. Curran As-
sociates, Inc., 2015. URL https://proceedings.
neurips.cc/paper/2015/file/
e995f98d56967d946471af29d7bf99f1-Paper.
pdf.

Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., and
Kaushik, S. Prediction of aerodynamic flow fields using
convolutional neural networks. Computational Mechan-
ics, 64(2):525–545, 2019.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-
ing neural pde solvers. arXiv preprint arXiv:2202.03376,
2022.

Cai, S., Mao, Z., Wang, Z., Yin, M., and Karniadakis, G. E.
Physics-informed neural networks (pinns) for fluid me-
chanics: A review. Acta Mechanica Sinica, pp. 1–12,
2022.

Coros, S., Thomaszewski, B., Noris, G., Sueda, S., For-
berg, M., Sumner, R. W., Matusik, W., and Bickel, B.
Computational design of mechanical characters. ACM
Transactions on Graphics (TOG), 32(4):1–12, 2013.

Dong, Y., Li, Y., Li, X., Xu, S., Wang, D., Zhang, Z., and
Xiong, S. A time-frequency network with channel at-
tention and non-local modules for artificial bandwidth
extension. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6954–6958. IEEE, 2020.

Guo, X., Li, W., and Iorio, F. Convolutional neural networks
for steady flow approximation. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. arXiv preprint arXiv:1906.01200, 2019.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132–7141,
2018.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N.,
Simon, I., Hawthorne, C., Dai, A. M., Hoffman, M. D.,
Dinculescu, M., and Eck, D. Music transformer. arXiv
preprint arXiv:1809.04281, 2018.

Khoo, Y., Lu, J., and Ying, L. Solving parametric pde prob-
lems with artificial neural networks. European Journal
of Applied Mathematics, 32(3):421–435, 2021.

Kim, B., Azevedo, V. C., Thuerey, N., Kim, T., Gross, M.,
and Solenthaler, B. Deep fluids: A generative network
for parameterized fluid simulations. In Computer graph-
ics forum, volume 38, pp. 59–70. Wiley Online Library,
2019.

Kingma, D. P. and Ba, J. In ICLR (Poster).

Lewy, H., Friedrichs, K., and Courant, R. Über die
partiellen differenzengleichungen der mathematischen
physik. Mathematische annalen, 100:32–74, 1928.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier neu-
ral operator for parametric partial differential equations.
International Conference on Learning Representations
(ICLR), 2021a.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021b.

Long, Z., Lu, Y., Ma, X., and Dong, B. Pde-net: Learning
pdes from data. In International conference on machine
learning, pp. 3208–3216. PMLR, 2018.

10

https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Long, Z., Lu, Y., and Dong, B. Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network.
Journal of Computational Physics, 399:108925, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning
for universal linear embeddings of nonlinear dynamics.
Nature communications, 9(1):1–10, 2018.

Mirza, M. and Osindero, S. Conditional generative adver-
sarial nets. arXiv preprint arXiv:1411.1784, 2014.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. arXiv preprint arXiv:2010.03409, 2020.

Pradita, T., Leiteritz, R., Takamoto, M., MacKin-
lay, D., Alesiani, F., Pflüger, D., and Niepert,
M. PDEBench: A diverse and comprehensive
benchmark for scientific machine learning, 2022.
URL https://darus.uni-stuttgart.
de/privateurl.xhtml?token=
1be27526-348a-40ed-9fd0-c62f588efc01.

Raissi, M. Deep hidden physics models: Deep learning of
nonlinear partial differential equations. The Journal of
Machine Learning Research, 19(1):932–955, 2018.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, February 2019. doi: 10.1016/j.jcp.
2018.10.045.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convo-
lutional Networks for Biomedical Image Segmentation,
May 2015.

Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T.,
Merel, J., Riedmiller, M., Hadsell, R., and Battaglia, P.
Graph networks as learnable physics engines for infer-
ence and control. In International Conference on Machine
Learning, pp. 4470–4479. PMLR, 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,
P., and Sanchez-Gonzalez, A. Learned coarse mod-
els for efficient turbulence simulation. arXiv preprint
arXiv:2112.15275, 2021.

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D.,
Alesiani, F., Pflüger, D., and Niepert, M. PDEBench:
An Extensive Benchmark for Scientific Machine Learn-
ing. In 36th Conference on Neural Information Pro-
cessing Systems (NeurIPS 2022) Track on Datasets and
Benchmarks, 2022. URL https://arxiv.org/
abs/2210.07182.

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik,
A., and Li, Y. Maxvit: Multi-axis vision transformer.
ECCV, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wang, R., Kashinath, K., Mustafa, M., Albert, A., and Yu,
R. Towards physics-informed deep learning for turbulent
flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 1457–1466, 2020.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270–280, 1989.

11

https://darus.uni-stuttgart.de/privateurl.xhtml?token=1be27526-348a-40ed-9fd0-c62f588efc01
https://darus.uni-stuttgart.de/privateurl.xhtml?token=1be27526-348a-40ed-9fd0-c62f588efc01
https://darus.uni-stuttgart.de/privateurl.xhtml?token=1be27526-348a-40ed-9fd0-c62f588efc01
https://arxiv.org/abs/2210.07182
https://arxiv.org/abs/2210.07182
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

A. Additional Related Work
Parameter Embedding There has been an interest to put additional information to DNN. For example, Transformer-type
models take into account the information of the position of words in the sentence using positional encoding (Vaswani et al.,
2017; Shaw et al., 2018; Huang et al., 2018). In the case of data generation, cGAN (Mirza & Osindero, 2014) accepts a
conditional parameter to the generator network. In the case of SciML, PINN (Cai et al., 2022) and PINO (Li et al., 2021b)
can explicitly take into account PDE parameters during training but cannot change them during the test time. Recently
Message-passing PDE solver (Brandstetter et al., 2022) was proposed in which PDE parameters and boundary conditions
can be freely embedded into the network. However, this is specialized only for these models, and cannot apply the other
models as our proposed method.

B. Detailed Training Setup
B.1. General Setup

As is explained in Sec. 3, we used datasets provided by PDEBench (Pradita et al., 2022) a benchmark for SciML from
which we downloaded datasets of the following PDEs: 1D Advection equation, 1D Burgers equation, and 2D compressible
NS equations. For 1-dimensional PDEs, we used N = 9000 training instances and 1000 test instances for each PDE
parameter with spatial resolution: 128 (∆x = 1/128) and temporal step-size: ∆t = 0.05. For 2-dimensional NS
equations, we used N = 900 training instances and 100 test instances for each PDE parameter with spatial resolution:
64× 64 (∆x = ∆y = 1/128) and temporal step-size: ∆t = 0.05. Smaller temporal step-size results are also provided in
Appendix H.

Concerning the training, the optimization was performed with Adam (Kingma & Ba) for 100 epochs. The learning rate
was set as 3 × 10−3 which is divided by 2.0 every 20 epochs. The mini-batch size we used was 50 for all the cases. To
stabilize the CAPE module’s training in the initial phase, we empirically found it is a little better if we have a warm-up
phase during which only CAPE module is updated. We performed warm-up for the first 3 epochs, which slightly reduce the
final performance fluctuations resulting from the randomness of the initial weights of the network. In the CAPE module,
the kernel size of the depth-wise convolution was set as: 5. The training was performed on GeForce RTX 2080 GPU for
1D PDEs and GeForce GTX 3090 for 2D NS equations. For PINO loss, we set the coefficient 1 following the original
implementation.

B.2. Hyper-parameter Selection

The hyper-parameters and the BASE network parameters are listed in Tab. 5. To clarify that our result with CAPE was not
overfitted to the test dataset, we also performed a hyper-parameter search of the coefficient α of the loss term for CAPE
Lcape which is the unique hyper-parameter we can tune in the experiments. We created new data for 1D Advection equation
with advection velocity β = 0.3, 0.5, 1.2 which are not included in our main experiments provided in Tab. 1. We split the
data into train/validation/test with ratio: (0.9, 0.05, 0.05), and saved the best model in terms of the validation loss value.
The results are summarized in Tab. 6 which indicates that the best parameter exists around α = 10−4 independent of the test
set, and our choice in Tab. 5 is validated.

B.3. Networks’ sizes comparison

The networks’ structures of the BASE models are presented in Tab. 5, while the resulting network size is listed in Tab. 7.

B.4. Conditional Modelling

Here we provide a more detailed explanation for the conditional models in Sec. 3. In this paper, the conditional models have
the same model structures as the vanilla ones, but we only change the input data as:

uk ∈ RC×N1×... → concatenate(uk, λ) ∈ R(C+1)×N1×..., (18)

where the PDE parameter are taken as a part of the input by concatenating it to the field data’s new channel dimension.
Although it is possible to consider a more elaborate method, such as performing an MLP on the PDE parameters, we avoid
those cases for simplicity.

12

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Dimension Model width mode d mode (CAPE) α

1D
FNO 36 12 – – –
FNO w.t. CAPE 20 12 64 12 5.7× 10−5

2D
FNO 28 12 – –
FNO w.t. CAPE 20 12 64 9 8.3× 10−5

Dimension Model init features d mode (CAPE) α

1D
Unet 32 – – –
Unet w.t. CAPE 32 64 12 5.7× 10−5

2D
Unet 32 – –
Unet w.t. CAPE 30 64 9 8.3× 10−5

Table 5. Network Parameters. Where d is the channel number of CNNs in CAPE.

PDE α nRMSE

1D Advection
10−6 0.069
10−5 0.073

5× 10−5 0.046
10−4 0.045
10−3 0.068

Table 6. Results on Train/Validation/Test data set with 1D Advection equation. The model is FNO with CAPE.

B.5. Modification on the Message-Passing PDE Solvers

In Sec. 3, we consider the Message-Passing PDE Solvers (Brandstetter et al., 2022) as a baseline model that accepts PDE
parameters. For a fair comparison, we are forced to modify the model as (1) accepting only 1-time step data, (2) adding a
case of ”time-window” parameter with 10 for the decoder. Concerning the first case, the original model assumes to accept
sequential data whose time-step size must be equal to the size of the ”time-window” parameter. For the second modification,
we added a new 1D-convolution layer accepting the ”time-window” parameter equal to 10. The detailed structure of the new
decoder is provided in Tab. 8.

B.6. Modification on the TF-Net

In Sec. 3, we employed the TF-Net (Wang et al., 2020) as a baseline model for 2D compressible Navier-Stokes equations.
However, the original model does not allow us to flexibly change the temporal filter size (the number of temporal time-step).
Consequently, we made modifications to the model to suit our experimental setup, where only previous 2 time-step data
was considered. In our experiment, we replaced the original temporal filter into a simple 1× 1-Convolution layer whose
kernel size is unity and the channel number is two for both input and output channels. We consider that the somewhat
unsatisfactory results obtained with our TF-Net can be partly attributed to this modification.

C. An additional experiments on 2D Burgers equation
In this section, we provide an additional experiment results conducted on 2-dimensional Burgers equation whose expression
is given as:

∂tu(t, x, y) + u(t, x, y)(∂xu(t, x, y) + ∂yu(t, x, y)) = ν/π(∂xxu(t, x, y) + ∂yyu(t, x, y)), (19)

where ν is the diffusion coefficient and the parameter of this equation. Note that we keep the variable as a scalar function
and also the diffusion coefficient as a constant for both of the spatial directions, for simplicity. The considered diffusion
coefficient are listed in Tab. 10. The results are provided in Tab. 9 which shows our CAPE module provides better results
than the conditional model10.

10The experimental setup adheres to the configuration employed in the 2D CFD scenario.

13

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

Dimension Model # Parameters

1D
FNO 73K
FNO w.t. CAPE 68K
Unet 2.71M
Unet w.t. CAPE 2.75M
MPNN 614k

2D
FNO 0.91M
FNO w.t. CAPE 0.82M
Unet 7.8M
Unet w.t. CAPE 7.2M
TF-net 7.4M

Table 7. Model Size

Module in-channel out-channel kernel size stride

1D Conv-1 1 8 18 5
1D Conv-2 8 1 14 1

Table 8. Decoder CNN structure for Message-Passing PDE Solvers

D. Discussion of Results for the PINO Loss
Reason why PINO loss does not work The PINO loss function is an emulation of the PINO loss function using ML’s
output. For example, the PINO loss function of the 1D Advection equation case is:

LPINO =
un+1
j − un−1

j

2∆t
− βF−1(ikF(u)). (20)

On the other hand, the usual spectral method solves the equation as:

ũn+1
j = un−1

j + 2∆tβF−1(ikF(u)). (21)

By substituting Eq. 21, Eq. 20 reduces to:

LPINO =
un+1
j − ũn+1

j

2∆t
. (22)

This shows that the PINO loss function penalizes the machine learning model prediction to be close to the spectral method
prediction. However, in general, the classical direct simulation methods have to use the time-step size ∆t restricted by
the theoretical stability condition, such as the CFL condition. And the prediction ũn+1

j becomes completely wrong if the
used ∆t does not satisfy the stability condition, resulting in the PINO loss function leading to a completely harmful effect
for the ML models. In our experiments, ∆t = 0.05 is larger than the time step demanded by the stability condition, e.g.,
∆t < ∆x/β ∼ 0.0025 if we set ∆x = 1/128, β = 1. So, we consider that our experiment result showing worse error from
PINO loss function is a natural result from this consideration.

E. Detailed Results
E.1. PDE Parameter Dependence Study

In Tab. 11, Tab. 12, and Tab. 13, we provide the nRMSE values plotted in Fig. 6.

E.2. Curriculum Strategy Study

In Tab. 14 we provide a full ablation study result of the curriculum strategy.

14

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

PDE model BASE Conditional prev. 2-steps CAPE

2D Burgers FNO 0.0357±0.8×10−3

0.0274±0.4×10−3

0.0249±1.5×10−3

0.0267±2.6×10−3

Unet 0.31±0.04 0.32±0.10 0.21±0.07 0.28±0.06

TFNet N/A N/A 0.0427±0.023 N/A

Table 9. List of the normalized RMSE (the smaller, the better) for 2D Burgers eq.

PDE training & test parameters

2D Burgers ν = (0.001, 0.004, 0.01, 0.04, 0.1, 0.4, 1.0)

Table 10. PDE parameters used in the experiments on 2D Burgers equation.

0 50 100
epoch

0

N/2

N

te
m

p
o
ra

l-
st

e
p
:

k

ktrans(epoch)

Teacher-Forcing

Auto-regressive

Figure 7. A plot of an instance of the function defined in Eq. 12 where we set: ∆ = 0.25.

F. Detailed Description of the Curriculum Strategy
Fig. 7 plots the profile of Eq. 12 in terms of the epoch number where the maximum epoch number is assumed 100. We also
provided the detailed algorithm of our curriculum strategy in terms of epochs and temporal steps in Algorithm 1. In our all
the calculation with curriculum strategy, we set: ∆ = 0.2.

Concerning the form of ktrans in Eq. 12, it has many variations, such as a simple linear growth. We empirically decided the
expression of it as given in Eq. 12 which allows to rather gradual start and end of the transition process thanks to the form of
hyperbolic tangent function.

G. Study for CAPE module structure
G.1. Ablation Study

In this section, we provided results of ablation study for our CAPE module’s internal structure to provide an insight of
the inductive bias of CAPE. In this study, we performed training without (1) spectral-convolution, (2) 1× 1-convolution,
and (3) depthwise-convolution. The results were provided in Tab. 15 that indicates that all the 3-convolution layers and
LayerNormalization play important roles on the error, but the spectral-convolution has the strongest impact. However, it also
shows that the important factor depends on PDEs because of the difference of PDE natures (e.g., advection, diffusion, or

15

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

β 0.1 0.2 0.4 0.7 1.0 2.0 4.0 7.0
PDE type

Advection BASE 0.716 0.700 0.638 0.680 0.714 0.721 0.700 0.729
CAPE 0.846 0.056 0.040 0.035 1.218 0.046 0.049 3.300

Table 11. The nRMSEs FNO with CAPE in terms of each advection velocity of 1D Advection equation. Visualization is given in Fig. 6

ν 0.001 0.002 0.004 0.007 0.01 0.02 0.04 0.07 0.1
PDE type

Burgers BASE 0.223 0.216 0.218 0.201 0.198 0.173 0.138 0.134 0.124
CAPE 0.185 0.179 0.167 0.155 0.155 0.138 0.127 0.106 0.107

Table 12. The nRMSEs FNO with CAPE in terms of each diffusion coefficient of 1D Burgers equation. Visualization is given in Fig. 6

non-linear system equations, and so on). It also indicates that our selection always shows a better result, though not always
the best.

G.2. Study on Other Possibility of CAPE Structure

Inspired by recent work (Tu et al., 2022), we also tried a sequential manner of the convolution layers in the CAPE module.
as described in Eq. 10.

yk
α(x) = h1×1,d→c×ℓ

(
σ
(
h1×1,c→d(u

k) + vk
α

))
(x), (23)

yk(x) = yk
α1
(yk

α2
(yk

α3
(x))), (24)

where x is the output of the previous layer or input, and αk is either spectral convolution, 1× 1 convolution, or depthwise
convolution. The result on 2D NS equations is provided in Tab. 16. It shows that in this case the order (depthwise conv.,
1× 1 conv., spectral conv.) is the best choice. However, it also shows that the best error is still larger than the vanilla CAPE
module if the model weight parameter number is the same.

H. Larger Time-step Experiments
In our experiments, the time-step size of the data might be somewhat small (1D: 40, 2D: 20). This small number of time
step, however, might be attributed to the effectiveness of CAPE and the curriculum strategy because the small number of
time steps may reduce the accumulation error in time due to the autoregressive nature of the model’s prediction, which can
result in training instability and a lack of generalizability. To clarify the robustness of CAPE and the curriculum strategy in
the light of the time-step number, we performed additional experiments with 100-time steps (∆t = 0.02). The results are
provided in Tab. 17 which evinced that both FNO and FNO w.t. CAPE were trained effectively, without any instability or
severe error accumulation, though the errors themselves are moderately increased relative to the case with 40 steps.

I. Visualization of Attention Weights
Fig. 8 and Fig. 9 are the plots of the Convolution kernel after being multiplied by the channel attention. For simplicity, we
only consider the one-dimensional cases and the depthwise convolution kernel that is more interpretable than the other
convolution kernels. Fig. 8 is the case of 1D Advection equation. It shows that the kernel is very sparse and the channel
attention chooses different kernel as the advection velocity increases, resulting in adjusting appropriate information transfer
corresponding with the input advection velocity. Fig. 9 is the case of 1D Burgers equation. It shows that the kernel becomes
nearly zero by channel attention when the diffusion coefficient is small, indicating a small diffusion. On the other hand,
the number of activated kernels increases with the diffusion coefficient, indicating that the operation becomes closer to the
averaging, corresponding with the function of the diffusion.

16

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

ν 0.2 0.4 0.7 1.0 2.0 4.0
PDE type

Burgers BASE 0.168 0.335 0.458 0.674 1.626 2.460
CAPE 0.081 0.094 0.113 0.104 0.079 0.253

η = ζ 10−8 0.001 0.004 0.007 0.01 0.04 0.07 0.1
PDE type

2D NS (M = 0.1) BASE 0.508 0.500 0.488 0.491 0.529 1.447 3.132 5.228
CAPE 0.516 0.487 0.482 0.462 0.486 0.965 1.692 2.582

2D NS (M = 1.0) BASE 0.579 0.545 0.495 0.471 0.453 0.635 1.141 1.962
CAPE 0.569 0.544 0.501 0.485 0.474 0.494 0.585 0.779

Table 13. The nRMSEs FNO with CAPE in terms of each viscosity of 2D NS equations. Visualization is given in Fig. 6

ke
rn

el

Advection Velocity: 0.1

ke
rn

el

Advection Velocity: 0.2

ke
rn

el

Advection Velocity: 0.5

ke
rn

el

Advection Velocity: 1.0

channel dimension

ke
rn

el

Advection Velocity: 2.0

0.25
0.00
0.25

0.25
0.00
0.25

0.25
0.00
0.25

0.25
0.00
0.25

0.25
0.00
0.25

Figure 8. Plot of attention weights in the case of 1D Advection equation.

17

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

PDE Model Ablation nMSE

Advection FNO
curriculum strategy 0.04
pure Autoregressive 0.11 (+0.07)
pure Teacher-Forcing 0.04 (±0.00)

Advection Unet
curriculum strategy 0.11
pure Autoregressive 0.17 (+0.06)
pure Teacher-Forcing 0.12 (+0.01)

Burgers FNO
curriculum strategy 0.13
pure Autoregressive 0.16 (+0.03)
pure Teacher-Forcing 0.13 (+0.00)

Burgers Unet
curriculum strategy 0.45
pure Autoregressive 0.94 (+0.49)
pure Teacher-Forcing 0.84 (+0.39)

2D NS FNO
curriculum strategy 8.0× 10−1

pure Autoregressive 1.3× 10+0 (+0.5)
pure Teacher-Forcing 3.2× 10+0 (+2.4)

2D NS Unet
curriculum strategy 7.0× 10−1

pure Autoregressive 1.0× 10+0 (+0.3)
pure Teacher-Forcing 1.0× 10+0 (+0.3)

Table 14. Ablation study for the Advection, Burgers and 2D CFD equations with FNO as BASE model.

Algorithm 1 Algorithm of the curriculum training strategy
Input model parameters θ, training epoch number n, total training epoch number M , Training samples: {ui}i=0,··· ,N ,
temporal index k, final time step of the training sample N , ϵ is the random noise.

1: for n = 0 to M do
2: Calculate ktrans following Eq. 12,
3: for k = 0 to N − 1 do
4: if k ≤ ktrans then
5: ũk+1 = NN(ũk + ϵ;θ)
6: else
7: ũk+1 = NN(uk + ϵ;θ)
8: end if
9: Lk ← MSE(ũk+1,uk+1)

10: end for
11: θ ← Optimizer (

∑N
k=1 L

k)
12: end for

18

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

PDE model Ablation nRMSE

1D Advection FNO BASE 0.04
w/t Spectral Convolution 0.06 (+0.02)
w/t 1× 1 Convolution 0.05 (+0.01)
w/t Depthwise Convolution 0.05 (+0.01)
w/t LN 0.03 (-0.01)

1D Burgers FNO BASE 0.13
w/t Spectral Convolution 0.13 (±0.00)
w/t 1× 1 Convolution 0.12 (-0.01)
w/t Depthwise Convolution 0.13 (±0.00)
w/t LN 0.09 (-0.04)

2D NS FNO BASE 0.80
w/t Spectral Convolution 0.91 (+0.11)
w/t 1× 1 Convolution 0.80 (±0.00)
w/t Depthwise Convolution 0.76 (- 0.04)
w/t LN 1.24 (+0.45)

Table 15. Ablation study of CAPE internal Structure.

PDE model # model parameters module order nRMSE

2D NS FNO 1.16M (1× 1,D,S) 0.78
(1× 1,S,D) 0.77
(D,1× 1,S) 0.64
(D,S,1× 1) 0.71
(S,1× 1,D) 0.73
(S,D,1× 1) 0.82

2D NS FNO 0.83M (D,1× 1,s) 0.79

Table 16. Sequential type CAPE internal Structure. (S, 1× 1, D) mean (spectral conv., 1× 1 conv., depthwise conv.).

PDE model nRMSE

1D Advection FNO 0.90
FNO with CAPE 0.18

Table 17. nRMSE of the case with larger time-steps on 1D Advection equation using FNO. In the experiments, we trained the FNO/FNO
with CAPE with a larger time step number: 100 steps.

19

Learning Neural PDE Solvers with Parameter-Guided Channel Attention

ke
rn

el

diffusion coefficient: 0.001

ke
rn

el

diffusion coefficient: 0.01

ke
rn

el

diffusion coefficient: 0.1

ke
rn

el

diffusion coefficient: 1.0

channel dimension

ke
rn

el

diffusion coefficient: 2.0

0.5
0.0
0.5

0.5
0.0
0.5

0.5
0.0
0.5

0.5
0.0
0.5

0.5
0.0
0.5

Figure 9. Plot of attention weights in the case of 1D Burgers equation.

20

