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ABSTRACT

In this paper, we propose a model for the classless association between two in-
stances of the same unknown class. This scenario is inspired by the Symbol
Grounding Problem and the association learning in infants. Our model has two
parallel Multilayer Perceptrons (MLPs) and relies on two components. The first
component is a EM-training rule that matches the output vectors of a MLP to a
statistical distribution. The second component exploits the output classification
of one MLP as target of the another MLP in order to learn the agreement of
the unknown class. We generate four classless datasets (based on MNIST) with
uniform distribution between the classes. Our model is evaluated against totally
supervised and totally unsupervised scenarios. In the first scenario, our model
reaches good performance in terms of accuracy and the classless constraint. In the
second scenario, our model reaches better results against two clustering algorithms.

1 INTRODUCTION

Infants are able to learn the binding between abstract concepts to the real world via their sensory
input. For example, the abstract concept ball is binding to the visual representation of a rounded
object and the auditory representation of the phonemes /b/ /a/ /l/. This scenario can be seen as the
Symbol Grounding Problem (Harnad, 1990). Moreover, infants are also able to learn the association
between different sensory input signals while they are still learning the binding of the abstract
concepts. Several results have shown a correlation between object recognition (visual) and vocabulary
acquisition (auditory) in infants (Balaban & Waxman, 1997; Asano et al., 2015). One example
of this correlation is the first hundred words that infants have learned. In that case, the words are
mainly nouns, which are visible concepts, such as, dad, mom, ball, dog, cat (Gershkoff-Stowe &
Smith, 2004). As a result, we can define the previous scenario in terms of a machine learning tasks:
learning the association between two parallel streams of data that represent the same unknown class
(or semantic concept).

2 CLASSLESS ASSOCIATION MODEL

In this work, we are interested in the classless association where sample pairs represent different
instances of the same unknown class. With this in mind, our model has two parallel Multilayer
Perceptrons (MLPs) with an EM-training rule (Dempster et al., 1977). We present a novel training
rule that matches mini-batches of raw output vectors of each MLP and a target statistical distribution
as alternative loss function because of the lack of labels. Moreover, each MLP classifies the raw output
vectors based on the statistical distribution. Note that pseudo-classes obtained by the classification
step change during training. As a result, similar input samples are classified by the same pseudo-
classes. With this in mind, we have introduced a weighting vector that modifies the raw output vector
in order to match with the statistical constraint. For learning the agreement between both MLPs, the
pseudo-classes of one MLP are used as target of the other MLP, and vice versa.

More formally, our task is defined by two disjoint input streams x(1) ∈ Rn1 and x(2) ∈ Rn2 that
represent the same unlabeled class. The goal is to learn the association by classifying both with the
same pseudo-class c(1) = c(2) where c(1) and c(2) ∈ Rn3.
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Initially, all input samples x(1) and x(2) have random pseudo-classes c(1) and c(2). The histogram
of pseudo-classes is similar to the desired statistical distribution φ ∈ Rn3 (i.e. uniform). Also, the
weighting vectors γ(1) ∈ Rn3 and γ(2) ∈ Rn3 are initialized to one. For explanation purposes, we
have defined two MLPs with one hidden layer

z(1) =MLP (1)(x(1); θ(1)) (1)

z(2) =MLP (2)(x(2); θ(2)) (2)

where z(1) and z(2) ∈ Rn3 are the output vectors of each MLP, θ(1) and θ(2) are the parameters of
each network. We want to point out that the E-step and M-step are applied to each MLP indepently.

The E-step obtains the pseudo-classes for each MLP and estimates the current statistical distribution
based on a mini-batch of output vectors and weighting vectors1. In this case, an approximation of the
distribution is obtained by the following equation

ẑ =
1

M

M∑
i=1

power(zi,γ) (3)

where γ is the weighting vector, zi is the output vector of the network, M is the number of elements,
and the function power2 is the element-wise power operation between the output vector and the
weighting vector. We have used the power function because the output vectors are quite similar
between them at the initial state of the network, and the power function provides an initial boost for
learning to separate the input samples in different pseudo-classes in the first iterations. Furthermore,
we can classify each output vector by retrieving the maximum value of the following equation

c∗ = arg maxc power(zi,γ) (4)

where c∗ is the pseudo-class, which are used in the M-step for updating the MLP parameters. Also,
note that the pseudo-classes are not updated in an online manner. Instead, the pseudo-classes are
updated after a certain number of iterations. The reason is the network requires a number of iterations
to learn the common features.

The M-step updates the weighting vector and the MLP parameters. The cost function is the variance
between the distribution and the desired statistical distribution, which is defined by

cost = (ẑ − φ)2 (5)

where ẑ is the current statistical distribution of the output vectors, and φ is a vector that represent
the desired statistical distribution, e.g. uniform distribution. Then, the weighting vector is updated
via gradient descent, the network parameters are updating using the pseudo-classes generated by the
other network, and vice versa.

3 EXPERIMENTS AND RESULTS

Our model has been evaluated in four classless datasets that were generated from MNIST (Lecun
& Cortes, 2010). Each dataset has two disjoint sets input 1 and input 2. The first dataset has two
different instances of the same classless digit. The other three datasets have a transformation that is
applied only to input 2, such as, fix rotation to 90 degrees, inverted, and random rotation between 0
and 2π. All datasets have a uniform distribution between the digits. The dataset size is 21,000 pair
samples for training and 4,000 pair samples for validation and testing. Ten different folds for each
dataset has been random generated, and we report the average results of two metrics: Association
Accuracy3 and Purity. Table 1 shows the Association Accuracy between our model and the supervised
association task and the Purity between our model and two clustering algorithms. First, the supervised
association task performances better that the presented model. This was expected because our task
is more complex in relation to the supervised scenario. However, we can infer from our results

1For explanation purposes, we drop the super-indexes (1) and (2) that represent each stream
2We decide to use power function instead of zγ

i in order to simplify the index notation
3Association Accuracy = 1

N

∑N
i=1 1(c

(1)
i = c

(2)
i ) where N is the number of elements, and c(2), c(1) are

the output classification of each network, respectively
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Table 1: Association Accuracy (%) and Purity (%) results. Our model is compared against the
supervised and unsupervised scenarios.

Dataset Model Association Purity (%)
Accuracy (%) input 1 input 2

MNIST

supervised association 96.7± 0.3 96.7± 0.2 96.6± 0.3
classless association 86.1± 3.2 89.6± 4.5 89.0± 4.2
K-means - 63.9± 2.2 62.5± 3.7
Hierarchical Agglomerative - 64.9± 4.7 64.3± 5.5

Rotated-90 MNIST

supervised association 93.2± 0.3 96.4± 0.2 96.6± 0.2
classless association 86.5± 2.5 82.9± 4.5 82.9± 4.3
K-means - 65.0± 2.8 64.0± 3.6
Hierarchical Agglomerative - 65.4± 3.5 64.1± 4.1

Inverted MNIST

supervised association 93.2± 0.3 96.5± 0.2 96.5± 0.2
classless association 89.2± 2.4 89.0± 6.8 89.1± 6.8
K-means - 64.8± 2.0 65.0± 2.5
Hierarchical Agglomerative - 64.8± 4.4 64.4± 3.8

Random Rotated MNIST

supervised association 88.0± 0.5 96.5± 0.3 90.9± 0.5
classless association 69.3± 2.2 75.8± 7.3 65.3± 5.0
K-means - 64.8± 2.6 14.8± 0.4
Hierarchical Agglomerative - 65.9± 2.8 15.2± 0.5

that the presented model has a good performance in terms of the classless scenario and supervised
method. Second, our model not only learns the association between input samples but also finds
similar elements covered under the same pseudo-class. Also, we evaluate the purity of our model and
found that the performance of our model reaches better results than both clustering methods for each
set (input 1 and input 2).

4 CONCLUSION

In this paper, we have shown the feasibility to train a classless model that has two parallel MLPs
under the following scenario: pairs of input samples that represent the same unknown classes. This
scenario was motivated by the Symbol Grounding Problem and the association learning between
sensory input signal in infants development. Our model relies on the EM-training rule that matches
the network’s output against a statistical distribution and uses one network as a target of the other
network. Our model reaches better performance than two clustering algorithms and good results with
respect to the supervised method in terms of unlabeled data. We want to point out that our model
was evaluated in an optimal case where the input samples are uniform distributed and the number of
classes is known. However, we will explore the performance of our model if the number of classes
and the statistical distribution are unknown. One way is to change the number of pseudo-classes.
This can be seen as changing the number of clusters k in k-means. Furthermore, we are interested in
replicating our findings in multimodal datasets like TVGraz (Khan et al., 2009) or Wikipedia featured
articles (Rasiwasia et al., 2010).
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SUPPLEMENTAL MATERIAL

We have included several examples of the classless training. In addition, we have generated some
demos that show the training algorithm (https://goo.gl/xsmkFD)
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Figure 1: Example of the presented model during classless training. In this example, there are ten
pseudo-classes represented by each row of MLP (1) and MLP (2). Note that the output classification
are randomly selected (not cherry picking). Initially, the pseudo-classes are assigned randomly to all
input pair samples, which holds a uniform distribution (first row). Then, the classless association
model slowly start learning the features and grouping similar input samples. Afterwards, the output
classification of both MLPs slowly agrees during training, and the association matrix shows the
relation between the occurrences of the pseudo-classes.
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Figure 2: Example of the classless training using Inverted MNIST dataset.
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Figure 3: Example of the classless training using Random Rotated MNIST dataset.
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