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Abstract

Pulmonary hypertension (PH) is a life-threatening and rapidly progressive disease
in which functional adaptation of the right ventricle (RV), as quantified by RV
ejection fraction (RVEF), is a key prognostic marker. However, RVEF is largely
insensitive to regional or early RV dysfunction which may improve prognostication
and allow prompt identification of high-risk cases. Cardiac Magnetic Resonance
(MR) imaging is a standard modality for quantification of RV function, and can
be used to derive anatomically accurate, high-resolution 3D shape models of RV
contraction using recently developed computational imaging analysis techniques.
These time-resolved 3D models may lend additional insights beyond what is
offered by simple conventional measures like RVEF. In this study, we train a neural
network to predict mortality in PH patients by learning complex RV contraction
patterns from 3D shape models of RV motion. To handle right-censored survival
time outcomes, our network utilized a Cox partial likelihood loss function. The
network was trained on imaging and mortality data on 148 PH patients. It yielded
improved prediction accuracy and superior risk stratification, compared with a
multivariable survival model consisting of RVEF and other conventional parameters
of RV function.

1 Background

PH often follows a rapidly progressive course with impaired exercise tolerance associated with
RV hypertrophy, dilatation and ultimately heart failure. The transition to heart failure in PH is
characterised by evolving morphological and functional adaptations of the heart, and yet why some
patients rapidly deteriorate while others do not remains unresolved. RVEF, a key prognostic marker
of heart failure and mortality in PH, is a simple index representing the volume of blood ejected as a
fraction of the chamber’s relaxed volume. However, RVEF and other simple volumetric measures of
function are insensitive to the complex morphological and contractile patterns of RV dysfunction that
characterise progressive impairment. Our group has developed methods to construct time-resolved 3D
shape models of the heart which provide a detailed and dynamic representation of the beating heart.
Encoded in these representations would be subtle morphological and functional patterns associated
with RV dysfunction and thus mortality risk. In this study, we leverage the power of deep learning to
develop a prognostic survival model exploiting this rich spatio-temporal information.
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2 Materials and Methods

2.1 MR Image Processing and Computational Image Analysis

The cine MR imaging protocol has been described in detail elsewhere [1]. After acquisition, the
raw cine MR images were processed through a co-registration and segmentation pipeline, producing
anatomically smooth 3D shape models of the heart at 20 time frames across the cardiac cycle. These
were then used to construct high-resolution 3D mesh representations of heart motion. These highly
detailed surface mesh models were constructed from 18, 028 vertices (see Figure 1A).
Additionally, we performed volumetric analysis on the segmented images to derive the following
conventional, volumetric indices of cardiac function: RVEF, Right Ventricle End Diastolic Volume
(RVEDV) and Right Ventricle End Systolic Volume (RVESV).

2.2 Characterization of Right Ventricular motion

The time-resolved 3D meshes described in the previous section were used to produce a simple
representation of RV motion. For this purpose, we utilized a sparser version of the meshes (down-
sampled by a factor of 10) with 1803 vertices. To characterize RV motion, we adapted an approach
introduced in [2]. Let (xvt, yvt, zvt) represent the Cartesian coordinates of vertex v (v = 1, .., 1803)
at the tth time frame (t = 1, .., 20) of the cardiac cycle. We describe the dynamics and morphology
of RV contraction by tracking the motion of each vertex across all 20 time frames (using frame
1 as baseline). Specifically, at each time frame t = 2, 3, ..., 20, we compute the coordinate-wise
displacement of each vertex from its position at time frame 1. This yields the following one-
dimensional input vector:

X =

(
xvt − xv1, yvt − yv1, zvt − zv1

)1≤v≤1803

2≤t≤20

Vector X has length 102,771 (3× 19× 1803), we used it as the input feature for our network.

2.3 Network architecture and training parameters

Our network utilized a simple multilayer feedforward architecture. The (102771× 1) feature vector
representing vertex-wise displacement was used as the input layer for the network, followed by
two hidden, fully connected layers (consisting of 256 and 128 units respectively). The final/output
layer had a single unit which represents predicted mortality risk. The outcome in this study was
survival/follow-up time, i.e. the time elapsed from MRI acquisition until death (all-cause mortality)
or for those still alive, the last date of follow-up. This type of outcome is called a right-censored
time-to-event outcome, and is typically handled using survival analysis techniques, the most popular
of which is Cox’s proportional hazards regression model [4]. We used as our network loss function
the negative Cox proportional hazards partial likelihood (given below), thereby extending the standard
Cox regression model to accommodate a neural network architecture:

L(ξ,X) = −
n∑
i=1

δi

{
F (Xi, ξ)− log

∑
j∈R(ti)

eF (Xj ,ξ)

}
where Xi is the input vector for subject i, ξ represents the neural network parameters to be trained,
and F (Xi, ξ) is the network’s output/prediction (mortality risk) for subject i. δi is an indicator of
subject i’s status (0=Alive, 1=Dead) and R(ti) represents subject i’s risk set, i.e. subjects still alive
(i.e. at risk) at the time subject i died or became censored (ti). This loss function was minimized
(with respect to network parameters) via backpropagation. To avoid overfitting, we applied l1/l2
regularization, dropout, and the max-norm constraint. The rectified linear unit (ReLU) activation
function was used for the hidden layers, and linear activation for the output layer. Batch normalization
was applied after each hidden layer. Using the Adaptive Moment Estimation (Adam) algorithm, the
network was trained for 100 epochs with a learning rate of 10−4.

2.4 Conventional Parameter model

As a benchmark comparison to our RV motion model, we trained a Cox proportional hazards model
utilizing conventional volumetric indices of RV function (RVEF, RVEDV and RVESV) as mortality
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predictors. To account for collinearity among these predictor variables, an l2-norm regularization
term was added to the Cox partial likelihood function.

2.5 Model validation

Prediction accuracies of the RV motion model and the conventional parameter model were evaluated
using Harrell’s Concordance Index [3], an extension of AUC to survival outcomes. This index
quantifies the extent of agreement between predictions and censored time-to-event outcomes, and has
the same range and interpretation as AUC. We estimated (and report below) the mean concordance
index across three-fold cross-validation analyses.

3 Results

3.1 Cohort Characteristics and Predictive Performance

Imaging and all-cause mortality data were collected from a sample of 148 patients diagnosed with
chronic thromboembolic PH, who had not undergone pulmonary endarterectomy by the end of the
follow-up period. The patients underwent routine diagnostic assessment and cardiac MR imaging
from 2004-2017, and were followed up until November 2017. By end of follow-up, 45% had died.
The RV motion model yielded a higher concordance index (0.67) than the conventional parameter
model (0.58), the improvement being statistically significant (p-value = 0.01). Additionally, the RV
motion model demonstrated greater risk differentiation, as shown in Figure 1B.

Figure 1: A: Exemplar RV 3D mesh model with 18028 vertices, B: Kaplan-Meier curves showing
risk stratification quality of RV motion network model (right) vs. conventional parameter model (left).
For each risk model, patients were divided into low- and high-risk groups according to the risk score
medians. The curves compare survival rates over time between risk groups

4 Conclusion and Future Work

This study demonstrates the utility of deep learning for identification of prognostic spatio-temporal
patterns in 3D models of RV motion and the results suggest the potential of more specialized/spatially-
aware network architectures to achieve further improvement in prognostic accuracy.
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