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Semantic Editing Increment Benefits Zero-Shot Composed Image
Retrieval

Anonymous Author(s)

ABSTRACT
Zero-Shot Composed Image Retrieval (ZS-CIR) has attracted more
attention in recent years, focusing on retrieving a specific image
based on a query composed of a reference image and a relative text
without training samples. Specifically, the relative text describes
the differences between the two images. Prevailing ZS-CIR meth-
ods employ image-to-text (I2T) models to convert the query image
into a single caption, which is further merged with the relative
text by text-fusion approaches to form a composed text for re-
trieval. However, these methods neglect the fact that ZS-CIR entails
considering not only the final similarity between the composed
text and retrieved images but also the semantic increment during
the compositional editing process. To address this limitation, this
paper proposes a training-free method called Semantic Editing In-
crement for ZS-CIR (SEIZE) to retrieve the target image based on
the query image and text without training. Firstly, we employ a
pre-trained captioning model to generate diverse captions for the
reference image and prompt Large Language Models (LLMs) to
perform breadth compositional reasoning based on these captions
and relative text, thereby covering the potential semantics of the
target image. Then, we design a semantic editing search to incorpo-
rate the semantic editing increment contributed by the relative text
into the retrieval process. Concretely, we comprehensively consider
relative semantic increment and absolute similarity as the final
retrieval score, which is subsequently utilized to retrieve the target
image in the CLIP feature space. Extensive experiments on three
public datasets demonstrate that our proposed SEIZE achieves the
new state-of-the-art performance. The code is publicly available at
https://anonymous.4open.science/r/SEIZE-11BC.
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Figure 1: Comparison of SEIZE with existing methods on ZS-
CIR. SEIZE emphasizes that: (1) The target image is not necessarily
the most similar to the composed text in CLIP space and (2) Both
semantic editing increment and final similarity matter equally.

1 INTRODUCTION
Composed Image Retrieval (CIR) [6, 49, 51] expands upon tradi-
tional image retrieval tasks by incorporating natural language de-
scriptions into the image retrieval process. It enables users to search
for images based on visual attributes and specify particular alter-
ations to the query image using textual descriptions. The task in-
volves a complex blend of visual content and text modifications to
retrieve a novel image that accurately reflects the query’s specifics.
Previous studies necessitate carefully curated triplets of a refer-
ence image, relative text, and a target image, used as training data
for a specialized CIR model. However, annotating these triplets
is both labor-intensive and challenging. To address this, the re-
cent Zero-Shot Composed Image Retrieval (ZS-CIR) task [4, 41, 43]
emphasizes the generalization of CIR models, without requiring
annotated triplets, while still focusing on retrieval accuracy.

To carry out ZS-CIR, most works leverage the cross-modal align-
ment capabilities of large-scale pre-trained Vision-Language Mod-
els (VLMs) (e.g., CLIP [40]) to extract aligned features from im-
ages and text for matching. Several textual inversion methods
[4, 15, 20, 41] have focused on mapping images into pseudo text to-
kens using image-caption pairs. Then, a static template merges the
tokens and the relative text to form target captions. Nonetheless, the
reliance of these methods on training images could limit their real-
world adaptability and performance. Moreover, the pseudo tokens
are often laden with an abundance of visual features, leading to an
excessively detailed caption, filled with content, texture, and style
specific to the reference image. As illustrated in Figure 1, the target
image does not necessarily align strictly with the reference image,
and this overemphasis on visual consistency negatively affects re-
trieval performance. Unlike textual inversion techniques, recent

https://anonymous.4open.science/r/SEIZE-11BC
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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research has ventured into using Large Language Models (LLMs)
for combination. Karthik et al. [27] introduce a simple method in-
volving using a pre-trained image captioning model to caption the
reference image. This caption is then recomposed based on the
relative text by an LLM to enhance the subsequent retrieval process.
In conclusion, the existing methods can be divided into three steps:
First, I2T models convert the reference image into a single content
text. Second, text-fusion approaches combine the content text with
the relative text. Third, the composed caption is projected into the
CLIP feature space for target image retrieval.

Previous methods presume that the target image is the one most
similar to the composed text in CLIP space, relying heavily on the
robustness of I2T models and text-fusion approaches. However,
this assumption might be flawed in practical applications due to
the inherent limitations of these techniques. Given that: (1) The
information provided by the reference image often contains noise,
which could misguide the retrieval process by introducing irrele-
vant details, and (2) The relative text carries high-quality, dense
information, all of which is relevant and beneficial to the retrieval
process. Prior methods often neglect a critical aspect: Despite the
target image not being highly similar to the reference image or
its text conversion, compositional editing of the reference image
and the relative text significantly improves their similarity or rank-
ing. As exemplified in Figure 1, the ground truth in green does not
achieve the highest similarity when compared with the combined
text of the reference image and the relative text. This is due to the
absence of the concept of ‘dock’ within the ground truth. However,
the similarity increment before and after the combination with the
relative text is the highest. Inspired by the above observation, we
aim to address Challenge 1: How to represent and incorporate the
semantic editing increment contributed by the relative text into the
retrieval process?

Furthermore, most existing methods overlook that ZS-CIR is
essentially a fuzzy matching [9, 12, 39] task, where the semantics of
the target image are not strictly determined by the reference image
and relative text. This ambiguity stems from the diverse nature of
the multi-modal query in ZS-CIR. The relative text aims to modify
the semantics of the reference image, but the query does not explic-
itly specify which visual objects/attributes to modify, retain, or omit.
Therefore, as shown in Figure 1, this semantic ambiguity can result
in a wide range of possible semantics of the retrieval target. For
example, the relative text does not clarify whether the person in the
target image should be on the dock or whether he should be talking
on the phone. However, LLM may describe a person on the dock
who is not talking on the phone in the target image, which intro-
duces semantic bias. Hence, generating just one edited caption may
fail to adequately capture the diversity of potential composed re-
sults, leading to suboptimal retrieval performance for ZS-CIR. From
the preceding discussion, we have to tackle Challenge 2: How to
effectively generate a variety of edited captions that encompass
diverse potential semantics of the composed results?

To deal with the above challenges, we propose a novel Semantic
Editing Increment for ZEro-shot composed image retrieval (SEIZE)
method, retrieving a composed image based on a reference image
and a relative text without training. For Challenge 1, we propose
a semantic editing search to comprehensively consider both the
increment of semantic editing and the final similarity. Our approach

draws inspiration from formative assessment [7, 8, 14] extensively
studied in education, which refers to an assessment process, empha-
sizing not only the end result but also the improvement facilitated by
the teaching process. Therefore, we separately calculate the cosine
similarity between the composed text and the content text with the
retrieval images. We compute the semantic editing increment as the
difference in similarity or ranking, add it to the absolute similarity
for the final adjusted score, and then retrieve the composed image
based on this score in the CLIP feature space. For Challenge 2,
we propose a breadth compositional reasoning to generate diverse
edited captions, covering possible semantics of the composed re-
sults for fuzzy retrieval. To conduct it, we generate diverse captions
for the reference image focusing on different semantic perspectives.
Then, we prompt an LLM to infer breadth edited captions based on
the relative text, describing possible composed images of diverse
semantics. Extensive experiments on three benchmark datasets
for ZS-CIR indicate significant performance improvements in our
proposed SEIZE compared with the state-of-the-art methods.

In summary, our contributions can be summarized as follows:
• We propose a novel Semantic Editing Increment for ZEro-shot
composed image retrieval (SEIZE) method, which can utilize
off-the-shelf tools to accurately retrieve a specific image based
on a reference image and a relative text without training.

• We propose a plug-and-play semantic editing search to incorpo-
rate the semantic editing increment contributed by the relative
text into the retrieval process, which is simple yet effective,
seamlessly enhancing various methods for ZS-CIR.

• We propose an LLM-based breadth compositional reasoning
to generate diverse edited captions from different semantic
perspectives of the reference image. The diverse captions edited
by LLMs can effectively cover the possible semantics of the
composed results, overcoming the fuzzy nature of ZS-CIR.

• Extensive experiments conducted on three benchmark datasets
demonstrate significant performance improvements of the pro-
posed SEIZE compared with both the state-of-the-art training-
dependent and training-free methods for ZS-CIR.

2 RELATEDWORK
2.1 Composed Image Retrieval
Composed Image Retrieval (CIR) task [11, 18, 29, 47], focusing on
retrieving a target image based on a query of a reference image
and a relative text, has gained significant attention in recent years.
CIR combines compositional learning [25, 28] with image retrieval,
forming a distinctive and demanding task, which has been widely
applied in conditional search [6] and fashion styling [50]. For in-
stance, Text-Image Residual Gating [47], leverages ResNet [22] for
image feature extraction and LSTM [23] for text feature extraction.
Then, a residual module combines these multi-modal query features
to produce the composed feature. An extension [11] introduces an
attention module to blend hierarchical reference features with rela-
tive text features. However, those CIR methods rely on annotated
data, which is complicated and requires extensive labor.

Therefore, Zero-Shot CIR (ZS-CIR) [4, 41, 43] has recently gar-
nered significant interest, aiming to design generalized CIR models
without annotated data. Existing ZS-CIR methods commonly trans-
form the image modality into a text modality using methods like
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Figure 2: Architecture of the proposed SEIZE method: (1) Breadth compositional reasoning is designed to generate diverse edited
captions from different semantic perspectives of the reference image in response to the fuzzy nature of ZS-CIR; (2) Semantic editing search is
designed to incorporate the semantic editing increment contributed by the relative text into the retrieval process for the final retrieval.

a captioning model or textual inversion. Some existing methods
[4, 41] use image-caption pairs to train textual inversions mapping
images to text tokens. A static template merges tokens and relative
text to obtain target captions, performing CIR without explicit su-
pervision based on CLIP [40]. Recently, Karthik et al. [27] propose
a training-free method that captions the reference image using a
pre-trained VLM and employs an LLM to recompose the caption
based on the relative text for retrieval. However, they solely con-
sider the final similarity between the composed text and retrieved
images for matching, overlooking the fact that the target image
is not necessarily the most similar to the composed text in CLIP
space. To overcome this problem, we propose a plug-and-play se-
mantic editing search to incorporate the semantic editing increment
contributed by the relative text into the retrieval process.

2.2 Vision-Language Models for CIR
The popularity of the pre-trained BERT [17] model has sparked
interest in developing pre-trained Vision-Language Models (VLMs),
including [13, 32, 33, 37, 42], aiming to create Transformer-based
[45] models trained on large-scale image-text triplets to produce
vision-and-language representations. For CIR, to map images and
text into a shared embedding space, many methods harness large
pre-trained multi-modal models, such as CLIP [40], as the backbone
for feature extraction. These models [5, 21, 27] have recently gained
popularity due to their exceptional ability to handle multi-modal
data. For example, Baldrati et al. [5] utilize CLIP to extract both im-
age and text features and then employ a combiner module to merge
the multi-modal query features, achieving excellent retrieval per-
formance. Recently, Han et al. [21] further advance this approach
by designing a unified visual-language model capable of manag-
ing multiple multi-modal learning tasks, including CIR. They use
various cross-attention adaptors and achieve leading performance
in CIR by leveraging the large model and multi-task learning. Re-
cent progress has been made with models such as BLIP [31] and
OFA [48], which move beyond shared space projection to address

various vision-language tasks, such as captioning [46] and visual
question answering [3]. While these models have relied on these
models indirectly for CIR via specialized modules [6, 16, 47] and
fine-tuning [19], our research shows that when vision-language
models are combined with an LLM, they can effectively perform
CIR without requiring additional training.

3 PROBLEM STATEMENT
Zero-Shot Composed Image Retrieval (ZS-CIR). Composed
Image Retrieval (CIR) can be defined as a multi-modal retrieval
problem. Given a reference image 𝐼𝑟 and relative text 𝑇 , the ob-
jective is to retrieve the target image 𝐼𝑡 from an image database
B that aligns with the relative text while preserving the under-
lying semantic content of the image that has not been explicitly
mentioned. Zero-shot CIR further entails the absence of training
samples, which should be conducted with off-the-shelf tools.

4 METHOD
As stated in the problem statement, the input of CIR is amulti-modal
query 𝑞 = {𝐼𝑟 ,𝑇 }, where 𝐼𝑟 and 𝑇 denote the reference image and
the relative text, respectively. We leverage a combination of visual
and textual information for retrieval. The reference image serves
as the visual feature, while the relative text provides additional
context or constraints for the retrieval process. Our objective is to
find the target image that not only matches the relative text but
also captures the essence of the reference image. To this end, we
propose a method called Semantic Editing Increment for ZS-CIR
(SEIZE), which consists of breadth compositional reasoning and
semantic editing search, as depicted in Figure 2.

4.1 Breadth Compositional Reasoning
To capture comprehensive coverage of potential semantics in the
composed results, we introduce a method based on LLMs, which
facilitates broad-scope compositional reasoning to generate diverse
edited captions as shown in Figure 3. The method comprises a
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multi-caption generator for crafting multiple reference captions
and a multi-prompt editing reasoner for reasoning and editing.

4.1.1 Multi-caption Generator. Unlike earlier methods [4, 20, 41]
that directly extract visual features from reference images, our ap-
proach for CIR uses a language-for-vision strategy. Rather than re-
lying on visual features, we harness a pre-trained captioning model
𝜙 (·), such as OFA [48], Flamingo [2] or BLIP-2 [30], to generate
natural language descriptions of the reference image. The method
for generating multiple captions can be described as follows:

T𝐶 = {𝑇𝐶
𝑖 | 0 ≤ 𝑖 < 𝑁 } = 𝜙 (𝐼𝑟 ), (1)

where 𝑇𝐶
𝑖

represents the 𝑖-th caption generated for the reference
image, and 𝑁 is the total count of captions produced. To ensure the
generation of diverse captions and prevent repetition, we employ
nucleus sampling [24] during the captioning process, improving
the diversity of the generated captions.

4.1.2 LLM-based Editing Reasoner. Relying solely on either relative
text or reference captions alone fails to provide complete context
and modification details. While predefined templates like “a photo
of {REF} that {REL}”, can fixedly combine them, they lack the adapt-
ability to accommodate diverse forms of relative text and determine
the most suitable caption format for a specific query. To tackle this,
we leverage the reasoning capabilities of existing LLMs. Instead of
merging the reference caption and relative text by a static template,
we derive cohesive, unified, and breadth captions edited by LLMs.

Formally, given the diverse captions T𝐶 of the reference image
and relative text 𝑇 , we design a simple prompt template 𝑓 (·, ·)
inspired by [35], combining the reference captions and relative text
to create the full prompts P for LLM:

P = {𝑝𝑖 = 𝑓 (𝑇𝐶
𝑖 ,𝑇 ) | 0 ≤ 𝑖 < 𝑁 }, (2)

where 𝑝𝑖 represents the prompt that combines the reference image
caption and relative text. The image caption serves as a content
prompt prepended with "Image Content:", and the relative text
serves as a modification instruction prepended with "Instruction:",
as shown in Figure 2. We fill these two parts into the template to
get the full prompt. Then, we input the prompts into the LLM for
reasoning and obtain the generated edited captions T 𝐸 :

T 𝐸 = {𝑇𝐸
𝑖 = LLM(𝑝𝑖 ) | 0 ≤ 𝑖 < 𝑁 }. (3)

We include only one example in each LLM query for composi-
tional reasoning to generate a variety of breadth-edited captions
efficiently and cost-effectively. Refer to the Supplementary for a
detailed description of prompt template 𝑓 (·, ·).

4.2 Semantic Editing Search
To effectively incorporate the semantic increment contributed by
the relative text into the retrieval process, we propose a seman-
tic editing search to comprehensively consider relative semantic
increment and absolute similarity as the final retrieval score.

4.2.1 Feature Extractor. To retrieve the target image from the im-
age database using edited captions, we need to extract features from
both modalities and align them in a common feature space. For
this purpose, we use the image and text encoders from large-scale

Figure 3: Illustration of the breadth compositional reasoning.

VLMs (e.g. CLIP) to process the image database and edited captions,
respectively.

Visual Feature Extractor: Given the image-search database
B, for each image 𝐼𝑖 ∈ R𝐻×𝑊 ×3 in the database, we use the CLIP
image encoder𝜓𝐼 (·) to extract the image feature and normalize it
to obtain 𝑓 𝐼

𝑖
∈ R𝑑 , where 𝑑 is the dimension of the joint feature

space. Formally, we extract the visual features F 𝐼 ∈ R𝑀×𝑑 of the
entire image database as follows:

F 𝐼 = {𝑓 𝐼𝑖 =
𝜓𝐼 (𝐼𝑖 )

∥𝜓𝐼 (𝐼𝑖 )∥2
| 0 ≤ 𝑖 < 𝑀}, (4)

where𝑀 = |B| is the number of candidate images in the database.
Textual Feature Extractor: Given the edited captions T 𝐸 and

CLIP text encoder𝜓𝑇 (·), we extract the textual featuresF 𝐸 ∈ R𝑁×𝑑

of edited captions as follows:

F 𝐸 = {𝑓 𝐸𝑖 =
𝜓𝑇 (𝑇𝐸

𝑖
)

∥𝜓𝑇 (𝑇𝐸
𝑖
)∥2

| 0 ≤ 𝑖 < 𝑁 }. (5)

Then, we aggregate the textual features of edited captions into a
unified feature as 𝑓 𝐸 = Agg(F 𝐸 ). Similarly, we extract the textual
features F𝐶 of diverse captions T𝐶 , and the corresponding unified
feature 𝑓𝐶 for subsequent calculations.

4.2.2 Semantic Editing Increment. To quantify the significance of
semantic improvement in the similarity between text and images
after the compositional editing of the reference image and the
relative text, we employ a measure of semantic increment before
and after editing as the scoring metric for images in the database.
In Figure 4, the relative text guides the reference image toward
the target image to form an edited reference caption. However, the
image most similar to the edited caption is not the target image, but
the hard negative image. In this case, where traditional retrieval
methods fail, the semantic editing increment is denoted by a purple
bidirectional arrow. Leveraging the principle that in a triangle,
the difference between any two sides is less than the length of
the third, it becomes evident that the reference image yields the
maximum semantic editing increment to the target image among all
retrieval images. Note that for the sake of a more intuitive example,
we employ distance metrics. However, the same concept can be
seamlessly applied to similarity metrics as well.

Formally, given the aggregated feature 𝑓𝐶 of reference captions
and the feature 𝑓 𝐸 of their corresponding edited captions, we in-
dependently calculate their similarity to the visual features F 𝐼 as
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Figure 4: Illustration of semantic editing increment. Relative
text guides the reference image toward the target image to form an
edited reference caption. Hard negative image where 𝑑3>𝑑4 harms
retrieval, while semantic editing increment improves it as 𝑑1>𝑑2.

follows:
𝑆𝐶 = 𝑓𝐶 (F 𝐼 )𝑇 ,

𝑆𝐸 = 𝑓 𝐸 (F 𝐼 )𝑇 ,
(6)

where 𝑆𝐶 , 𝑆𝐸 ∈ R𝑀 represent the cosine similarities between the
reference and edited captions, respectively, and all𝑀 retrieval im-
ages. Here, 𝑆𝑖 ∈ [−1, 1] since all visual and text features are precon-
ditioned by 𝐿2 normalization in the CLIP space. Then, we calculate
their difference Δ𝑆 = 𝑆𝐸 − 𝑆𝐶 as the semantic editing increment.
Finally, we calculate the adjusted similarity 𝑆𝐴 as follows:

𝑆𝐴 = 𝑆𝐸 + 𝛼 [Δ𝑆]>0 + 𝛽 [Δ𝑆]<0, (7)

where 𝛼 represents the weight factor for the positive semantic
editing increment, and 𝛽 represents the weight factor for the nega-
tive semantic editing increment. Indeed, we can also use ranking
changes as the semantic editing increment to calculate the adjusted
similarity, with comparison results as shown in Section 5.4.

4.2.3 Similarity Search. Based on the adjusted similarity between
the image features in the database and the feature of edited captions,
we make the following calculation and search:

𝑘 = argmax
𝑖

𝑆𝐸𝑖 , (8)

where 𝑘 is the index of the target image in the database and we get
the final target retrieved image 𝐼𝑡 = B(𝑘).

5 EXPERIMENTS
We conduct extensive experiments to investigate the effectiveness
of our proposed method for composed image retrieval.

5.1 Experimental Setup
5.1.1 Datasets. We compare SEIZE with state-of-the-art baselines
on three public datasets: CIRCO [4], CIRR [36], and FashionIQ [50],
which have been widely used for CIR. CIRR is the first natural
image dataset designed specifically for CIR. There are 36,554 queries,
each containing a single target image. CIRCO is based on real-
world images from the COCO 2017 unlabeled set [34] and provides
multiple ground truths. It provides 123,403 images for retrieval

and 4.53 ground truths per query on average, which offers a more
robust evaluation for CIR models. FashionIQ focuses on the fashion
domain and is divided into three subcategories: Dress, Shirt, and
Toptee. It comprises 30,135 triplets for query and 77,683 images for
retrieval. In particular, we employ the test sets of CIRR and CIRCO
and three categories of FashionIQ validation split for ZS-CIR.

5.1.2 Evaluation Metrics. On CIRCO, given that each query has
multiple target images, we utilize mean Average Precision (mAP),
a more fine-grained metric to consider the rank of retrieval re-
sults. Specifically, we apply mAP@k for our evaluation, where
𝑘 ∈ {5, 10, 25, 50} represents the number of top-ranked retrieval re-
sults under consideration. On CIRR, we use Recall@k (𝑘 ∈ {1, 5, 10})
as the main metric, which denotes the percentage of target images
included in the top-k list. Besides, we also evaluate with the subset
setting, where there are only 6 most similar images (one ground
truth) within the subset of the query in the database, denoted as
RecallSubsetk (k ∈ {1, 2, 3}). On FashionIQ, we also employ Re-
call@k (𝑘 ∈ {10, 50}) as the main metric. We separately compute
the Recalls for three categories (Dress, Shirt, and Toptee) from the
FashionIQ validation split, and then calculate the average of them.

5.1.3 Implementation Details. For the captioning model, we use
the pre-trained BLIP-2 [30] with a large language model OPT-6.7b.
We employ nucleus sampling [24] during the caption generation
process to generate diverse captions, and we set the number 𝑁 of
captions to 15. For VLM, we use the ViT-B/32 and ViT-L/14 CLIP
[40] from OpenAI, as well as the ViT-H/14 and ViT-G/14 CLIP from
OpenCLIP[26]. For LLM, we use gpt-3.5-turbo [10] by default, but
we also conduct extensive experiments with Llama2-70B [44] and
GPT-4 [1]. The weight factors 𝛼 and 𝛽 in the SES module are set to
0.13 and 2.1. The feature space dimensions are as follows: 512 for
B/32, 768 for L/14, and 1024 for H/14 and G/14. The whole model is
implemented by Pytorch [38] with one NVIDIA A100 GPU.

5.2 Baselines
We select the following state-of-the-art baselines for ZS-CIR to
conduct a comprehensive comparison. Image-only: Only the fea-
tures of reference images, which are extracted by the CLIP image
encoder, are used to compute similarity for retrieval; Text-only:
Only the relative text features, extracted by the CLIP text encoder,
are utilized as retrieval features to calculate similarity; Captioning:
We employ BLIP-2 to generate captions of reference images for
retrieval; PALAVRA [15]: A two-stage approach based textual inver-
sion with a mapping function and a subsequent optimization of the
pseudo-word token; Pic2Word [41]: A training-dependent method
employs a textual inversion network optimized by contrastive loss
to capture the pseudo-word token for retrieval; SEARLE [4]: A
training-dependent method where pseudo-word tokens of images
are generated with a textual inversion and then distill their knowl-
edge to a textual inversion network; SEARLE-OTI [4]: A variant
of SEARLE without the distillation network; LinCIR [20]: A self-
supervision method is used for training, which projects text embed-
dings into the token space for retrieval; CIReVL [27]: A training-free
method using a generative VLM and asking an LLM to recompose
the caption based on the textual modification for retrieval.
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Table 1: Results of comparison among different models on CIRCO and CIRR test sets. Best and second-best scores are highlighted
in bold and underlined, respectively.

Backbone Method Training-free
CIRCO CIRR
mAP@k Recall@k Rs@k

k=5 k=10 k=25 k=50 k=1 k=5 k=10 k=1 k=2 k=3

ViT-B/32

PALAVRA(ECCV’22) % 4.61 5.32 6.33 6.80 16.62 43.49 58.51 41.61 65.30 80.94
SEARLE(ICCV’23) % 9.35 9.94 11.13 11.84 24.00 53.42 66.82 54.89 76.60 88.19
SEARLE-OTI(ICCV’23) % 7.14 7.83 8.99 9.60 24.27 53.25 66.10 54.10 75.81 87.33
CIReVL(ICLR’24) " 14.94 15.42 17.00 17.82 23.94 52.51 66.00 60.17 80.05 90.19
SEIZE(Ours) " 19.04 19.64 21.55 22.49 27.47 57.42 70.17 65.59 84.48 92.77

ViT-L/14

Image-only " 1.28 1.70 2.35 2.69 3.64 12.75 23.32 11.58 31.41 45.26
Text-only " 2.63 2.85 3.30 3.58 20.51 43.21 55.08 60.39 80.02 90.05
Captioning " 1.65 1.96 2.42 2.71 4.05 15.88 25.69 20.87 40.60 60.89
Pic2Word(CVPR’23) % 8.72 9.51 10.64 11.29 23.90 51.70 65.30 53.76 74.46 87.08
SEARLE(ICCV’23) % 11.68 12.73 14.33 15.12 24.24 52.48 66.29 53.76 75.01 88.19
SEARLE-OTI(ICCV’23) % 10.18 11.03 12.72 13.67 24.87 52.31 66.29 53.80 74.31 86.94
LinCIR(CVPR’24) % 12.59 13.58 15.00 15.85 25.04 53.25 66.68 57.11 77.37 88.89
CIReVL(ICLR’24) " 18.57 19.01 20.89 21.80 24.55 52.31 64.92 59.54 79.88 89.69
SEIZE(Ours) " 24.98 25.82 28.24 29.35 28.65 57.16 69.23 66.22 84.05 92.34

ViT-G/14

Pic2Word(CVPR’23) % 5.54 5.59 6.68 7.12 30.41 58.12 69.23 68.92 85.45 93.04
SEARLE(ICCV’23) % 13.20 13.85 15.32 16.04 34.80 64.07 75.11 68.72 84.70 93.23
LinCIR(CVPR’24) % 19.71 21.01 23.13 24.18 35.25 64.72 76.05 63.35 82.22 91.98
CIReVL(ICLR’24) " 26.77 27.59 29.96 31.03 34.65 64.29 75.06 67.95 84.87 93.21
SEIZE(Ours) " 32.46 33.77 36.46 37.55 38.87 69.42 79.42 74.15 89.23 95.71

Among them, Image-only, Text-only, and Captioning are simple
technologies directly applied to one modality; PALAVRA, Pic2Word,
SEARLE, SEARLE-OTI, and LinCIR are training-dependent methods
based on textual inversion; CIReVL is the state-of-the-art training-
free method. For a fair comparison, the results of the published
baselines are derived from their original papers.

5.3 Results and Analysis
CIRCO: The left section of Table 1 displays CIRCO test results.
Based on them, we have the following observations: (1) Among
the simpler baselines, Image-only and Captioning perform worse
than Text-only, indicating the importance of relative text for CIR.
Besides, Captioning outperforms Image-only, suggesting that tex-
tual features from image captions are more suitable for CIR than
direct visual features. (2) Among I2T-based methods, the methods
based on pre-trained captioning models, CIReVL and SEIZE, per-
form better than the methods based on pseudo-word, PALAVRA,
Pic2Word, SEARLE, and LinCIR. This demonstrates that the cap-
tions generated by the captioning model possess semantics that
are more suitable for CLIP text encoding compared to textual in-
version. (3) SEIZE consistently outperforms all baselines across all
metrics and CLIP backbones. For instance, using ViT-L/14, SEIZE
outperforms the second-best CIReVL by 34.52% in mAP@5, 35.82%
in mAP@10, 35.18% in mAP@25, and 34.63% in mAP@50, proving
the effectiveness of SEIZE for CIR.

CIRR: The right section of Table 1 presents CIRR test results.
From these results, key observations include: (1) Text-only performs
significantly better than Image-only and Captioning, indicating a
minimal correlation between reference and target images due to
the noisy dataset and the lesser information provided by reference

images. (2) Despite the noise, SEIZE consistently outperforms all
baselines across all CLIP backbones. This highlights the robustness
and adaptability of SEIZE even in noisy data and diverse scenarios.
(3) Using ViT-L/14 CLIP, SEIZE surpasses the second-best method
by 14.42% in Recall@1, 7.34% in Recall@5, and 3.82% in Recall@10,
emphasizing the effectiveness of SEIZE.

FashionIQ: Table 2 shows the results from the FashionIQ valida-
tion set. Key observations include: (1) Text-only methods perform
better than Image-only methods, but not significantly better than
the Captioning method. This suggests that while reference images
lack key information, converting them into captions is empirically a
better strategy, possibly due to the subtle differences in style, color,
or pattern in fashion images that are hard to capture through visual
features directly. (2) SEIZE outperforms all baselines in all metrics
with ViT-B/32 and L/14 CLIP.When using L/14, SEIZE relatively out-
performs the second-best CIReVL by 16.22% in average Recall@10
and 11.61% in average Recall@50. However, LinCIR achieves the
best average R@10 on ViT-G/14, likely due to superior supervised
optimization of training-based methods on larger VLMs. Despite
this, SEIZE remains the top-performing training-free method.

5.4 Ablation Study
In this section, we conduct ablation studies to evaluate the individ-
ual contributions of components in our method. To avoid confusion,
we assess the three main components separately by comparing
SEIZE variants. The following three categories of SEIZE variants
are designed for comparative analysis:

• Breadth Compositional Reasoning (BCR) module: (1) A
variant of SEIZE without LLMs and only using a simple template
"a photo of {caption} that {relative text}", (2) a variant without
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Table 2: Results of comparison among different models on FashionIQ validation set.Best and second-best scores are highlighted in
bold and underlined, respectively.

Backbone Method Training-free Shirt Dress Toptee Average
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

ViT-B/32

Image-only " 6.92 14.23 4.46 12.19 6.32 13.77 5.90 13.37
Text-only " 19.87 34.99 15.42 35.05 20.81 40.49 18.70 36.84
Captioning " 17.47 30.96 9.02 23.65 15.45 31.26 13.98 28.62
PALAVRA(ECCV’22) % 21.49 37.05 17.25 35.94 20.55 38.76 19.76 37.25
SEARLE(ICCV’23) % 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53
SEARLE-OTI(ICCV’23) % 25.37 41.32 17.85 39.91 24.12 45.79 22.44 42.34
CIReVL(ICLR’24) " 28.36 47.84 25.29 46.36 31.21 53.85 28.29 49.35
SEIZE(Ours) " 29.38 47.97 25.37 46.84 32.07 54.78 28.94 49.86

ViT-L/14

Pic2Word(CVPR’23) % 26.20 43.60 20.00 40.20 27.90 47.40 24.70 43.70
SEARLE(ICCV’23) % 26.89 45.58 20.48 43.13 29.32 49.97 25.56 46.23
SEARLE-OTI(ICCV’23) % 30.37 47.49 21.57 44.47 30.90 51.76 27.61 47.90
LinCIR(CVPR’24) % 29.10 46.81 20.92 42.44 28.81 50.18 26.28 46.49
CIReVL(ICLR’24) " 29.49 47.40 24.79 44.76 31.36 53.65 28.55 48.57
SEIZE(Ours) " 33.04 53.22 30.93 50.76 35.57 58.64 33.18 54.21

ViT-G/14

Pic2Word(CVPR’23) % 33.17 50.39 25.43 47.65 35.24 57.62 31.28 51.89
SEARLE(ICCV’23) % 36.46 55.35 28.16 50.32 39.83 61.45 34.81 55.71
LinCIR(CVPR’24) % 46.76 65.11 38.08 60.88 50.48 71.09 45.11 65.69
CIReVL(ICLR’24) " 33.71 51.42 27.07 49.53 35.80 56.14 32.19 52.36
SEIZE(Ours) " 43.60 65.42 39.61 61.02 45.94 71.12 43.05 65.85

Table 3: Ablation study on CIRCO test set with ViT-L/14 CLIP.
- denotes the default setting of SEIZE.

Abl. CIRCO (mAP@k)

BCR Agg. SES k=5 k=10 k=25 k=50
w/o LLM - - 14.37 15.48 17.21 18.19

w/o Cap.&LLM w/o w/o 2.63 2.85 3.30 3.58
w/o Mul. w/o - 19.67 20.56 22.43 23.44

- Max. - 19.21 19.73 21.71 22.69
Opt. 20.46 21.38 23.07 24.19

- - w/o 21.93 22.42 24.86 25.88
Rank 23.49 24.13 26.52 27.59

SEIZE 24.98 25.82 28.24 29.35

Table 4: Impact of SES module on various ZS-CIR methods.

Method SES CIRCO (mAP@k)
k=5 k=10 k=25 Avg. ↑

Pic2Word % 8.72 9.51 10.64 9.62 -
" 10.55 11.38 12.61 11.51 19.64%

SEARLE % 11.63 12.70 14.30 12.88 -
" 14.99 15.67 17.22 15.96 23.91%

LinCIR % 12.71 13.61 14.98 13.77 -
" 15.53 16.59 18.05 16.72 21.42%

CIReVL % 18.02 18.81 20.79 19.21 -
" 19.86 20.93 22.92 21.24 10.57%

SEIZE(Ours) % 21.93 22.42 24.86 23.07 -
" 24.98 25.82 28.24 26.35 15.72%

LLMs or captioning models and only using the relative text for
retrieval, and (3) a variant without multiple diverse captions and
only using a single caption.

• Aggregate function: A variant of SEIZE with the maximum
feature (the maximum similarity feature for each image), and a
variant with the optimal feature (the feature of a single edited
caption with the best retrieval result) instead of the average
feature of edited captions.

• Semantic Editing Search (SES) module: A variant of SEIZE
without the SES module, and a variant with ranking increment
(integer, multiplied by a weight factor of 0.3) instead of similarity.

The ablation study results are shown in Table 3.
• Effects of the BCR module: The results of the BCR column
show that: (1) SEIZE outperforms the variant without LLMs (w/o
LLM) on the CIRCO test set, highlighting the effectiveness of
the LLM-based editing reasoner for combining reasoning and
editing captions based on relative text. The ability of LLMs to
generate natural language leads to engaging and coherent text.
It also eliminates semantic irrelevance within diverse captions
and improves retrieval accuracy, greatly benefiting SEIZE. (2)
The variant w/o LLM performs better than w/o Cap.&LLM with
the fixed relative text, underlining the importance of the caption
generator in providing essential reference image details and con-
text. (3) SEIZE outperforms the variant w/o Mul., highlighting
the importance of multiple captions. For more details on how the
number of captions affects the results, refer to Section 5.5.

• Effects of the aggregate function: The results of the Agg.
column indicate that: The proposed SEIZE outperforms the Max.
and Opt. variants, underscoring the effectiveness of the average
function in providing a more complementary and comprehensive
retrieval perspective using diverse semantic information.
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Table 5: Impact of different VLMs and LLMs.

VLM LLM CIRCO (mAP@k)

k=5 k=10 k=25 k=50

ViT-L/14

- 14.35 15.64 17.24 18.03
LLama2-70B 22.28 23.41 25.84 26.96
GPT-3.5-Turbo 24.98 25.82 28.24 29.35

GPT-4 25.12 26.12 28.67 29.72

ViT-B/32

GPT-3.5-Turbo

19.04 19.64 21.55 22.49
ViT-L/14 24.98 25.82 28.24 29.35
ViT-H/14 32.07 33.49 36.23 37.31
ViT-G/14 32.46 33.77 36.46 37.55

Figure 5: Sensitivity of different hyperparameters on CIRCO.

• Effects of the SES module: The results of the SES column
show that: SEIZE outperforms the variants with ranking scores
and without SES, highlighting the effectiveness of the semantic
editing increment for additional consideration of improvements
by compositional reasoning. For more details on the impact of
SES on various ZS-CIR methods, refer to Section 5.6.

5.5 Hyperparameter Analysis
To analyze the sensitivity of the hyperparameter in SEIZE, we
conduct experiments with controlled variables on the CIRCO test
set. We use pre-trained BLIP-2 for captioning, ViT-L/14 CLIP for
image and text feature extraction, and gpt-3.5-turbo for reasoning.

Number 𝑁 in the Multi-caption Generator: To examine the
impact of the number 𝑁 of samples for the captioning model, we
vary the value of 𝑁 from 1 to 20 and report the results on the
CIRCO test set in Figure 5. The results across the four metrics
show a pattern: an initial sharp increase followed by relative sta-
bility as 𝑁 increases. The model achieves a good balance between
computational cost and effect when 𝑁 is between 13 and 16.

Weight factors 𝛼 and 𝛽 in SESmodule:We vary 𝛼 from 0.05 to
0.25 and 𝛽 from 0.5 to 2.5 to analyze the influence of weight factors.
As 𝛼 increases, results first rise and then fall, while as 𝛽 increases,
results initially rise and then stabilize. From Figure 5, we can observe
that the model achieves the best performance with 𝛼 = 0.13 and
𝛽 = 2.1. The negative semantic editing increment is more critical
due to its larger weight factor, which maintains fine results as it
increases. However, SES is sensitive to the positive semantic editing
increment, and increasing its weight leads to poor performance.
This alignswith intuition: imagesmatching the semantics of relative
text may not necessarily be the target image, but those that deviate
from it are, with high probability, not the target image.

5.6 Impact of SES module on ZS-CIR Methods
Considering that current ZS-CIR methods utilize I2T models to
transform the query image into a caption, which is then combined
with the relative text via text-fusion approaches to generate a final
text for retrieval, it is plausible to integrate the Semantic Editing
Search (SES) module into various ZS-CIR methods that rely on the
language-for-vision strategy. The experimental results and improve-
ments before and after using the SES module on ZS-CIR methods
with ViT-L/14 CLIP are shown in Table 4. It can be observed that
the SES module has improved all methods, especially the textual
inversion methods, with an average improvement of 21.66%. This
proves that our SES module is plug-and-play, simple yet effective,
allowing for seamless integration with various methods for ZS-CIR.

5.7 Impact of VLMs and LLMs
Since our proposed SEIZE relies heavily on VLMs for retrieval
and LLMs for reasoning, we study several VLMs and LLMs to un-
derstand their impact on performance. VLM: Table 5 shows that
CLIP encoders with larger parameters perform significantly better,
suggesting that they can capture more detailed features, leading
to performance improvement. When the LLM is set to GPT-3.5-
Turbo, larger parameter CLIP models, specifically ViT-H/14 and
G/14, show considerable improvements over the smaller parameter
model, B/32, with performance increases of 70.52% and 71.95% re-
spectively. LLM:We conduct experiments on CIRCO using various
configurations listed in Table 5: no LLM (with fixed templates), an
open-source LLM (LLama2-70B), and closed-source LLMs (GPT-3.5-
Turbo and GPT-4). The results show that the LLM-based method
significantly outperforms the no LLM approach, highlighting the
power of dynamic textual reasoning in generating target captions.
Furthermore, GPT-based methods perform better than the open-
source LLM. Specifically, GPT variants, GPT-3.5-Turbo and GPT-4,
achieve 12.12% and 12.75% relative improvements in mAP@5 com-
pared to LLama2-70B, respectively. The plug-and-play design of
SEIZE enables the seamless integration of various retrieval and rea-
soning models, providing flexibility to scale our pipeline as needed
and consider the trade-offs between cost and effectiveness, which
is crucial when choosing the best LLM and VLM for applications.
Thus, we can customize SEIZE to fit any specific retrieval scenario.

6 CONCLUSIONS
In this paper, we propose a training-free method called Semantic
Editing Increment forZEro-shot composed image retrieval (SEIZE),
which can utilize off-the-shelf tools to accurately retrieve a specific
image based on a reference image and a relative text without train-
ing. Our method can consider not only the final similarity between
the composed text and retrieved images but also the semantic in-
crement during the compositional editing process. To cover the
possible semantics of the composed results, we propose a breadth
compositional reasoning to generate diverse edited captions from
different semantic perspectives of the reference image. Extensive
experiments on three public datasets demonstrate that the proposed
SEIZE significantly outperforms the state-of-the-art methods for
ZS-CIR. In the future, we will explore semantic editing increment
based on LLMs and VLMs in more multi-modal reasoning tasks,
such as visual reasoning and conditional generation.
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