
Under review as a conference paper at ICLR 2019

THE GAN LANDSCAPE:
LOSSES, ARCHITECTURES, REGULARIZATION,
AND NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative adversarial networks (GANs) are a class of deep generative models
which aim to learn a target distribution in an unsupervised fashion. While they were
successfully applied to many problems, training a GAN is a notoriously challenging
task and requires a significant amount of hyperparameter tuning, neural architecture
engineering, and a non-trivial amount of “tricks”. The success in many practical
applications coupled with the lack of a measure to quantify the failure modes of
GANs resulted in a plethora of proposed losses, regularization and normalization
schemes, and neural architectures. In this work we take a sober view of the current
state of GANs from a practical perspective. We reproduce the current state of
the art and go beyond fairly exploring the GAN landscape. We discuss common
pitfalls and reproducibility issues, open-source our code on Github, and provide
pre-trained models on TensorFlow Hub.

1 INTRODUCTION

Deep generative models are a powerful class of unsupervised machine learning models. The power of
these models was recently harnessed in a variety of applications, including image generation, learned
compression, and domain transfer (Isola et al., 2017; Radford et al., 2016; Agustsson et al., 2018;
Tschannen et al., 2018). Generative adversarial networks (Goodfellow et al., 2014) are one of the
main approaches to learning such models in a fully unsupervised fashion. The GAN framework can
be viewed as a two-player game where the first player, the generator, is learning to transform some
simple input distribution (usually a standard multivariate Normal or uniform) to a distribution on
the space of images, such that the second player, the discriminator, cannot tell whether the samples
belong to the true distribution or were synthesized. Both players aim to minimize their own loss
and the solution to the game is the Nash equilibrium where neither player can improve their loss
unilaterally. This powerful framework can also be derived by minimizing a divergence between the
model distribution and the true distribution (Nowozin et al., 2016; Arjovsky et al., 2017).

Training GANs involves solving a minimax problem over the parameters of the generator and the
discriminator which are usually parameterized as deep convolutional neural networks. Consequently,
this minimax problem is notoriously hard to solve in practice. As a result, a plethora of loss functions,
regularization and normalization schemes, coupled with neural architecture choices, have been
proposed (Goodfellow et al., 2014; Salimans et al., 2016; Miyato et al., 2018; Gulrajani et al., 2017;
Arjovsky et al., 2017; Mao et al., 2016).

Our contributions. In this work we provide a thorough empirical analysis of these competing
approaches, and help the researchers and practitioners navigate this space. We first define the
GAN landscape – the set of loss functions, normalization and regularization schemes, and the most
commonly used architectures. We explore this search space on several modern large-scale data
sets by means of hyperparameter optimization, considering both “good” sets of hyperparameters
reported in the literature, as well as ones obtained by Gaussian Process regression. By analyzing
the impact of the loss function, we conclude that the non-saturating loss is sufficiently stable across
data sets, architectures and hyperparameters. We then proceed to decompose the effect of various
normalization and regularization schemes, as well as varying architectures. We show that both
gradient penalty (Gulrajani et al., 2017) as well as spectral normalization (Miyato et al., 2018) are

1

Under review as a conference paper at ICLR 2019

useful in the context of high-capacity architectures. Finally, we discuss some common pitfalls,
reproducibility issues, and practical considerations. We provide reference implementations, including
training and evaluation code on Github1 and provide pre-trained models on TensorFlow Hub.2

2 THE GAN LANDSCAPE

2.1 LOSS FUNCTIONS

Let P denote the target (true) distribution and Q the model distribution. Goodfellow et al. (2014)
suggest two loss functions: the minimax GAN and the non-saturating (NS) GAN. In the former the
discriminator minimizes the negative log-likelihood for the binary classification task. In the latter
the generator maximizes the probability of generated samples being real. In this work we consider
the non-saturating loss as it is known to outperform the minimax variant. The corresponding loss
functions are LD = −Ex∼P [log(D(x))]− Ex̂∼Q[log(1−D(x̂))] and LG = −Ex̂∼Q[log(D(x̂))].

In Wasserstein GAN (WGAN) (Arjovsky et al., 2017) the authors propose to consider the Wasserstein
divergence instead of the original Jensen-Shannon (JS). In particular, under the optimal discriminator,
minimizing the proposed value function with respect to the generator minimizes the Wasserstein
distance between P and Q. The drawback is that one has to ensure a 1-Lipschitz discriminator
due to exploited Kantorovich-Rubenstein duality. The corresponding loss functions are LD =
−Ex∼P [D(x)] + Ex̂∼Q[D(x̂)] and LG = −Ex̂∼Q[D(x̂)].

Finally, we consider the least-squares loss (LS) which corresponds to minimizing the Pearson χ2

divergence between P and Q (Mao et al., 2016). The intuition is that this loss function is smooth and
saturates slower than the sigmoid cross-entropy loss of the JS formulation. The corresponding loss
functions are LD = −Ex∼P [(D(x)− 1)2] + Ex̂∼Q[D(x̂)2] and LG = −Ex̂∼Q[(D(x̂)− 1)2].

2.2 REGULARIZATION AND NORMALIZATION OF THE DISCRIMINATOR

Gradient norm penalty. In the context of Wasserstein GANs this penalty can be interpreted as
a soft penalty for the violation of 1-Lipschitzness (WGAN GP) (Gulrajani et al., 2017). Hereby,
the gradient is evaluated on a linear interpolation between training points and generated samples
as a proxy to the optimal coupling. The gradient penalty can also be evaluated around the data
manifold which encourages the discriminator to be piece-wise linear in that region (Dragan) (Kodali
et al., 2017). However, the gradient norm penalty can be considered purely as a regularizer for the
discriminator and it was shown that it can improve the performance for other losses (Fedus et al.,
2018). Furthermore, the penalty can be scaled by the “confidence” of the discriminator in the context
of f-divergences (Roth et al., 2017). A drawback of gradient penalty (GP) regularization scheme
is that it can depend on the model distribution Q which changes during training. One drawback of
Dragan is that it is unclear to which extent the Gaussian assumption for the manifold holds. Finally,
computing the gradient norms implies a non-trivial running time penalty – essentially doubling the
running time. We also investigate the impact of a regularizer ubiquitous in supervised learning – the
L2 penalty on all the weights of the network.

Discriminator normalization. Normalizing the discriminator can be useful from both the opti-
mization perspective (more efficient gradient flow, a more stable optimization), as well as from the
representation perspective – the representation richness of the layers in a neural network depends on
the spectral structure of the corresponding weight matrices (Miyato et al., 2018).

From the optimization point of view, several techniques have found their way into the GAN literature,
namely batch normalization (BN) (Ioffe and Szegedy, 2015) and layer normalization (LN) (Ba et al.,
2016). Batch normalization in the context of GANs was suggested by Denton et al. (2015) and further
popularized by Radford et al. (2016). It normalizes the pre-activations of nodes in a layer to mean
β and standard deviation γ, where both β and γ are parameters learned for each node in the layer.
The normalization is done on the batch level and for each node separately. In contrast, with Layer
normalization, all the hidden units in a layer share the same normalization terms β and γ, but different

1Link removed to preserve anonymity.
2Link removed to preserve anonymity.

2

http://www.github.com/
http://www.tensorflow.org/hub

Under review as a conference paper at ICLR 2019

samples are normalized differently (Ba et al., 2016). Layer normalization was first applied in the
context of GANs in Gulrajani et al. (2017).

From the representation point of view, one has to consider the neural network as a composition of
(possibly non-linear) mappings and analyze their spectral properties. In particular, for the discrimina-
tor to be a bounded linear operator it suffices to control the maximum singular value. This approach
is followed in Miyato et al. (2018) where the authors suggest dividing each weight matrix, including
the matrices representing convolutional kernels, by their spectral norm. Furthermore, the authors
argue that a key advantage of spectral normalization over competing approaches is that it results in
discriminators of higher rank.

2.3 GENERATOR AND DISCRIMINATOR ARCHITECTURE

We explore two classes of architectures in this study: deep convolutional generative adversarial
networks (DCGAN) (Radford et al., 2016) and residual networks (ResNet) (He et al., 2016), both of
which are ubiquitous in GAN research. Recently, Miyato et al. (2018) defined a variation of DCGAN,
so called SNDCGAN. Apart from minor updates (cf. Section 4) the main difference to DCGAN is
the use of an eight-layer discriminator network. The details of both networks are summarized in
Table 3. The other architecture, ResNet19, is an architecture with five ResNet blocks in the generator
and six ResNet blocks in the discriminator, that can operate on 128 × 128 images. We follow the
ResNet setup from Miyato et al. (2018), with the small difference that we simplified the design of the
discriminator. The detailed parameters of discriminator and generator are summarized in Table 4a and
Table 4b. With this setup we were able to reproduce the current state of the art results. An ablation
study on various ResNet modifications is available in the Appendix.

2.4 EVALUATION METRICS

We focus on several recently proposed metrics well suited to the image domain. For an in-depth
overview of quantitative metrics we refer the reader to (Borji, 2018).

Inception Score (IS). Proposed by Salimans et al. (2016), IS offers a way to quantitatively evaluate
the quality of generated samples. Intuitively, the conditional label distribution of samples containing
meaningful objects should have low entropy, and the variability of the samples should be high. which
can be expressed as IS = exp(Ex∼Q[dKL(p(y | x), p(y))]). The authors found that this score is
well-correlated with scores from human annotators. Drawbacks include insensitivity to the prior
distribution over labels and not being a proper distance.

As an alternative Heusel et al. (2017) proposed the Frechet Inception Distance (FID). Samples from
P and Q are first embedded into a feature space (a specific layer of InceptionNet). Then, assuming
that the embedded data follows a multivariate Gaussian distribution, the mean and covariance are
estimated. Finally, the Fréchet distance between these two Gaussians is computed, i.e.

FID = ||µx − µy||22 + Tr(Σx + Σy − 2(ΣxΣy)
1
2),

where (µx,Σx), and (µy,Σy) are the mean and covariance of the embedded samples from P and
Q, respectively. The authors argue that FID is consistent with human judgment and more robust
to noise than IS. Furthermore, the score is sensitive to the visual quality of generated samples –
introducing noise or artifacts in the generated samples will reduce the FID. In contrast to IS, FID
can detect intra-class mode dropping, i.e. a model that generates only one image per class can score
a perfect IS, but will suffer from have a high FID (Lucic et al., 2018). Bińkowski et al. (2018)
argued that FID has no unbiased estimator and suggest Kernel Inception distance (KID) instead.
In Appendix B we empirically compare KID to FID and observe that both metrics are very strongly
correlated (Spearman rank-order correlation coefficient of 0.994 for LSUN-BEDROOM and 0.995 for
CELEBA-HQ-128 datasets). As a result we focus on FID as it is likely to result in the same ranking.

Multi-scale Structural Similarity for Image Quality (MS-SSIM) and Diversity. A critical issue
in GANs are mode collapse and mode-dropping – failing to capture a mode, or low-diversity of
generated samples from a given mode. The MS-SSIM score (Wang et al., 2003) is used for measuring
the similarity of two images where higher MS-SSIM score indicates more similar images. Several
recent works suggest using the average pairwise MS-SSIM score within a given class as a proxy for
the diversity of generated samples (Odena et al., 2017; Fedus et al., 2018). The drawback of this

3

Under review as a conference paper at ICLR 2019

Table 1: Hyperparameter ranges used in this study. The Cartesian product of the fixed values suffices
to uncover the existing results. Gaussian Process optimization in the bandit setting (Srinivas et al.,
2010) is used to select good hyperparameter settings from the specified ranges.

(a) Fixed values

PARAMETER DISCRETE VALUE

Learning rate α {0.0002, 0.0001, 0.001}
Reg. strength λ {1, 10}
(β1, β2, ndis) {(0.5, 0.900, 5), (0.5, 0.999, 1),

(0.5, 0.999, 5), (0.9, 0.999, 5)}

(b) Gaussian Process regression ranges

PARAMETER RANGE LOG

Learning rate α [10−5, 10−2] Yes

λ for L2 [10−4, 101] Yes
λ for non-L2 [10−1, 102] Yes

β1 × β2 [0, 1]× [0, 1] No

approach is that we do not know the class corresponding to the generated sample, so it is usually
applied on one-class data sets, such as CELEBA-HQ-128. In this work we use the same setup as
in Fedus et al. (2018). In particular, given a batch size b, we compute the average pairwise MS-SSIM
score on 5 batches, of 5× b× (b− 1)/2 image pairs in total. We stress that the diversity should only
be taken into account together with the FID and IS metrics.

2.5 DATA SETS

We consider three data sets, namely CIFAR10, CELEBA-HQ-128, and LSUN-BEDROOM. The
LSUN-BEDROOM data set (Yu et al., 2015) contains slightly more than 3 million images3. We
randomly partition the images into a train and test set whereby we use 30588 images as the test
set. Secondly, we use the CELEBA-HQ data set of 30k images (Karras et al., 2018). We use the
128× 128× 3 version obtained by running the code provided by the authors.4 We use 3000 examples
as the test set and the remaining examples as the training set. Finally, we also include the CIFAR10
data set which contains 70K images (32x32x3), partitioned into 60000 training instances and 10000
testing instances. The baseline FID scores are 12.6 for CELEBA-HQ-128, 3.8 for LSUN-BEDROOM,
and 5.19 for CIFAR10. Details on FID computation are presented in Section 4.

2.6 EXPLORING THE GAN LANDSCAPE

The search space for GANs is prohibitively expensive: exploring all combinations of all losses,
normalization and regularization schemes, and architectures is outside of the practical realm. Instead,
in this study we analyze several slices of this tensor for each data set. In particular, to ensure that we
can reproduce existing results, we perform a study over the subset of this tensor on CIFAR10. We then
proceed to analyze the performance of these models across CELEBA-HQ-128 and LSUN-BEDROOM.
In Section 3.1 we fix everything but the loss. In Section 3.2 we fix everything but the regularization
and normalization scheme. Finally, in Section 3.3 we fix everything but the architecture. This allows
us to decouple some of these design choices and provide some insight on what matters most.

As noted in Lucic et al. (2018), one major issue preventing further progress is the hyperparameter
tuning – currently, the community has converged to a small set of parameter values which work on
some data sets, and may completely fail on others. In this study we combine the best hyperparameter
settings found in the literature (Miyato et al., 2018), and perform Gaussian Process regression in the
bandit setting (Srinivas et al., 2010) to possibly uncover better hyperparameter settings. We then
consider the top performing models and discuss the impact of the computational budget.

We summarize the fixed hyperparameter settings in Table 1a which contains the “good” parameters
reported in recent publications (Fedus et al., 2018; Miyato et al., 2018; Gulrajani et al., 2017). In
particular, we consider the cross product of these parameters to obtain 24 hyperparameter settings to
reduce the bias. Finally, to provide a fair comparison, we perform Gaussian Process optimization
in the bandit setting (Srinivas et al., 2010) on the parameter ranges provided in Table 1b. We run
12 rounds (i.e. we communicate with the oracle 12 times) of the optimization, each with a batch of
10 hyperparameter sets selected based on the FID scores from the results of the previous iterations.

3The images are preprocessed to 128× 128× 3 using TensorFlow resize image with crop or pad.
4Available online at https://github.com/tkarras/progressive_growing_of_gans.

4

https://github.com/tkarras/progressive_growing_of_gans

Under review as a conference paper at ICLR 2019

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

25

30

35

40

45

50

55

FI
D

Dataset = celebahq128

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

20

40

60

80

100

120

140

160

180

200
Dataset = lsun-bedroom

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

0.64

0.66

0.68

0.70

0.72

0.74

0.76

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102

FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

NS

NS SN

NS GP 5

WGAN SN

WGAN GP 5

LS

LS SN

LS GP 5

Figure 1: Impact of the loss function: FID distribution for top 5% models. The non-saturating (NS)
loss is stable over both data sets. Gradient penalty and spectral normalization improve the sample
quality. From the computational budget perspective (i.e. how many models one needs to train to reach
a certain FID), both spectral normalization and gradient penalty perform better than the baseline, but
the former is more efficient.

As we explore the number of discriminator updates per generator update (1 or 5), this leads to
an additional 240 hyperparameter settings which in some cases outperform the previously known
hyperparameter settings. Batch size is set to 64 for all the experiments. We use a fixed the number of
discriminator update steps of 100K for LSUN-BEDROOM data set and CELEBA-HQ-128 data set, and
200K for CIFAR10 data set. We apply the Adam optimizer (Kingma and Ba, 2015).

3 RESULTS AND DISCUSSION

Given that there are 4 major components (loss, architecture, regularization, normalization) to analyze
for each data set, it is infeasible to explore the whole landscape. Hence, we opt for a more pragmatic
solution – we keep some dimensions fixed, and vary the others. For each experiment we highlight
three aspects: (1) FID distribution of the top 5% of the trained models, (2) the corresponding sample
diversity score, and (3) the tradeoff between the computational budget (i.e. number of models to train)
and model quality in terms of FID. Each model was retrained 5 times with a different random seed
and we report the median score. The variance for models obtained by Gaussian Process regression is
handled implicitly so we train each model once.

3.1 IMPACT OF THE LOSS FUNCTION

Here the loss is either the non-saturating loss (NS) (Goodfellow et al., 2014), the least-squares
loss (LS) (Mao et al., 2016), or the Wasserstein loss (WGAN) (Arjovsky et al., 2017). We use the
ResNet19 with generator and discriminator architectures detailed in Table 4a. We consider the most
prominent normalization and regularization approaches: gradient penalty (Gulrajani et al., 2017), and
spectral normalization (Miyato et al., 2018). Both studies were performed on CELEBA-HQ-128 and
LSUN-BEDROOM with hyperparameter settings shown in Table 1a.

The results are presented in Figure 1. We observe that the non-saturating loss is stable over both
data sets. Spectral normalization improves the quality of the model on both data sets. Similarly,
the gradient penalty can help improve the quality of the model, but finding a good regularization
tradeoff is non-trivial and requires a high computational budget. Models using the GP penalty benefit
from 5:1 ratio of discriminator to generator updates as suggested by (Gulrajani et al., 2017). We also
performed a study on hinge loss (Miyato et al., 2018) and present it in the Appendix.

5

Under review as a conference paper at ICLR 2019

W
/O GP

GP
5

DR SN LN BN L2
25

30

35

40

45

50

55

FI
D

Dataset = celebahq128

W
/O GP

GP
5

DR SN LN BN L2

40

60

80

100

120

140

160

180
Dataset = lsun-bedroom

W
/O GP

GP
5

DR SN LN BN L2
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102

FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

W/O

GP

GP 5

DR

SN

LN

BN

L2

Figure 2: Impact of regularization and normalization: FID distribution for top 5% models. Both
gradient penalty (GP) and spectral normalization (SN) outperform the baseline and should be
considered, while former being more computationally expensive. Unfortunately none fully address
the stability issues.

3.2 IMPACT OF REGULARIZATION AND NORMALIZATION

The goal of this study is to compare the relative performance of various regularization and normaliza-
tion methods presented in the literature. To this end, and based on the loss study, we fix the loss to
non-saturating loss (Goodfellow et al., 2014). We use the ResNet19 with generator and discriminator
architectures described in Table 4a. Finally, we consider batch normalization (BN) (Ioffe and Szegedy,
2015), layer normalization (LN) (Ba et al., 2016), spectral normalization (SN), gradient penalty
(GP) (Gulrajani et al., 2017), dragan penalty (DR) (Kodali et al., 2017), or L2 regularization. We
consider both CELEBA-HQ-128 and LSUN-BEDROOM with the hyperparameter settings shown in
Table 1a and Table 1b.

The results are presented in Figure 2. We observe that adding batch norm to the discriminator hurts
the performance. Secondly, gradient penalty can help, but it doesn’t stabilize the training. In fact,
it is non-trivial to strike a balance of the loss and regularization strength. Spectral normalization
helps improve the model quality and is more computationally efficient than gradient penalty. This
is consistent with recent results in Zhang et al. (2018). Similarly to the loss study, models using
GP penalty benefit from 5:1 ratio of discriminator to generator updates. Furthermore, in a separate
ablation study we observed that running the optimization procedure for an additional 100K steps is
likely to increase the performance of the models with GP penalty.

Impact of Simultaneous Regularization and Normalization. Given the folklore that the Lips-
chitz constant of the discriminator is critical for the performance, one may expect simultaneous

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

50

100

150

200

250

FI
D

Dataset = celebahq128

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

50

100

150

200

250

Dataset = lsun-bedroom

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

Figure 3: Impact of simultaneous normalization and regularization: FID distribution for top 5%
models. Gradient penalty coupled with spectral normalization (SN) or layer normalization (LN)
strongly improves the performance over the baseline.

6

Under review as a conference paper at ICLR 2019

regularization and normalization could improve model quality. To quantify this effect, we fix the
loss to non-saturating loss (Goodfellow et al., 2014), use the Resnet19 architecture (as above), and
combine several normalization and regularization schemes, with hyperparameter settings shown in
Table 1a coupled with 24 randomly selected parameters. The results are presented in Figure 3. We
observe that one may benefit from additional regularization and normalization. However, a lot of
computational effort has to be invested for somewhat marginal gains in FID. Nevertheless, given
enough computational budget we advocate simultaneous regularization and normalization – spectral
normalization and layer normalization seem to perform well in practice.

3.3 IMPACT OF GENERATOR AND DISCRIMINATOR ARCHITECTURES

An interesting practical question is whether our findings also hold for a different model capacity.
To this end, we also perform a study on SNDCGAN from Miyato et al. (2018). We consider the
non-saturating GAN loss, gradient penalty and spectral normalization. While for smaller architectures
regularization is not essential (Lucic et al., 2018), the regularization and normalization effects might
become more relevant due to deeper architectures and optimization considerations.

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
25

30

35

40

45

50

55

60

65

70

FI
D

Dataset = celebahq128

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
20

40

60

80

100

120

140

160

180

200
Dataset = lsun-bedroom

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
0.55

0.60

0.65

0.70

0.75

0.80

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

RES5 W/O

RES5 GP

RES5 GP 5

RES5 SN

SNDC W/O

SNDC GP

SNDC GP 5

SNDC SN

Figure 4: Impact of the neural architectures: FID distribution for top 5% models. Both spectral
normalization and gradient penalty can help improve upon the non-regularized baseline.

The results are presented in Figure 4. We observe that both architectures achieve comparable results
and benefit from regularization and normalization. Spectral normalization strongly outperforms the
baseline for both architectures.

4 COMMON PITFALLS

In this section we focus on several pitfalls we encountered while trying to reproduce existing results
and provide a fairly and accurate comparison.

Metrics. There already seems to be a divergence in how the FID score is computed: (1) Some
authors report the score on training data, yielding a FID between 50k training and 50k generated
samples (Unterthiner et al., 2018). Some opt to report the FID based on 10k test samples and 5k
generated samples and use a custom implementation (Miyato et al., 2018). Finally, Lucic et al. (2018)
report the score with respect to the test data, in particular FID between 10k test samples, and 10k
generated samples. The subtle differences will result in a mismatch between the reported FIDs, in
some cases of more than 10%. We argue that FID should be computed with respect to the test data set
as and use 10k test samples and 10k generated samples on CIFAR10 and LSUN-BEDROOM, and 3k vs
3k on CELEBA-HQ-128 as in in Lucic et al. (2018). Similarly, there are several ways to compute a
diversity score using MS-SSIM and we follow the approach from Fedus et al. (2018). We provide the
implementation details in Section G of the Appendix.

7

Under review as a conference paper at ICLR 2019

Details of neural architectures. Even in popular architectures, like ResNet, there is still a number
of design decision one needs to make, that are often omitted from the reported results. Those include
the exact design of the ResNet cell (order of layers, when is ReLu applied, when to upsample and
downsample, how many filters to use). Some of these differences might lead to potentially unfair
comparison. As a result, we suggest to use the architectures presented within this work as a solid
baseline. An ablation study on various ResNet modifications is available in the Appendix.

Data sets. A common issue is related to data set processing – does LSUN-BEDROOM always
correspond to the same data set? In most cases the precise algorithm for upscaling or cropping is not
clear which introduces inconsistencies between results on the “same” data set.

Implementation details and non-determinism. One major issue is the mismatch between the algo-
rithm presented in a paper and the code provided online. We are aware that there is an embarrassingly
large gap between a good implementation and a bad implementation of a given model. Hence, when
no code is available, one is forced to guess which modifications were done. Another particularly
tricky issue is removing randomness from the training process. After one fixes the data ordering and
the initial weights, obtaining the same score by training the same model twice is non-trivial due to
randomness present in certain GPU operations (Chetlur et al., 2014). Disabling the optimizations
causing the non-determinism often results in an order of magnitude running time penalty.

While each of these issues taken in isolation seems minor, they compound to create a mist which
introduces friction in practical applications and the research process (Sculley et al., 2018).

5 RELATED WORK

A recent large-scale study on GANs and Variational Autoencoders was presented in Lucic et al.
(2018). The authors consider several loss functions and regularizers, and study the effect of the loss
function on the FID score, with low-to-medium complexity data sets (MNIST, CIFAR10, CELEBA),
and a single (InfoGAN style) architecture. In this limited setting, the authors found that there is no
statistically significant difference between recently introduced models and the original non-saturating
GAN. A study of the effects of gradient-norm regularization in GANs was recently presented in Fedus
et al. (2018). The authors posit that the gradient penalty can also be applied to the non-saturating
GAN, and that, to a limited extent, it reduces the sensitivity to hyperparameter selection. In a recent
work on spectral normalization, the authors perform a small study of the competing regularization
and normalization approaches (Miyato et al., 2018). We are happy to report that we could reproduce
these results and we present them in the Appendix.

Inspired by these works and building on the available open-source code from Lucic et al. (2018), we
take one additional step in all dimensions considered therein: more complex neural architectures,
more complex data sets, and more involved regularization and normalization schemes.

6 CONCLUSION

In this work we study the GAN landscape: losses, regularization and normalization schemes, and
neural architectures, and their impact on the on the quality of generated samples which we assess by
recently introduced quantitative metrics. Our fair and thorough empirical evaluation suggests that
one should consider non-saturating GAN loss and spectral normalization as default choices when
applying GANs to a new data set. Given additional computational budget, we suggest adding the
gradient penalty from Gulrajani et al. (2017) and train the model until convergence. Furthermore,
additional marginal gains can be obtained by combining normalization and regularization empirically
confirming the importance of the Lipschitz constant of the discriminator. Furthermore, both types of
architectures proposed up-to this point perform reasonably well. A separate ablation study uncovered
that most of the tricks applied in the ResNet style architectures lead to marginal changes in the quality
and should be avoided due to the high computational cost. As a result of this large-scale study we
identify the common pitfalls standing in the way of accurate and fair comparison and propose concrete
actions to demystify the future results – issues with metrics, data set preprocessing, non-determinism,
and missing implementation details are particularly striking. We hope that this work, together with
the open-sourced reference implementations and trained models, will serve as a solid baseline for
future GAN research.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc Van Gool. Generative adversarial
networks for extreme learned image compression. CoRR, abs/1804.02958, 2018.

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning (ICML), 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD GANs. In
International Conference on Learning Representations (ICLR), 2018.

Ali Borji. Pros and cons of GAN evaluation measures. arXiv preprint arXiv:1802.03446, 2018.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a laplacian pyramid
of adversarial networks. In Advances in Neural Information Processing Systems (NIPS), 2015.

William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and Ian Goodfellow.
Many paths to equilibrium: Gans do not need to decrease a divergence at every step. In International
Conference on Learning Representations (ICLR), 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS), 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training
of Wasserstein GANs. Advances in Neural Information Processing Systems (NIPS), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp Hochre-
iter. GANs trained by a two time-scale update rule converge to a Nash equilibrium. Advances in Neural
Information Processing Systems (NIPS), 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. Computer Vision and Pattern Recognition (CVPR), 2017.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality,
stability, and variation. International Conference on Learning Representations (ICLR), 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations (ICLR), 2015.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of GANs. arXiv
preprint arXiv:1705.07215, 2017.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs created equal?
A large-scale study. Advances in Neural Information Processing Systems (NIPS), 2018.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least squares
generative adversarial networks. arXiv preprint ArXiv:1611.04076, 2016.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative
adversarial networks. International Conference on Learning Representations (ICLR), 2018.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems (NIPS), 2016.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier
GANs. In International Conference on Machine Learning (ICML), 2017.

9

Under review as a conference paper at ICLR 2019

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. International Conference on Learning Representations (ICLR), 2016.

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of generative
adversarial networks through regularization. In Advances in Neural Information Processing Systems, 2017.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems (NIPS), 2016.

D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? On pace, progress, and empirical
rigor, 2018.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. Gaussian process optimization in
the bandit setting: No regret and experimental design. In International Conference on Machine Learning
(ICML), 2010.

Michael Tschannen, Eirikur Agustsson, and Mario Lucic. Deep generative models for distribution-preserving
lossy compression. Advances in Neural Information Processing Systems (NIPS), 2018.

Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Gnter Klambauer, Martin Heusel, Hubert Ramsauer, and
Sepp Hochreiter. Coulomb GANs: Provably optimal nash equilibria via potential fields. In International
Conference on Learning Representations (ICLR), 2018.

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality assessment.
In Asilomar Conference on Signals, Systems and Computers, 2003.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversarial
networks. arXiv preprint arXiv:1805.08318, 2018.

10

Under review as a conference paper at ICLR 2019

A FID AND INCEPTION SCORES ON CIFAR10

We present an empirical study with SNDCGAN and ResNet CIFAR architectures on CIFAR10 in figure 5 and
figure 6. In addition to Section 3.1, we evaluate one more kind of loss on CIFAR10. Here HG, NS and WGAN
stand for hinge loss, non saturating loss and Wasserstein loss respectively. We observe that hinge loss performs
very similar to non-saturating loss.

HG

HG G
P

HG S
N

HG G
P

SN NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

20

30

40

50

60

70
FI

D
Metric = FID | Architecture = RESNET_CIFAR

HG

HG G
P

HG S
N

HG G
P

SN NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

25

30

35

40

45
Metric = FID | Architecture = SNDCGAN

Figure 5: An empirical study with SNDCGAN and ResNet cifar architectures on CIFAR10. We
recover the state of the art results recently reported in Miyato et al. (2018).

HG

HG G
P

HG S
N

HG G
P

SN NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

2

3

4

5

6

7

8

IS

Metric = IS | Architecture = RESNET_CIFAR

HG

HG G
P

HG S
N

HG G
P

SN NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

2

3

4

5

6

7

8
Metric = IS | Architecture = SNDCGAN

Figure 6: We show the Inception Score for each model within our study which corresponds to recently
reported results (Miyato et al., 2018).

B COMPARISON OF FID AND KID METRICS

The KID metric introduced by Bińkowski et al. (2018) is an alternative to FID. We use models from our
Regularization and Normalization study (see Section 3.2) to compare both metrics. Here, by model we denote
everything that needs to be specified for the training – including all hyper-parameters, like learning rate, λ,
Adam’s β, etc. The Spearman rank-order correlation coefficient between KID and FID scores is approximately
0.994 for LSUN-BEDROOM and 0.995 for CELEBA-HQ-128 datasets.

To evaluate a practical setting of selecting several best models, we compare the intersection between the set of
“best K models by FID” and the set of “best K models by KID” for K ∈ 5, 10, 20, 50, 100. The results are
summarized in Table 2.

This experiment suggests that FID and KID metrics are very strongly correlated, and for the practical applications
one can choose either of them. Also, the conclusions from our studies based on FID should transfer to studies
based on KID.

Table 2: Intersection between set of top K experiments selected by FID and KID metrics.

LSUN-BEDROOM CELEBA-HQ-128
K = 5 4/5 2/5
K = 10 9/10 8/10
K = 20 18/20 15/20
K = 50 49/50 46/50
K = 100 95/100 98/100

11

Under review as a conference paper at ICLR 2019

C ARCHITECTURES

C.1 SNDCGAN

We used the same architecture as Miyato et al. (2018), with the parameters copied from the GitHub page5. In
Table 3a and Table 3b, we describe the operations in layer column with order. Kernel size is described in format
[filter h, filter w, stride], input shape is h× w and output shape is h× w × channels. The slopes of all
lReLU functions are set to 0.1. The input shape h×w is 128× 128 for CELEBA-HQ-128 and LSUN-BEDROOM,
32× 32 for CIFAR10.

Table 3: SNDCGAN architecture.

(a) SNDCGAN discriminator

LAYER KERNEL OUTPUT

Conv, lReLU [3, 3, 1] h× w × 64

Conv, lReLU [4, 4, 2] h/2× w/2× 128

Conv, lReLU [3, 3, 1] h/2× w/2× 128

Conv, lReLU [4, 4, 2] h/4× w/4× 256

Conv, lReLU [3, 3, 1] h/4× w/4× 256

Conv, lReLU [4, 4, 2] h/8× w/8× 512

Conv, lReLU [3, 3, 1] h/8× w/8× 512

Linear - 1

(b) SNDCGAN generator

LAYER KERNEL OUTPUT

z - 128

Linear, BN, ReLU - h/8× w/8× 512

Deconv, BN, ReLU [4, 4, 2] h/4× w/4× 256

Deconv, BN, ReLU [4, 4, 2] h/2× w/2× 128

Deconv, BN, ReLU [4, 4, 2] h× w × 64

Deconv, Tanh [3, 3, 1] h× w × 3

C.2 RESNET ARCHITECTURE

The ResNet19 architecture is described in Table 4. RS column stands for the resample of the residual block,
with downscale(D)/upscale(U)/none(-) setting. MP stands for mean pooling and BN for batch normalization.
ResBlock is defined in Table 5. The addition layer merges two paths by adding them. The first path is a shortcut
layer with exactly one convolution operation, while the second path consists of two convolution operations.
The downscale layer and upscale layer are marked in Table 5. We used average pool with kernel [2, 2, 2] for
downscale, after the convolution operation. We used unpool from https://github.com/tensorflow/
tensorflow/issues/2169 for upscale, before convolution operation. h and w are the input shape to the
ResNet block, output shape depends on the RS parameter. ci and co are the input channels and output channels
for a ResNet block. Table 6 described the ResNet CIFAR architecture we used in Figure 5 for reproducing the
existing results. Note that RS is set to none for third ResBlock and fourth ResBlock in discriminator. In this
case, we used the same ResNet block defined in Table 5 without resampling.

5https://github.com/pfnet-research/chainer-gan-lib

12

https://github.com/tensorflow/tensorflow/issues/2169
https://github.com/tensorflow/tensorflow/issues/2169

Under review as a conference paper at ICLR 2019

Table 4: ResNet 19 architecture corresponding to “resnet small” in https://github.com/
pfnet-research/sngan_projection.

(a) ResNet19 discriminator

LAYER KERNEL RS OUTPUT

ResBlock [3, 3, 1] D 64× 64× 64

ResBlock [3, 3, 1] D 32× 32× 128

ResBlock [3, 3, 1] D 16× 16× 256

ResBlock [3, 3, 1] D 8× 8× 256

ResBlock [3, 3, 1] D 4× 4× 512

ResBlock [3, 3, 1] D 2× 2× 512

ReLU, MP - - 512

Linear - - 1

(b) ResNet19 generator

LAYER KERNEL RS OUTPUT

z - - 128

Linear - - 4× 4× 512

ResBlock [3, 3, 1] U 8× 8× 512

ResBlock [3, 3, 1] U 16× 16× 256

ResBlock [3, 3, 1] U 32× 32× 256

ResBlock [3, 3, 1] U 64× 64× 128

ResBlock [3, 3, 1] U 128× 128× 64

BN, ReLU - - 128× 128× 64

Conv [3, 3, 1] - 128× 128× 3

Sigmoid - - 128× 128× 3

Table 5: ResNet block definition.

(a) ResBlock discriminator

LAYER KERNEL RS OUTPUT

Shortcut [3, 3, 1] D h/2× w/2× co
BN, ReLU - - h× w × ci
Conv [3, 3, 1] - h× w × co
BN, ReLU - - h× w × co
Conv [3, 3, 1] D h/2× w/2× co
Addition - - h/2× w/2× co

(b) ResBlock generator

LAYER KERNEL RS OUTPUT

Shortcut [3, 3, 1] U 2h× 2w × co
BN, ReLU - - h× w × ci
Conv [3, 3, 1] U 2h× 2w × co
BN, ReLU - - 2h× 2w × co
Conv [3, 3, 1] - 2h× 2w × co
Addition - - 2h× 2w × co

Table 6: ResNet CIFAR architecture.

(a) ResNet CIFAR discriminator

LAYER KERNEL RS OUTPUT

ResBlock [3, 3, 1] D 16× 16× 128

ResBlock [3, 3, 1] D 8× 8× 128

ResBlock [3, 3, 1] - 8× 8× 128

ResBlock [3, 3, 1] - 8× 8× 128

ReLU, MP - - 128

Linear - - 1

(b) ResNet CIFAR generator

LAYER KERNEL RS OUTPUT

z - - 128

Linear - - 4× 4× 256

ResBlock [3, 3, 1] U 8× 8× 256

ResBlock [3, 3, 1] U 16× 16× 256

ResBlock [3, 3, 1] U 32× 32× 256

BN, ReLU - - 32× 32× 256

Conv [3, 3, 1] - 32× 32× 3

Sigmoid - - 32× 32× 3

13

https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection

Under review as a conference paper at ICLR 2019

D RESNET ARCHITECTURE ABLATION STUDY

We have noticed six minor differences on Resnet architecture comparing to implementation from https:
//github.com/pfnet-research/chainer-gan-lib/blob/master/common/net.py (Miy-
ato et al., 2018). We did ablation study to verify the impact of these differences. Figure 7 shows the impact of
the ablation study, with details described as following.

• DEFAULT: ResNet CIFAR architecture with spectral normalization and non-saturating GAN loss.

• SKIP: Use input as output for the shortcut connection in the discriminator ResBlock. By default it was
a conv layer with 3x3 kernel.

• CIN: Use ci for the discriminator ResBlock hidden layer output channels. By default it was co in our
setup, while Miyato et al. (2018) used co for first ResBlock and ci for the rest.

• OPT: Use an optimized setup for the first discriminator ResBlock, which includes: (1) no ReLU, (2) a
conv layer for the shortcut connections, (3) use co instead of ci in ResBlock.

• CIN OPT: Use CIN and OPT together. It means the first ResBlock is optimized while the remaining
ResBlocks use ci for the hidden output channels.

• SUM: Use reduce sum for the discriminator output. By default it was reduce mean.

• TAN: Use tanh for the generator output, as well as range [-1, 1] for discriminator input. By default it
was sigmoid and discriminator input range [0, 1].

• EPS: Use a bigger epsilon 2e − 5 for generator batch normalization. By default it was 1e − 5 in
TensorFlow.

• ALL: Apply all the above differences together.

In the ablation study, the CIN experiment obtained the worst FID score. Combining with OPT, the CIN results
were improved to the same level as the others which is reasonable because the first block has three input channels,
which becomes a bottleneck for the optimization. Hence, using OPT and CIN together performs as well as the
others. Overall, the impact of these differences are minor according to the study on CIFAR10.

DEF
AULT

SK
IP

OPT

CIN

CIN
 O

PT

SU
M

TA
N

EP
S

ALL
20

25

30

35

40

45

50

FI
D

Metric = FID | Architecture = RESNET_CIFAR

DEF
AULT

SK
IP

OPT

CIN

CIN
 O

PT

SU
M

TA
N

EP
S

ALL
6.0

6.5

7.0

7.5

8.0

8.5

IS

Metric = IS | Architecture = RESNET_CIFAR

Figure 7: Ablation study of ResNet architecture differences. The experiment codes are described in
Section D.

E RECOMMENDED HYPERPARAMETER SETTINGS

To make the future GAN training simpler, we propose a set of best parameters for three setups: (1) Best
parameters without any regularizer. (2) Best parameters with only one regularizer. (3) Best parameters with at
most two regularizers. Table 7, Table 8 and Table 9 summarize the top 2 parameters for SNDCGAN architecture,
ResNet19 architecture and ResNet CIFAR architecture, respectively. Models are ranked according to the median
FID score of five different random seeds with fixed hyper-parameters in Table 1a. Note that ranking models
according to the best FID score of different seeds will achieve better but unstable result. Gaussian Process
optimization hyper-parameters are not included in this table. For ResNet19 architecture with at most two
regularizers, we have run it only once due to computational overhead. To show the model stability, we listed
the best FID score out of five seeds from the same parameters in column best. Spectral normalization is clearly
outperforms the other normalizers on SNDCGAN and ResNet CIFAR architectures, while on ResNet19 both
layer normalization and spectral normalization work well.

To visualize the FID score on each data set, Figure 8, Figure 9 and Figure 10 show the generated examples by
GANs. We select the examples from the best FID run, and then increase the FID score for two more plots.

14

https://github.com/pfnet-research/chainer-gan-lib/blob/master/common/net.py
https://github.com/pfnet-research/chainer-gan-lib/blob/master/common/net.py

Under review as a conference paper at ICLR 2019

Table 7: SNDCGAN parameters

DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CIFAR10 29.75 28.66 0.100 0.500 0.999 1 - -
CIFAR10 36.12 33.23 0.200 0.500 0.999 1 - -
CELEBA-HQ-128 66.42 63.13 0.100 0.500 0.999 1 - -
CELEBA-HQ-128 67.39 64.59 0.200 0.500 0.999 1 - -
LSUN-BEDROOM 180.36 160.12 0.200 0.500 0.999 1 - -
LSUN-BEDROOM 188.99 162.00 0.100 0.500 0.999 1 - -

CIFAR10 26.66 25.27 0.200 0.500 0.999 1 - SN
CIFAR10 27.32 26.97 0.100 0.500 0.999 1 - SN
CELEBA-HQ-128 31.14 29.05 0.200 0.500 0.999 1 - SN
CELEBA-HQ-128 33.52 31.92 0.100 0.500 0.999 1 - SN
LSUN-BEDROOM 63.46 58.13 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 74.66 59.94 1.000 0.500 0.999 1 - SN

CIFAR10 26.23 26.01 0.200 0.500 0.999 1 1 SN+GP
CIFAR10 26.66 25.27 0.200 0.500 0.999 1 - SN
CELEBA-HQ-128 31.13 30.80 0.100 0.500 0.999 1 10 GP
CELEBA-HQ-128 31.14 29.05 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 63.46 58.13 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 66.58 65.75 0.200 0.500 0.999 1 10 GP

Table 8: ResNet19 parameters

DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CELEBA-HQ-128 43.73 39.10 0.100 0.500 0.999 5 - -
CELEBA-HQ-128 43.77 39.60 0.100 0.500 0.999 1 - -
LSUN-BEDROOM 160.97 119.58 0.100 0.500 0.900 5 - -
LSUN-BEDROOM 161.70 125.55 0.100 0.500 0.900 5 - -

CELEBA-HQ-128 32.46 28.52 0.100 0.500 0.999 1 - LN
CELEBA-HQ-128 40.58 36.37 0.200 0.500 0.900 1 - LN
LSUN-BEDROOM 70.30 48.88 1.000 0.500 0.999 1 - SN
LSUN-BEDROOM 73.84 60.54 0.100 0.500 0.900 5 - SN

CELEBA-HQ-128 29.13 - 0.100 0.500 0.900 5 1 LN+DR
CELEBA-HQ-128 29.65 - 0.200 0.500 0.900 5 1 GP
LSUN-BEDROOM 55.72 - 0.200 0.500 0.900 5 1 LN+GP
LSUN-BEDROOM 57.81 - 0.100 0.500 0.999 1 10 SN+GP

F WHICH PARAMETERS REALLY MATTER?

For each architecture and hyper-parameter we estimate its impact on the final FID. Figure 11 presents heatmaps
for hyperparameters, namely the learning rate, β1, β2, ndisc, and λ for each combination of neural architecture
and data set.

G VARIATIONS OF MS-SSIM

We used the MS-SSIM scorer from TensorFlow with default power factors (Wang et al., 2003). Note that
the default filter size for each scale layer is 11, the minimum image edge is 11 × 24 = 176. To adapt it to
CELEBA-HQ-128 data set with size 128× 128, we used the minimum of filter size 11 and image size in last
scale layer to allow the computation followed the previous work (Fedus et al., 2018).

15

Under review as a conference paper at ICLR 2019

Table 9: ResNet CIFAR parameters

DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CIFAR10 31.40 28.12 0.200 0.500 0.999 5 - -
CIFAR10 33.79 30.08 0.100 0.500 0.999 5 - -

CIFAR10 23.57 22.91 0.200 0.500 0.999 5 - SN
CIFAR10 25.50 24.21 0.100 0.500 0.999 5 - SN

CIFAR10 22.98 22.73 0.200 0.500 0.999 1 1 SN+GP
CIFAR10 23.57 22.91 0.200 0.500 0.999 5 - SN

(a) FID = 24.7 (b) FID = 34.6 (c) FID = 45.2

Figure 8: Examples generated by GANs on CELEBA-HQ-128 data set.

(a) FID = 40.4 (b) FID = 60.7 (c) FID = 80.2

Figure 9: Examples generated by GANs on LSUN-BEDROOM data set.

(a) FID = 22.7 (b) FID = 33.0 (c) FID = 42.6

Figure 10: Examples generated by GANs on CIFAR10 data set.

16

Under review as a conference paper at ICLR 2019

(0.05, 0.1] (0.1, 0.5] (1.0, 10.0]

Learning Rate (x10e-3)

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0.25, 0.5] (0.75, 0.9]

beta1

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0.75, 0.9] (0.9, 1.0]

beta2

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

1 5

n_disc

(26.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0, 5] (5, 10]

lambda

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

0

3

6

9

12

15

0

4

8

12

16

20

0

4

8

12

16

20

0

5

10

15

20

25

0

3

6

9

12

15

(a) FID score of SNDCGAN on CIFAR10

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

1 5

n_disc

(26.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

0

15

30

45

60

0

15

30

45

60

75

0

10

20

30

40

50

60

20

40

60

80

100

0

15

30

45

60

75

(b) FID score of SNDCGAN on CELEBA-HQ-128

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

1 5

n_disc

(53.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

0

5

10

15

20

25

0

6

12

18

24

30

0

8

16

24

32

8

16

24

32

40

0

5

10

15

20

25

(c) FID score of SNDCGAN on LSUN-BEDROOM

(0.05, 0.1] (0.1, 0.5] (1.0, 10.0]

Learning Rate (x10e-3)

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0.25, 0.5] (0.75, 0.9]

beta1

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0.75, 0.9] (0.9, 1.0]

beta2

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

1 5

n_disc

(23.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0, 5] (5, 10]

lambda

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

0.0

1.5

3.0

4.5

6.0

7.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0

3

6

9

12

15

18

0

2

4

6

8

10

(d) FID score of ResNet CIFAR on CIFAR10

(0.0, 0.01] (0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

1 5

n_disc

(29.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

0

60

120

180

240

300

60

120

180

240

300

80

160

240

320

80

160

240

320

400

0

80

160

240

320

(e) FID score of ResNet19 on CELEBA-HQ-128

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

1 5

n_disc

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

0

40

80

120

160

0

25

50

75

100

125

0

25

50

75

100

125

0

40

80

120

160

200

25

50

75

100

125

(f) FID score of ResNet19 on LSUN-BEDROOM

Figure 11: Heat plots for hyper-parameters on each architecture and dataset combination.

17

	Introduction
	The GAN Landscape
	Loss Functions
	Regularization and Normalization of the Discriminator
	Generator and Discriminator Architecture
	Evaluation Metrics
	Data Sets
	Exploring the GAN Landscape

	Results and Discussion
	Impact of the Loss Function
	Impact of Regularization and Normalization
	Impact of Generator and Discriminator Architectures

	Common Pitfalls
	Related Work
	Conclusion
	FID and Inception scores on CIFAR10
	Comparison of FID and KID metrics
	Architectures
	SNDCGAN
	ResNet Architecture

	ResNet Architecture Ablation Study
	Recommended hyperparameter settings
	Which parameters really matter?
	Variations of MS-SSIM

