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ABSTRACT

Extractive summarization methods operate by ranking and selecting the sentences
which best encapsulate the theme of a given document. They do not fare well
in domains like fictional narratives where there is no central theme and core in-
formation is not encapsulated by a small set of sentences. For the purpose of
reducing the size of the document while conveying the idea expressed by each
sentence, we need more sentence specific methods. Telegraphic summarization,
which selects short segments across several sentences, is better suited for such
domains. Telegraphic summarization captures the plot better by retaining shorter
versions of each sentence while not really concerning itself with grammatically
linking these segments. In this paper, we propose an unsupervised deep learning
network (NUTS) to generate telegraphic summaries. We use multiple encoder-
decoder networks and learn to drop portions of the text that are inferable from the
chosen segments. The model is agnostic to both sentence length and style. We
demonstrate that the summaries produced by our model show significant quanti-
tative and qualitative improvement over those produced by existing methods and
baselines.

1 INTRODUCTION

Humans tend to relay information to others in a concise manner. Typically, we do not pass on in-
formation that we received in exactly the same format. More often than not, we tend to abridge and
simplify it for the receiver. This captures the essence of summarization. Formally speaking, summa-
rization refers to capturing all the information in a source, without compromising on understanding.
There is a pressing need for summarization techniques to deal with the vast amount of textual data
available nowadays.

In certain genres, like fictional narratives, each sentence might have an important role to play. This
makes the domain of fictional narratives unsuitable for standard extractive summarization methods.
Typically, extractive summarization works well if the source text revolves around a central theme
with the same information reiterated across multiple sentences. For such text, picking a small num-
ber of relevant sentences is enough to summarize the text. Therefore, this method of extractive
summarization is widely used for newswire articles (Lee et al., 2005), encyclopedic and scientific
texts (Teufel & Moens, 2002) etc.

However, fictional stories and plays, for instance, do not always focus on a single theme. They
describe a sequence of events and often contain dialogue. Information is not repeated and each sen-
tence may contribute to developing the plot further. This problem is tackled in an alternate variation
of extractive summarization known as telegraphic summarization. In this summarization technique,
each sentence is considered an independent text source with each word acting as a segment. The
telegraphic summaries for an input, read like a telegram, hence the name. For example, for an input
sentence:“An earthquake in Tokyo left 12 people dead” the telegraphic summarization would be:
“earthquake Tokyo 12 dead”. Recently, the advantages of telegraphic summarization over typical
extractive techniques have been explored in Malireddy et al. (2018). The independent telegraphic
summaries computed for each sentence in a document can be combined to form the summary of the
whole document.

Current algorithms for telegraphic summarization rely on handcrafted rules (Grefenstette, 1998) or
statistics based on syntax to infer important words in a sentence (Jing, 2000; Riezler et al., 2003;
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Knight & Marcu, 2000). These methods, however, do not generalize for all cases. Additionally, the
work by Lin (2003) suggests that pure syntax based methods cannot be used for general purpose
summarization.

We overcome these limitations by exploring learning based approaches for telegraphic summariza-
tion. We propose an unsupervised deep network which implicitly learns to retain significant words
in a sentence. We try to reconstruct the source text (which is the input to our network), from an
abridged version of it generated at an intermediate stage. This abridged version can be used as the
telegraphic summary of the source. Since the proposed architecture follows an unsupervised ap-
proach, we do not need any labeled text-summary pairs for our method. Another advantage of our
algorithm is that it is agnostic to variations in genre, sentence length, vocabulary, language etc.

2 RELATED WORK

Early work on text summarization started around the mid 20th century. In one of the earliest work
by Luhn (1958), summarization was used to generate abstracts automatically from the excerpts of
technical papers and magazine articles. Since then, various algorithms for text summarization have
been proposed for multiple domains like newspaper articles (Wu & Hu, 2018), scientific articles
(Teufel & Moens, 2002) and blogs (Hu et al., 2007).

A comparative study in Ceylan et al. (2010) revealed that a single text summarization algorithm does
not perform equally well for all domains. This is because of differences in the nature and style of
the sources. Therefore it was concluded that separate algorithms need to be designed for different
domains of text sources.

Traditionally, most text summarization algorithms have focused on summarizing newspaper and
scientific articles (Luhn, 1958; Teufel & Moens, 2002; Lee et al., 2005). Although, there have been
recent attempts to summarize fictional stories (Kazantseva & Szpakowicz, 2010; Lloret & Palomar,
2009; Mihalcea & Ceylan, 2007), the objective of these algorithms is to let the reader decide if the
text is interesting enough to read. Therefore, these algorithms do not intend to encapsulate the entire
information of the source text.

An early general purpose text summarization algorithm for telegraphic purposes was proposed
in Grefenstette (1998). This was a rule-based algorithm, with each rule allowing some specific
components of the source sentence in the summary. The first (and the most drastic) generated a
stream of all the proper nouns in the text. The second generated all nouns present in the subject
or object position. The third, in addition, included the head verbs. The least drastic reduction gen-
erated all subjects, head verbs, objects, subclauses, prepositions and dependent noun heads. Since
this algorithm is based on definitive guidelines, it does not generalize well for shorter sentences.
Additionally, it is not clear which rule should be applied to a sentence to generate its appropriate
summary.

There have also been numerous approaches using statistics based on syntax to generate telegraphic
summaries (Jing, 2000; Riezler et al., 2003; Knight & Marcu, 2000). Typically, these approaches
drop words from the source which are not related to the neighboring words, whilst trying to maintain
the grammaticality of the summary. The grammatical correctness of the summary is checked using
statistical models. These approaches do not tend to give accurate results for shorter inputs as the
constraints for the removal of words are difficult to satisfy.

Recently, deep learning based methods have been enormously successful in the domain of feature
learning with little or no manual intervention. These approaches have been applied to core Lin-
guistics problems such as machine translation (Bahdanau et al., 2014), language modeling (Mikolov
et al., 2010) and image captioning (Johnson et al., 2016). Although these approaches achieve better
results than handcrafted algorithms, they are supervised approaches which require a huge amount of
data. Attempts have been made to counter this by exploring unsupervised learning-based algorithms,
eliminating the need for labeled ground truth data.

In this work, we have proposed a new architecture for telegraphic summarization, known as NUTS.
The proposed architecture implicitly learns to retain the significant segments of the source through
several encoder-decoder networks (Sutskever et al., 2014) to generate its telegraphic summary.
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Figure 1: The figure shows the proposed NUTS architecture model. The information in a given
input sentence s is encoded into a vector he1 as the final hidden state of Encoder Es. This hidden
state vector he1 initializes decoder DI , which generates an indicator vector I. The element-wise
multiplication of I and s is used to construct the masked sentence s′. This masked sentence is
encoded into a vector(he2) using E

s
′. This vector is then used to initialize decoder D

s
′ which aims

to reconstruct s from the masked sentence.

3 NUTS MODEL DETAILS

In this section, we explain the details of the proposed model. We first describe the building blocks of
the architecture. Thereafter, we introduce the various components of the loss function and explain
each loss term and its usage.

3.1 ARCHITECTURE DETAILS

Given an input sentence s = w1, w2 ..., wk containing k words, the network tries to reconstruct the
same sentence s, with fewer number of words. The network architecture is such that it drops the
words it deems inferable for the final reconstruction. The network generates an indicator vector I
= I1, I2 ..., Ii, ..., Ik at an intermediate stage. The value of this indicator vector corresponds to the
presence of word wi in the summary subset T of the sentence set S. The words present in T are used
as the telegraphic summary of the sentence in order of their occurrence in s.

Formally, the network tries to find an I∗ such that the probability p(s|s � I) is maximized and∑k
t=1 It is minimized, jointly. The probability p(s|s � I) can be decomposed further as shown in

Equation 1

I∗ = argmax
I

k∏
t=1

p(wt|(w1 × I1), (w2 × I2), ..., (wk−1 × Ik−1)) (1)

The entire architecture is built using RNN with LSTM cells proposed in Hochreiter & Schmidhuber
(1997). The equations for LSTM gates are mentioned in Equation A.1 in the Appendix section.

The proposed architecture has the following major components (illustrated in Fig. 1):

1. Sentence encoder (Es) encodes the input sentence s. Every word wi in the sentence is
converted into a d-dimensional vector ei. The sequence of these embedded vectors is fed
as input to the encoder at each time step. The final hidden state of Es(he1) acts as a
sentence embedding for s.

2. Indicator decoder (DI ) is initialized by the final hidden state of Es. The output of this
decoder at each time step is passed through a network of two fully connected layers to
generate a single output value. We intend this output value to be close to either zero or one,
denoting the value of indicator vector I.

3. Summary encoder (E
s
′) encodes the masked sentence s′ = s � I, where � represents

element-wise multiplication. Therefore, the words corresponding to Ii≈ 0 are effectively
skipped. The final hidden state of E

s
′ acts as a sentence embedding for s′.

4. Summary decoder (D
s
′) is initialized by the final hidden state of E

s
′(he2). This decoder

aims to regenerate the input sentence s from s′. This motivates DI to generate I in such a
way that s can be easily reconstructed from s′.
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The output at each time step from the LSTM cell in D
s
′ are fed to a dense layer, Ws. This dense

layer computes the distribution over the vocabulary words from the decoders’ hidden states.

3.2 LOSS FUNCTION

In order to understand the function of each of the modules of the architecture, we outline the need
for each module’s loss term and their effects on the output of the network.

1. Summary length loss (L1): ensures that the ratio between the lengths of s′ and s is close
to a specific value r. This loss is calculated from the output of DI . We have observed that
extreme values of r fail to generate the desired output. In our experiments, low values of
r hindered the ability of the summary decoder D

s
′ to reconstruct s from s′. On the other

hand, if r is very large, no words are dropped and s′ and s become equal. Therefore, the
value of r is set such that the summary is neither too short nor too long. Mathematically,
L1 can be represented as shown in Equation 2. We calculate the value of Len(s′) in this
equation as the sum of elements of I. The optimum value of r for our experiments was
found to be 0.65.

L1 =
(Len(s′)
Len(s)

− r
)2

(2)

2. Summary Decoder Reconstruction loss (L2) ensures that the words retained in s′ are
sufficient for reconstructing s. The L2 loss is calculated from the output of D

s
′. It aims

to maximize the probability of occurrence of wi(the ith word in s), given the final hidden
state of E

s
′ (he2) and all previous words in the masked sequence(w′<i), encapsulated by

the hidden state vector from the previous time step. The mathematical representation of L2

is shown in Equation 3.

L2 = −
Len(s)∑
i=1

logP (wi|w′<i, he2) (3)

3. Binarization loss (L3) is calculated from the output of DI . Ideally, we want all values
in I to be either zero or one. However, if the target indicator is set to these hard values,
non-differentiability is introduced into the network. Therefore, we relax the requirement of
hard values and fix the range of DI output as [0, 1] using the sigmoid activation function.
Additionally, we model L3 such that the outputs tend to be distant from the mid-value of
0.5. This pushes the outputs close to zero or one, effectively fulfilling the objective of I.
Mathematically, this is achieved using Equation 4. A larger value of b results in a higher
penalty for mid-ranged values of Ii. The value of a is such that L3 is always non-negative.
In our experiments, the best value of b was found to be 5.

L3 =

∑Len(s)
i=1 (a− b(Ii − 0.5)2)

Len(s)
(4)

4. Linkage loss (L4) In our experiments we noticed that without an additional loss to govern
how the words are masked, the network tends to learn repetitive masking patterns. Such
skewed patterns are undesirable - while certain positions of s are well represented in s′,
other positions are entirely missing. A few examples of such summaries are shown in
Fig. A.1 of Appendix 1. This motivates the need to couple ease of decoding with words
dropped from the summary. We introduce a novel ‘linkage’ loss function to achieve this.
The linkage loss facilitates the network to drop words which are deemed inferable. It is
applied to the outputs of DI and D

s
′ simultaneously. Therefore, it correlates the indicator

vector and its effect on reconstruction. It penalizes the network if a) it decides to mask
a word but is unable to reconstruct it later or b) it decides to include a word which it
could decode easily. The mathematical equation describing the linkage loss is shown in
Equation 5. The variable χi denotes the relative ease of decoding word wi, given w′<i and
he2. The value of χi lies between 0 and 1 (both included). A larger value χi indicates that
wi is difficult to decode. The value of χi is calculated using Equation 6. The addition of
linkage loss also results in significantly better results significantly as seen in Section 5.

L4 =

Len(s)∑
i=1

(
Iie

(1−χi) + (1− Ii)e
χi − 1

)
(5)
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Figure 2: The figure shows a detailed flow of the NUTS architecture with an example input.

χi =
|logP (wi|w′<i, he2)|

max1≤i≤Len(s)|logP (wi|w<i, he2)|
(6)

It can be seen from Equation 5 that L5 is minimized when either a) χi = 0 and Ii = 0
simultaneously (signifying that wi is easy to decode and should be dropped) or b) χi = 1
and Ii = 1 simultaneously (indicating that hard-to-decode words should be retained).

The cumulative loss function (L) is a linear combination of the losses described above. Mathemati-
cally, the equation for L is represented in Equation 7.

L = λ1L1 + λ2L2 + λ3L3 + λ4L4 (7)

The weights λ1, λ2, λ3, and λ4 have been set to 3, 2, 50 and 3 respectively for our experiments.
Since this is an unsupervised approach currently the weights are experimentally determined and can
be fine-tuned on supervision.

3.3 WEIGHTED LINKAGE

We observed that some words are an integral part of the sentence and should never be dropped. Their
absence from the summary can entirely change the meaning of the summary/make the summary
meaningless (e.g. the word not in source sentence ‘He is not my friend’). However, the Summary
Decoder D

s
′ could infer some of these words despite their absence from the masked sentence. We

found that mostly subject and negation words fall into this category.

Therefore, to make the summary more aligned with the meaning of the source text, we provide an
additional ‘retention’ weight (ωi) for each word along with sentence s in the input. We use these
weights to highlight the importance of retaining these words. This is achieved by modifying the
variable χi in the linkage loss described in Equation 5. The modified variable (χ′i) can be obtained
using the relation shown in Equation 8. The need for weighted linkage loss is demonstrated with an
example in Fig. A.2 of Appendix 1. Although the quantitative scores are not affected significantly,
we achieve better qualitative results in terms of retention of meaning due to addition of weighted
linkage.

χ′i =
ωi × |logP (wi|w′<i, he2)|

max1≤i≤len(s)(ωi × |logP (wi|w<i, he2)|)
(8)

It should be noted that the weight input is only required at training time and no additional input other
than the sentence is required once the model has been trained.

A detailed flow of the network with an example input is provided in Fig. 2.

4 EXPERIMENTS

We have used the BookCorpus dataset introduced in Zhu et al. (2015) for training the model. This
dataset contains 11038 books in 16 different genres (e.g. romance, comedy, science fiction, teen
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etc.). The total number of sentences and distinct words in the dataset are 74,004,228 and 1,316,420
respectively. The dataset is widely varied in terms of narratives, emotions and text style.

We created a dataset of 500 sentences for test purposes. These sentences were collected from fictions
of several genres. This dataset is similar to the BookCorpus dataset used for training. The sentence
length is varied between 5 and 30, with an equal number of examples for each length. The sentences
are annotated using the guidelines stated below:

1. A word is the smallest unit in the sentence. It should not be broken further. (“waiting” 6→
“wait”).

2. The order of occurrence of words should be preserved in the summary.
3. The summary should be minimal without changing the meaning of the source.
4. The first occurrence of subject words should be included. Thereafter, subject words and

corresponding pronouns should only be included if necessary.

Five different users (all fluent in English) summarized 100 different sentences each. We verified
the consistency of the reference summaries using the inter-annotator agreement Kappa score. All
users were asked to cross-annotate additional 20 sentences for this purpose. The users had an agree-
ment Kappa score of 0.82, thus ensuring the gold standard of the summaries. The average relative
length of the summaries, created using these guidelines, with respect to the source sentence was
0.702. Some examples of the summaries generated using these guidelines are shown in Table A.1 in
Appendix 1.

4.1 DETAILS OF TRAINING

We train the model on the entire BookCorpus dataset. All sentences were divided into buckets based
on the number of words. We considered only those buckets where the length was between 5 and 30
words in our experiments. All other sentences were discarded. This was done to ensure that the input
was neither too short nor too long. We consider an equal number of sentences from each of the 26
buckets, to make the network agnostic to sentence length. The number of sentences in the smallest
bucket was 375,000. Thus, a total of 9,750,000 sentences were considered from the original dataset.
10% of these sentences were used as the validation set and the rest for training. The sentences are
input to the network in mini-batches of size 128.

We restricted our vocabulary to 20000 most frequent words from the dataset (Kiros et al., 2015).
Each word was embedded as a 300-dimensional vector. All the encoders and decoders are modeled
using RNNs with LSTM cells of size 600. The weights of all the RNNs were initialized normally
N (µ = 0, σ = 0.1).

The output from DI is passed through two fully-connected layers to form I. The hidden layer has
150 units with ReLU activation and the output layer has a sigmoid activation. The output of D

s
′

at each time-step is multiplied by a matrix Ws, thereby projecting its output from 600-dimensional
space to 20000-dimensional vocabulary-space. Softmax activation is then applied over the output
of the dense layer to compute probability distribution over the vocabulary. We used Adam (Kingma
& Ba, 2014) as the optimization algorithm, with the initial learning rate set to 0.001, β1=0.9 and
β2=0.999. Gradients were clipped when they became larger than 1.0.

5 RESULTS

We compare the NUTS model with the two baseline methods (explained below), and a rule-based
algorithm proposed by Grefenstette (1998), due to the absence of any recent algorithm to generate
telegraphic summaries. The Grefenstette algorithm provides eight levels of summaries. Each level
allows for varying amount of information to be retained at the cost of summary length. In our
experiments, we consider the summary generated at the last level (most informative) as the output.

5.1 BASELINE

We use the stop words’ list as a baseline indicator of the words which do not contribute to the
summary of a sentence. Therefore, for any given input sentence, the telegraphic summary is formed
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by removing all the stop words present in the input. The experiments are conducted using the top
1% (200) of the total number of words in the vocabulary. The summary generated after removing
the stop words from this list is referred to as B1.
We also use an alternate baseline motivated from the TextRank algorithm (Mihalcea & Tarau, 2004).
A graph is constructed with the input words as nodes. The weight of the edge between two words,
w1 and w2, is equal to the cosine similarity between the corresponding word vectors, e1 and e2.
Pre-trained Glove vectors (Pennington et al., 2014) are used to compute e1 and e2. We then run the
PageRank algorithm (Page et al., 1998) till convergence and select the top nodes as the summary.
Hereafter, this baseline is referred to as B2.

5.2 QUANTITATIVE EVALUATION

Traditionally, the evaluation of summarization algorithms for a document is done using ROUGE
as proposed in Lin (2004). ROUGE-N evaluation is based on n-gram co-occurrence between the
system and reference summaries. The equation used to calculate ROUGE-N scores can be seen
in Equation 9, where N stands for the length of the n-gram, gramn and Countmatch(gramn)
is the maximum number of n-grams co-occurring in a candidate summary and a set of reference
summaries. In our experiments, each sentence is considered to be an independent document. The
reference summaries are generated using the guidelines stated in Section 4.1. All system generated
summaries are evaluated against the reference summaries for four values of N(1,2,3,4).

ROUGEN =

∑
s∈Reference summaries

∑
gramn∈S countmatch(gramn)∑

s∈Reference summaries
∑
gramn∈S count(gramn)

(9)

Additionally, we also thought that it would be interesting to compare various algorithms based on
their summary lengths. We measured the length of the system generated summaries against the input
sentence and the reference summaries for this purpose. These metrics are referred to as summary
factor(sf ) and length factor(lf ) respectively. The scores are calculated using the formulae shown in
Equation 10 and Equation 11.

sf =
Len(summarysystem)

Len(s)
(10)

lf =
Len(summarysystem)

Len(summaryreference)
(11)

The ROUGE-N, sf and lf scores are calculated on the entire test dataset of 500 sentences. The
mean scores for each algorithm are presented in Table 1. It can be clearly seen that the proposed ar-
chitecture outperforms the existing algorithm and the baseline methods by a significant margin. The
NUTS architecture increases the average ROUGE-N score by 0.164 from the next best-performing
algorithm. Additionally, the average summary length is also close to that of the reference summaries
as can be seen by the lf scores. Although the sf scores suggest that the summaries generated using
B1 are most concise, the scores are less because the summaries hardly retain any words. This can be
verified by observing the other metrics used for comparison. The scores demonstrate that NUTS im-
plicitly balances summary length and content retention, i.e. it learns to retain most words in shorter
sentences while shortening the longer sentences simultaneously. There is no other recent algorithm
attempting to solve the telegraphic summarization, especially involving learning, to the best of our
knowledge. A primary reason for this could be lack of annotated data, which is also the motivation
behind the unsupervised approach proposed in this work.

Table 1: Comparison of various algorithms on test dataset.
N=1 N=2 N=3 N=4 sf lf

B1 0.665 0.337 0.186 0.10 0.389 0.559
B2 0.707 0.346 0.156 0.074 0.611 0.878
Grefenstette 0.672 0.279 0.082 0.030 0.644 0.920
NUTS without L4 0.715 0.378 0.172 0.069 0.784 1.12
NUTS 0.816 0.545 0.372 0.263 0.689 0.983
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5.3 QUALITATIVE EVALUATION

The ROUGE-N and length factor scores demonstrate the content adequacy and relative sentence
length similarity between the system and reference summaries. However, these scores can not com-
ment on the readability of the system generated summaries. The ROUGE-N scores only measure
the overlap between the reference and system summary and do not account for the coherence of
the summary with the original sentence. Some examples demonstrating these shortcomings of the
ROUGE-N scores can be seen in Appendix 1 (Fig. A.3).

We conducted a study to validate the performance of various systems in terms of coherence and
meaning between the sentence and its summary. We selected 10 English speaking participants to
undertake the study. Each participant was provided with 20 input sentences and four summaries
for each sentence. They were asked to choose the summary which best captured the gist of the
sentence. Among the 20 sentences, five sentence-summary pairs were present for a sanity check.
One of the summaries in each of these five sentences was manually annotated, which the participants
were expected to choose. All the choices of the participants who chose a different summary more
than once out of these five sentences were discarded from evaluation. As a result, the choices of
two participants were not considered. Thus, the remaining 8 participants and their choices for the
other 15 questions were examined. Therefore, a total of 120 responses were finally considered for
evaluation.

The choices for the remaining sentences corresponded to the four system generated summaries. Out
of the 120 responses considered, the participants selected summary generated by the NUTS model
104 times(86.67%). Fig. A.4 in Appendix 1 shows examples of some sentence-summary pairs along
with their references. As can be seen, the NUTS model mostly generates summaries close/equal
to the reference summaries(sentence 2). We also preserve the meaning of the input sentence (the
retention of ‘not’ in the third sentence and ‘own’ in the fourth sentence). It is noteworthy that the
nuances are captured despite significant shortening of the input.

The figure also shows some failure cases of the model. The words ‘origami’ and ’thrashers’ may
have been masked in sentence 5 and 6 respectively due to the limited vocabulary of the encoder.
This may be tackled by expanding the model’s vocabulary as suggested in Kiros et al. (2015).

6 FUTURE WORK

We plan to extend the work proposed in this paper to further reduce the summary length correspond-
ing to a source text. We propose to stack the telegraphic outputs of multiple sentences as a new input
to our algorithm and iteratively reduce the summary length across multiple sentences. Alternatively,
the addition of context might help to generate concise telegraphic summaries for the entire text.

Another active area of our work is to use sentences selected by existing extractive summarization
techniques (Wu & Hu, 2018) as our input. This can enable these algorithms to extract additional
sentences in their output. We also plan to develop an algorithm to convert telegraphic inputs into
fully grammatical sentences.

7 CONCLUSION

We present a learning-based technique for the task of telegraphic summarization. This is the first
attempt to use a deep learning for telegraphic summarization. Furthermore, the proposed network is
completely unsupervised and removes the need for labeled summary texts. The network implicitly
learns the trade-off between readability and understanding, with respect to the source text. We
demonstrate through experiments that our network substantially improves results over the baselines.
Additionally, we also conducted qualitative experiments and demonstrate that the proposed network
generalizes over length and genre of the source text.
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A APPENDIX 1 : ADDITIONAL DETAILS AND EXAMPLES

LSTM Details
LSTM refers to Long Short-Term Memory, enabling the network to retain memory across time-
steps. Additionally, LSTM is designed such that the error gets backpropagated across time-steps
efficiently. The equations for various gates and the outputs of a LSTM are presented below.

it = σ(Widt + Uiht−1 + bi)

ft = σ(Wfdt + Ufht−1 + bf )

ot = σ(Wodt + Uoht−1 + bo)

ĉt = tanh(Wcdt + Ucht−1 + bc)

ct = it � ĉt + ft � ct−1
ht = ot � tanh(ct)

(A.1)

where, dt is the value of an input to the cell at time t; ht is the value of the hidden state at time t; Wi,
Wf , Wo, Wc are the weight matrices corresponding to dt; Ui, Uf , Uo, Uc are the weight matrices
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corresponding to ht−1; bi, bf , bo, bc are the bias values for each gate.The output of each gate at time
t is represented as it, ft, ot, and ĉt. The output of the LSTM cell at time t is represented by ct. The
operator � refers to element-wise multiplication between corresponding operands.

Additional Examples
In this sub-section, we illustrate the effects of linkage loss and weighted linkage through examples.
Additionally, we also show some examples of the sentence-summary pairs from the test dataset
we have generated. Finally, we demonstrate the effectiveness of NUTS architecture to retain the
meaning of the input sentence and reduce the summary length simultaneously.

Figure A.1: The figure shows examples of undesirable patterns learned by the network in the absence
of linkage loss. In Pattern 1, the model masks the entire first half. Similarly, in the Pattern 2, the
model learns to mask every third word. Even though the resultant summary length for both patterns
is equal to that of the reference summary, neither of them are able to capture the semantics of the
input.

Figure A.2: The figure demonstrates the effects of weighted linkage. When the retention weights
are not taken into account, the subject and negation words are masked. However, this is rectified
when retention weights are introduced, thereby preserving the meaning of the sentence.

Table A.1: Examples of sentence and summary pairs used for testing the network.
Sentence Summary

I shoved it back in my pocket and
kept going I shoved it pocket kept going

I kept my eyes on the shadowed road
watching my every step I kept eyes on road watching every step

I thumbed the keypad and opened the
message Seth had sent me I thumbed keypad opened message Seth sent

(a)

(b)

Figure A.3: The figure illustrates the inability of ROUGE-N scores to capture the difference in
meaning between system and reference summaries. In (a) the ROUGE-N score reports a similarity
of 0.875. However, the absence of one word has completely changed the meaning of the summary.
Similarly in (b), the one word which is missing is non-inferable and makes the summary open to
multiple interpretations, despite a high ROUGE-N score with the reference summary.
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Figure A.4: The figure shows some examples of system generated summaries for a given sentence
along with their reference summaries.
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