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ABSTRACT

Adoption of deep learning in safety-critical systems raise the need for understand-
ing what deep neural networks do not understand. Several methodologies to es-
timate model uncertainty have been proposed, but these methodologies constrain
either how the neural network is trained or constructed. We present Outlier Detec-
tion In Neural networks (ODIN), an assumption-free method for detecting outlier
observations during prediction, based on principles widely used in manufacturing
process monitoring. By using a linear approximation of the hidden layer manifold,
we add prediction-time outlier detection to models after training without altering
architecture or training. We demonstrate that ODIN efficiently detect outliers dur-
ing prediction on Fashion-MNIST, ImageNet-synsets and speech command recog-
nition.

1 INTRODUCTION

Thanks to the powerful transformations learned by deep neural networks, deep learning is applied in
an increasing number of applications. But deep neural networks, as all data-driven models, tend to
fail when input data differs from training data. Adopting deep learning in increasingly complex and
possibly safety-critical systems makes it crucial to know not only whether the model’s predictions
are accurate, but also whether the model should predict at all. If the model is able to detect outlier
observations post-training directly, the system can fall back to safe behaviour minimizing negative
consequences of faulty predictions. By understanding the limits of models’ learned representations
and detecting when observations are not recognized, autonomous decision making based on deep
learning can be improved.

In manufacturing process control, predictive models have long been used to predict process out-
comes as well as detecting outlier input for decades (Eriksson et al., [2013} Kourti et al.| |1996; Fer-
rer, [2014). A widely used model for this purpose is Partial Least Squares regression (PLS) (Wold
et al.,2001), which project input data onto a set of linear latent variables prior to prediction. In the
latent variable space, the distance from new observations to the training data distribution is used to
detect outlier observations. The latent variables can also be used to approximate input observations,
meaning that outliers can also be detected by measuring the distance to the latent variable subspace
itself. However, the layers of a neural network learn a non-linear mapping from input to output data
spaces rather than a single linear subspace. This makes it difficult to directly determine the limits of
a neural network model’s knowledge in the same manner as for a PLS model.

In this paper we present Outlier Detection In Neural networks (ODIN), a method for detecting
outliers during prediction in deep neural networks. Based on principles long used in manufacturing
process control, we propose using a linear approximation of intermediate activations to provide a
fixed representation of the training data. By comparing new data to this fixed representation we are
able to detect outliers during prediction without imposing constraints on architecture or training.
This allows us to use ODIN as a plug-in method allowing reliable and safe autonomous decision
making based on deep learning.

2 RELATED WORK

A wide collection of methods allowing neural networks to describe uncertainty in predictions, which
can be used to determine if new observations are outliers, have been proposed. For decades, many
methods have been formulated within a Bayesian framework (Denker & LeCunl, (1991} MacKay),



Under review as a conference paper at ICLR 2019

1992) allowing neural networks to predict probability distributions rather than point inferences. The
predictive uncertainty can then be estimated by the entropy or variance of the predicted distribution.
Gal & Ghahramani|(2016)) proposed MC-dropout, using prediction time dropout (Hinton et al.,[2012)
and Monte-Carlo sampling. In summary, MC-dropout make multiple predictions per inference while
the network is randomly perturbed by drop-out which results in a predicted distribution.

A number of alternatives to using dropout to perturb Monte-Carlo samples have been proposed in re-
cent years including: sampling based on batch-normalization parameters (Teye et al.||2018)), model
ensembles (Lakshminarayanan et al.,|2017), multiple prediction heads in a shared base network (Os-
band et al. 2016} [Tlg et al.l 2018} Mandelbaum & Weinshall,2017)), variational inference of weight
distribution instead of regular point weights (Blundell et al.| |2015) and Laplace approximation of
distributions from existing weights (Ritter et al., [2018)). However, the mentioned methods constrain
either how the network is constructed (Lakshminarayanan et al.|[2017;|Osband et al., 2016 Tig et al.,
2018; Mandelbaum & Weinshall, 2017) or how the network is trained (Gal & Ghahramanil 2016}
Teye et al., 2018) limiting their use in systems already in production. Several methods also rely on
multiple inferences per prediction (Gal & Ghahramanil [2016; Teye et al., 2018} Blundell et al.,[2015j
Ritter et al.,|2018)). This limits their use in real-time systems or systems with limited computational
resources.

An alternative approach for estimating uncertainty in classification problems is presented by (Chen
et al.[(2018)) where linear classifiers are trained to classify the target output given intermediate layers
of a given base model. The linear classifier outputs are then fed to a meta-model that is trained to
estimate whether or not the base model is correct. Another alternative approach is proposed by [Lee
et al.| (2018) that leverage Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)) to
augment the original dataset with border-line outliers. A deep neural classifier is then trained to
output high uncertainty for outlier observations and low uncertainty for the original observations.
This method does however involve training a GAN that can be difficult to train to convergence
(Mescheder et al.| 2018]).

Anomaly detection is closely related to prediction time outlier detection, and there are many methods
for flagging deviating observations. Non neural-methods include one-class support vector machines
(Scholkopft et al.l 2001), local observation density (Breunig et al., |2000), distances (Knorr et al.,
2000), isolation forests (Liu et al., 2008) and many others. A multitide of methods based on deep
neural networks, typically autoencoders have been developed as well (Zhou & Paffenroth, 2017
Chalapathy et al.l [2017; Zong et al., 2018}, |(Oh & Yun, [2018). Of particular relevance to this work
is|Oh & Yun| (2018)), that use reconstruction residual as metric to flag outliers. Important to note is
that outlier detection systems are based on training a separate model to detect deviant observations.
Prediction time outlier detection, on the other hand, describes the limits of a predictive model’s
knowledge.

3 PREDICTION-TIME OUTLIER DETECTION

In this section we briefly describe the Partial Least Squares regression model, and how its latent
variable approximation of the input data space is used to detect outliers after training. We then
describe how we can apply similar principles in neural networks by using a linear approximation of
the hidden layer manifold, in a method we call Outlier Detection In Neural networks (ODIN).

3.1 OUTLIER DETECTION IN PARTIAL LEAST SQUARES REGRESSION

Partial least squares regression (PLS) (Wold, |1975; |Geladi & Kowalskil |1986) is a widely used
regression model within manufacturing process control. Similar to Principal Component Analysis
(PCA), PLS assumes that high-dimensional data resides in a sub-space of the original data space
spanned by so called latent variables and formulated in terms of matrix decomposition. The PLS
model is summarized as:

X=TPT"+E

1
Y =TCT +F W
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where the n x m input matrix X is decomposed into n x k latent variable matrix T' = [¢; ... ]
and m x k loading matrix P = [p; ... pi| with residual matrix E. The n X p response matrix
Y is predicted using T multiplied with response weight matrix C = [¢; ... ¢i] with residuals F'.
The latent variable-matrix 1" spans a orthogonal subspace of the data-matrix X and maximize the
covariance between X and Y. Note that the PLS model of X is similar to how PCA approximates
the data through matrix decomposition but PCA finds latent variables ¢; that maximize the variance
in X rather than the covariance between two matrices.

The columns in T are typically calculated sequentially, where the first column ¢; is found through
basis-vectors w; € R™ and ¢; € RP? solving the optimization problem:

maximize Cov(Xwy,Ye)) = w{E(XYT )¢

s.t. |lwi|]| =1and ||e;]| =1

2

The corresponding loading vector p; is then chosen so that X, =X-t pT is uncorrelated with
t,. This is achieved by selecting p; as:

X'y
|[t1]13

p1 3)

The subsequent vectors ¢;, w;, p; where i € [2, ..., k] are then calculated by repeating equations
andusing X, = X;_1 —ti_1p] | instead of X.

The latent variable formulation means that PLS carries its own model of the training data and pro-
vides two ways of detecting outliers during prediction. Since new observations are projected to the
low-dimensional sub-space spanned by the latent variables, both distance to the sub-space itself and
distance to training observations within the sub-space can be used to detect outliers. Distance to
sub-space is typically measured using the residual sum of squares (RSS). RSS for a new observation
rOW vector T, € R? is given by:

p
RSS = Z(mnew,j - "%newd)z @

j=1

where ¢, is approximated as T,e, ~ Tnew = tnew P’ = Tpew PPT.

There are several ways to estimate the distance to training observations within the sub-space and
a common choice is the Mahalanobis distance. The Mahalanobis distance is a well-used statistical
distance measuring how many standard deviations away an observations is from the origin in a
multivariate probability normal distribution. Given a fitted PLS model, the training data projections
can be approximated as a multivariate normal distribution with covariance matrix C7 = E(TTT).
Then the Mahalanobis distance for &, is given by:

dnew = tyj;ewcjjltnew (5)

Alternatively, to compensate for using a linear model of a possibly non-linear manifold, a density
based metric within the latent variable space may be used. For instance, by using the Local Outlier
Factor (LOF) (Breunig et al.l |2000), observations within low-density regions may be flagged as
outliers instead of only using the Mahalanobis distance.

3.2 OUTLIER DETECTION IN NEURAL NETWORKS (ODIN) USING LINEAR MANIFOLD
APPROXIMATION

In contrast to PLS, data are not typically linearly mapped to a single sub-space in deep neural
networks. Instead, a neural network performs as a nested series of non-linear transformations. That
is, the activation vector a; of an observation vector  from a layer ¢ is given by:
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a; = fi (VVifi—l ("Vi—lfi—2<-~- fl(WlfL')))) (6)

with weight-matrices Wy, and activation functions fj.

According to the manifold hypothesis, data is assumed to reside near a region of low dimensionality
that may be highly entangled. One possible explanation for why deep neural networks work well
is that they are able to disentangle complicated manifolds (Brahma et al., 2016). If deep neural
networks disentangle manifolds, we may find a transformation from a complicated data manifold to
a manifold that is approximately linear. If this hypothesis holds true, we can apply a simple trick
to add prediction time outlier detection to neural network models by building a model of the data
representation within the model. Given n x m activation matrix A; = [a; 1 ... aq;,n]T of training
data X, where the row vectors a; ;. are given by equation[6} we approximate the activation manifold
using PCA as:

A; ~ Ty, Py (7

where the n x k latent variable matrix T4, contain the projections of the A, onto the orthonormal
sub-space spanned by columns of the m x k loading matrix Py, .

Now we have a fixed orthogonal approximation of the activation manifold that we can use to detect

outliers during prediction analogously to PLS (see[3.1)). Meaning that we can measure the distance

from new observations to the activation manifold as the residual sum of squares similar to equation

using the observation activation a; ne., With projection tq, ..., = @i newPa;:
m 2

RSSai,new = Z ((a’iqnﬁw - t(lqz,nmu PZXZ )J) ®)

J=1

Similarily, the distance from training observations within the manifold can be measured using Ma-
halanobis distance or density based approaches as the Local Outlier Factor within the linear ap-
proximation. For the Mahalanobis distance, the covariance matrix of the activation projections
CTA,; = E(TELTAZ,) is used in in equationas:

—1
dai,new = \/t:‘,];,new CTAitai,new (9)

We choose to call our method Outlier Detection In Neural networks, ODIN, since we use the in-
termediate data representations within the neural network itself. In contrast to common Bayesian
approaches, we do not perturb predictions to produce prediction distributions. We simply measure
the distance from new observations to the training data to determine whether they are outliers or not.

4 EXPERIMENTS

In the following sections we demonstrate how to detect outliers during prediction time using ODIN
on different classification tasks. We choose classification tasks for demonstration since it is straight-
forward to simulate outliers by excluding a subset of the classes. We also explore how to choose
what layer’s activations to use and rank of PCA approximation. For comparison, we also perform
outlier detection using MC-Dropout (Gal & Ghahramanil [2016) since it is well-established and
straightforward to implement even though it has received criticism (Osband et al., [2016).

4.1 FASHION-MNIST

To provide a simple classification problem with outliers encountered during prediction, we use the
Fashion-MNIST (Xiao et al.l 2017) dataset. Fashion-MNIST consists of 70 000 greyscale 28x28
pixel images, out of which 10 000 are test set images, of ten categories of fashion products. We
excluded five classes to use as outliers, including all shoes (sandals, ankle boots and sneakers)
and two clothing classes (pullover and shirts). The intuition is that shoe-images are strong outliers
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Figure 1: ROC-AUC of prediction time outlier detection on Fashion-MNIST detecting strong out-
liers represented by shoes (left) and subtle outliers represented as excluded non-shoe garments
(right). Results from MC-dropout are shown as horizontal dashed lines.

since all shoe-related information is absent from training data, and excluded clothes are more subtle
outliers since the training data contain other upper body garments. We trained a small convolutional
neural network (CNN, for architecture see Figure [A.I) on five out of the ten classes. We used
rmsprop (Tieleman & Hinton| 2012) optimization, categorical cross entropy loss function, batch
size 128 for 10 epochs and kept 10 % of the images as validation set and achieved a test set accuracy
of 97 %. To use for outlier detection, we extracted features from both max-pooling layers (without
global average pooling) for all images.

We evaluate ODIN using different outlier metrics (RSS, Mahalanobis distance and LOF), five levels
of explained variance (R2) of the PCA model (50-99 %) and different layers of extracted features
using the area under the receiver operating characteristic curve (ROC-AUC) as performance metric,
(see Figure [T] complete results in Table [A7T). We calculate the ROC-AUC comparing how well
test set observations are separated from outlier observations. For comparison, we also used MC-
dropout to calculate the image-wise entropy from 50 Monte Carlo samples per image and evaluated
the results using ROC-AUC in the same way as ODIN.

All metrics clearly separate strong outliers (shoes) from the test set images (Figuremleft) with RSS
being most sucessful (ROC-AUC 0.97 compared to Mahalanobis 0.94 and LOF 0.91). There is
a trend that they benefit from increased PCA R2. Surprisingly MC-dropout failed to detect shoe
outliers (ROC-AUC 0.495). The subtle outliers (non-shoes) are significantly more difficult to detect
(Figure [T]right), and LOF is most successful doing so (best ROC-AUC 0.71 compared to RSS 0.60,
Mahalanobis 0.61 and MC-Dropout 0.63).

To conclude, the Fashion-MNIST experiment show that ODIN successfully detect outliers in a sim-
ple image classification problem. Strong outliers seem to be best detected by measuring distance to
manifold while subtle outliers are better detected in low-density regions of the linear approximation
using LOF.

4.2 CATS AND DOGS

In order to provide a more complex example we demonstrate prediction time outlier detection using
a pre-trained CNN on image synsets from ImageNet 2009). We train a cat vs. dog clas-
sifier on the cat- and dog-synsets from ImageNet and used the car- and horse-synsets as outliers. We
used an Inception v3-network (Szegedy et all 2016) pre-trained on ImageNet, freezing all Inception
module weights during training. We replaced the penultimate layer with a hidden layer of 128 ReLu
units and a single sigmoid output with 50 % dropout before and after the ReLu-layer and trained for
50 epochs using the Adam optimizer (Kingma & Ba, [2014) and achieved a test set accuracy of 93
%.

We extracted features from each inception module in the Inception-v3 network and pooled them
feature-map wise using global average pooling. For each layer of features, we performed outlier de-
tection with five levels of explained variance (R2) for the PCA model (50-99 %) and different outlier
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Figure 2: ROC-AUC of prediction time outlier detection on Cats and Dogs experiment detecting
strong outliers represented by cars (top row) and subtle outliers represented as horses (bottom row).
Inception module, i.e. network depth, of extracted features used for outlier detection is shown on
the X-axes. Results from MC-dropout are shown as horizontal dashed lines.

metrics. We evaluated the performance using ROC-AUC in the same manner as in the Fashion-
MNIST experiment (see Figure 2] for complete results see tables [B.1] [B.2]and [B.3).

We are able to convincingly detect cars using our cats vs. dogs classifier (best ROC-AUC for RSS,
0.96, Mahalanobis distance 0.94 and LOF 0.93). Horses are also detected as outliers even though
they share visual features with cats and dogs (best ROC-AUC for RSS 0.76, Mahalanobis distance
0.75 and LOF 0.69). Since we used dropout for the last fully connected layers, we also performed
MC-dropout achieving similar results (ROC-AUC: 0.86 for cars, 0.61 for horses). The degree of
explained variance was not as influental in this experiment as in the Fashion-MNIST experiment, but
both Mahalanobis distance and LOF fail to detect both cars and horses using 50 % R2. Interestingly,
the performance of all metrics peak at inception module 8 where an auxilliary output was used
during training on ImageNet (Szegedy et al., 2016)).

To conclude, the experiment on cats and dogs show that ODIN reliably detect outliers using a pre-
trained CNN on real-world images. ODIN performs slightly better than MC-dropout but does not
rely on using dropout, or any type of constraint on the training procedure. In line with the results
from the Fashion-MNIST experiment, higher PCA R2 produce more reliable results.

4.3 SPEECH COMMANDS

To show that ODIN for prediction time outlier detection works for not only CNN-based image
classification, we perform a speech command recognition experiment using a LSTM-based model.
We use the Speech Commands dataset (Warden, [2018)) that consists of 105 000 short utterances
of 35 words recorded at 16 kHz sampling-rate. The words includes digits zero to nine, command
words yes, no, up, down, left, right, on, off, stop, go, backward, forward, follow, learn and visual.
The dataset also include a set of arbitrary words bed, bird, cat, dog, happy, house, marvin, sheila,
tree and wow. In our experiment, we train a classification model of both digits and command words
and use the arbitrary words as outliers.

We transform the utterances into 64 Mel-Frecuency Cepstral Coefficients (Davis & Mermelstein,
1990), using a frame-length of 2048 samples and frame-stride of 512 samples. We train a three
layer bi-directional LSTM-model with 30 % dropout after each LSTM-layer and softmax output
(see architecture in Figure @) for 30 epochs, using the Adam-optimizer (Kingma & Ba,|2014) and
batch-size 512 resulting in test-set accuracy of 78 % for the 25 classes. The classification accuracy
is lower than the 88 % accuracy of the baseline CNN:s (Warden, 2018]), but we believe it is sufficient
for demonstrating prediction time outlier detection.
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Figure 3: Fl-score (top), precision (middle) and recall (bottom) of outlier detection for the words
used as outliers in the Speech Commands experiment comparing MC-Dropout and ODIN. Scores
for AND- or OR-combining RSS and Mabhal classifications are included to show how they influence
the precision and recall ratio.

For outlier detection, we extracted training set features from the third LSTM-layer and fitted a PCA-
model explaining 99 % of the variance and chose RSS and Mahalanobis distance limits to be the 9th
deciles of the training set distances. We then extracted features from the test set and outlier classes
and projected them onto the PCA-model and calculated RSS and Mahalanobis distances. Using
precision, recall and Fl-score we evaluated outlier detection at the 9th deciles (see figure [3] com-
plete results in Table [C.I). We also combined RSS and Mahalanobis distance classifications using
OR and AND combined classification. For comparison, we also used MC-dropout with 10 Monte
Carlo samples per utterance and calculated the sample-wise Shannon entropy. We performed outlier
detection using the 9th decile of training set entropies as threshold, and evaluated MC-dropout in
the same manner as ODIN.

Detecting outliers in the speech-commands dataset is difficult for both ODIN and MC-dropout with
best word-wise F1-scores ranging from 0.25 for tree, which is phonetically similar to three, to 0.47
for house. ODIN consistently outperform MC-dropout. Additionally, since two metrics are used,
we also have the opportunity to raise precision or recall by using AND- or OR-combination of
classification according to the two metrics. Depending on the application, either precision or recall
may be more important than the other.

The Speech Command experiment shows that ODIN performs well for recurrent neural networks
on a speech recognition task in addition to image classification. We also demonstrate how it can be
used in practice, by selecting classification threshold and evaluating our choice using precision and
recall. We also show how combinations of the different metrics available may be used to tune the
precision/recall ratio.

5 CONCLUSIONS

Deep neural networks are powerful transformers that have shown great success in many applications.
But, in order to adopt deep learning in safety-critical applications it is crucial to understand when
new observations do not match the data used during training. To imitate linear latent variable models
used in manufacturing process monitoring, we use a linear approximation of the hidden layer mani-
folds to measure distance to and within the manifold. We compare our results to MC-dropout, a well
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established Bayesian approach, and consistently detect outliers post-training without imposing any
constraints on either architecture or training procedure. We demonstrate our method in two image
classification experiments, with and without a pre-trained network, and a speech recognition exam-
ple using a recurrent neural network. By defining the limits of our neural networks’ knowledge,
ODIN contribute to safer use of deep learning.
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APPENDIX A APPENDIX

A.1 FASHION-MNIST

Input (28x28x1)

A 4

3x3 Conv + RelLu (28x28x32)

y

3x3 Conv + RelLu (28x28x32)

A 4

Dropout 20 %

A 4

MaxPool-1 (14x14x32)

Flatten  Features for
é . .
outlier detection

A 4

3x3 Conv + RelLu (14x14x64)

A 4

3x3 Conv + Relu (14x14x64)

A 4

Dropout 20 %

A 4

MaxPool-2 (7x7x64)

Flatten  Features for
é . .
outlier detection

Flatten

y

Softmax (5)

Figure A.1: Architecture of the CNN-model used in the Fashion-MNIST experiments. Numbers in
parentheses indicate output dimensions of the current layers.
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Table A.1: ROC-AUC for all configurations used in Fashion-MNIST experiment.
Non-Shoes Shoes

Measure Features PCA R2
LOF MaxPool-1  0.50 0.632584 0.806461
0.80 0.705666 0.904777
0.90 0.685191 0.894012
0.95 0.672836  0.905983
0.99 0.666276  0.900635
MaxPool-2 0.50 0.591984 0.783379
0.80 0.685097 0.878966
0.90 0.679432  0.890894
0.95 0.683418 0.898365
0.99 0.679545 0912277
Mahalanobis MaxPool-1  0.50 0.429212  0.725880
0.80 0.555856  0.804085
0.90 0.584215 0.893431
0.95 0.576945  0.940009
0.99 0.578156 0.919574
MaxPool-2 0.50 0.382974  0.427928
0.80 0.543957 0.590699
0.90 0.577311 0.780444
0.95 0.589486 0.850849
0.99 0.605115 0.916437
RSS MaxPool-1  0.50 0.602458 0.847860
0.80 0.591201 0.927887
0.90 0.571679 0.936623
0.95 0.574044 0.918533
0.99 0.587556  0.923430
MaxPool-2 0.50 0.564947 0.794195
0.80 0.589945 0.898555
0.90 0.603539 0.928036
0.95 0.603329 0.947959
0.99 0.569872 0.966362
MC-dropout - - 0.626128 0.493604
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APPENDIX B CATS AND DOGS

Table B.1: ROC-AUC for all RSS configurations used in Cats and dogs experiment.

Car Horse
PCA R2 Inception module
0.50 1 0.709278  0.497676
2 0.746097  0.504473
3 0.576762  0.470429
4 0.699465  0.505362
5 0.789033  0.517313
6 0.793035  0.540525
7 0.887417  0.538365
8 0.934970  0.719343
9 0.931100  0.693248
10 0.781649  0.703906
11 0.794187  0.725780
0.80 1 0.705079  0.568177
2 0.710353  0.516260
3 0.637867  0.526424
4 0.729584  0.535119
5 0.778540  0.518596
6 0.848603  0.540108
7 0.906682  0.567508
8 0.943456  0.758081
9 0.931845  0.697327
10 0.821543  0.715034
11 0.867583  0.715177
0.90 1 0.681670  0.536555
2 0.702568  0.511546
3 0.682821  0.527521
4 0.781556  0.516929
5 0.773486  0.520306
6 0.820797  0.561280
7 0.889807  0.584810
8 0.958050  0.750493
9 0.933917 0.679214
10 0.839283  0.712403
11 0.854041 0.701439
0.95 1 0.698412  0.545075
2 0.741141  0.526304
3 0.691768  0.486097
4 0.775744  0.509923
5 0.802838  0.540941
6 0.837737  0.579207
7 0.905673  0.563418
8 0.960155  0.753794
9 0.933413  0.685189
10 0.848899  0.729979
11 0.836027 0.701428
0.99 1 0.755548  0.549899
2 0.783529  0.524484
3 0.726799  0.488213
4 0.783420  0.499200
5 0.829163  0.502960
6 0.812442  0.559076
7 0.908622  0.565414
8 0.964234  0.739167
9 0.928095  0.691285
10 0.853077  0.715210
11 0.827277  0.701735
MC-dropout - 0.874272  0.618843
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Table B.2: ROC-AUC for all LOF configurations used in Cats and dogs experiment.
Car Horse
PCA R2 Inception module
0.50

0.747062  0.506228
0.712447  0.487221
0.669598  0.552026
0.728203  0.551993
0.699202  0.533573
0.603274  0.536457
0.567212  0.563133
0.383306 0.535602
0.591717  0.508432
0.571455  0.400476
0.077551  0.317552
0.763223  0.551675
0.744682  0.576301
0.688884  0.548649
0.754682  0.512598
0.747763  0.531227
0.730615  0.581553
0.801094  0.624731
0.869052  0.611969
0.883470  0.625948
0.804274  0.518387
0.689432  0.634227
0.780525  0.564537
0.764583  0.547487
0.711975  0.522324
0.733740  0.536643
0.767390  0.552443
0.764265 0.557794
0.820841  0.618635
0.902954  0.635213
0916429 0.634161
0.805897  0.554186
0.799998  0.676703
0.747972  0.579920
0.757642  0.549691
0.675628  0.514725
0.741327  0.556291
0.774473  0.529374
0.748180  0.580589
0.815929  0.62339%4
0.915607  0.654467
0.908326  0.652526
0.815633  0.567475
0.836487  0.684016
0.746557  0.587880
0.764177  0.591805
0.699465  0.553276
0.755077  0.535602
0.758136  0.537180
0.773310  0.582332
0.826850  0.636759
0.923139  0.684981
0.926922  0.674828
0.846399  0.610927
0.864984  0.703895
0.874272  0.618843

— O

0.80

— O

0.90

— O

0.95

— O

0.99

— = 00NN WNO === 00NN LW OOIANEWN===OVNIAAWNEWND == =003 WA W~

— O

MC-dropout
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Table B.3: ROC-AUC for all Mahalanobis distance configurations used in Cats and dogs experiment.

Car Horse
PCA R2 Inception module
0.50 1 0.708335  0.541325
2 0.616837  0.470078
3 0.718214  0.559318
4 0.705265  0.498235
5 0.645487  0.496645
6 0.571521  0.534713
7 0.553561  0.486930
8 0.261918  0.527005
9 0.390027 0.471438
10 0.341882  0.479771
11 0.082321  0.443434
0.80 1 0.702853  0.506118
2 0.692360 0.500746
3 0.636694  0.448763
4 0.738049 0.471821
5 0.763015  0.545338
6 0.751699  0.487402
7 0.850522  0.507993
8 0.914905  0.640597
9 0.900169  0.632538
10 0.662997  0.630082
11 0.626464  0.695660
0.90 1 0.702995  0.518343
2 0.710210  0.517258
3 0.610357  0.459399
4 0.711855  0.533957
5 0.759704  0.506984
6 0.807125 0.517784
7 0.882330 0.551248
8 0912471  0.718576
9 0.920168  0.670431
10 0.710473  0.635235
11 0.777926  0.689542
0.95 1 0.686494  0.533299
2 0.721098  0.532510
3 0.617374  0.508837
4 0.743926  0.505614
5 0.795448  0.555107
6 0.815403  0.526479
7 0.879336  0.553616
8 0.929740  0.733433
9 0.928424  0.684038
10 0.781117  0.693994
11 0.821159  0.693193
0.99 1 0.702316  0.536051
2 0.710956  0.535755
3 0.653425  0.507094
4 0.793847  0.522784
5 0.796423  0.527992
6 0.841915  0.568659
7 0.889687  0.595533
8 0.939224  0.724782
9 0.931264  0.669642
10 0.833341  0.700463
11 0.844568  0.704048
MC-dropout - 0.874272  0.618843
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APPENDIX C SPEECH COMMANDS

Input (32x64)

y

Batch Normalization

A 4

Bidirectional LSTM (32x64)

A 4

Dropout 30 %

A 4

Bidirectional LSTM (32x64)

y

Dropout 30 %

y

Bidirectional LSTM (1x64)

Features for
outlier detection

y

Dropout 30 %

A

Softmax (25)

Figure C.1: Architecture of the LSTM-model used in the Speech Commands experiments. Numbers
in parentheses indicate output dimensions of the current layer.
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Table C.1: Fl-score, precision and recall for all outlier words in the Speech Commands experiment.

Fl-score  Precision Recall

Method Word
MC-dropout bed 0.401790 0.427691 0.378848
bird 0.439555 0.459788 0.421027
cat 0.394107 0.423164 0.368784

dog 0.353033  0.397995 0.317199
happy  0.337388 0.379331 0.303797
house  0.229379 0.284513 0.192144
marvin  0.253497 0.307327 0.215714
sheila.  0.167971 0.214615 0.137982
tree 0.114615 0.142017  0.096077
WOW 0.330767 0.378954  0.293453

Combined_AND bed 0.300694  0.500000 0.214995
bird 0.270776  0.474515 0.189438
cat 0.258042 0.457393 0.179714

dog 0227068 0431012 0.154135
happy ~ 0.225473 0.421896 0.153846
house  0.402760 0.597209  0.303833
marvin  0.197153  0.390141  0.131905
sheila ~ 0.216491 0407661 0.147379
tree 0.109530 0.226786  0.072200
wow 0334311 0.542283 0.241639

Combined_OR bed 0.420017 0.375098 0.477160
bird 0.407906 0.369685 0.454942
cat 0.387927 0.353131 0.430330

dog 0.359437 0.337883 0.383929
happy  0.395170 0.359856 0.438169
house 0.474430 0.419086 0.546616
marvin  0.335507 0.317853 0.355238
sheila 0.410965 0.369188 0.463403
tree 0.250456 0.231028 0.273451
WOW 0.445418 0.399925 0.502591
Mahalanobis distance  bed 0.376307 0.408853 0.348560
bird 0.355674 0.396193 0.322674
cat 0.398107 0.427201 0.372723
dog 0.329524  0.379205 0.291353
happy  0.341977 0.384102 0.308179
house 0.464785 0.482671 0.448178
marvin 0.264140 0.318334 0.225714
sheila 0.436551 0.455180 0.419387
tree 0.150050 0.181452 0.127914
WOwW 0.444995 0.469420 0.422986

RSS bed 0.371544  0.404442  0.343595
bird 0.354417 0.394534  0.321705
cat 0.272933  0.321119 0.237322

dog 0.285948 0.340026 0.246711
happy  0.318928 0.363920 0.283836
house  0.426921 0.454789 0.402272
marvin  0.299346 0.350128 0.261429
sheila ~ 0.225788 0.275249 0.191395
tree 0.242328 0.273181 0.217737
WOW 0.356695 0.400941 0.321244
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