
Compositional Generalization via Forced Rendering of Disentangled Latents

Qiyao Liang* 1 Daoyuan Qian* 2 Liu Ziyin 1 3 Ila Fiete 1

Abstract

Composition—the ability to generate myriad vari-
ations from finite means—is believed to underlie
powerful generalization. However, compositional
generalization remains a key challenge for deep
learning. A widely held assumption is that learn-
ing disentangled (factorized) representations nat-
urally supports this kind of extrapolation. Yet,
empirical results are mixed, with many genera-
tive models failing to recognize and compose fac-
tors to generate out-of-distribution (OOD) sam-
ples. In this work, we investigate a controlled 2D
Gaussian “bump” generation task with fully dis-
entangled (x, y) inputs, demonstrating that stan-
dard generative architectures still fail in OOD
regions when training with partial data, by re-
entangling latent representations in subsequent
layers. By examining the model’s learned kernels
and manifold geometry, we show that this failure
reflects a “memorization” strategy for generation
via data superposition rather than via composition
of the true factorized features. We show that when
models are forced—through architectural modi-
fications with regularization or curated training
data—to render the disentangled latents into the
full-dimensional representational (pixel) space,
they can be highly data-efficient and effective at
composing in OOD regions. These findings un-
derscore that disentangled latents in an abstract
representation are insufficient and show that if
models can represent disentangled factors directly
in the output representational space, it can achieve
robust compositional generalization.

*Equal contribution 1Massachusetts Institute of Technology,
Cambridge MA, USA 02139 2University of Cambridge, Cam-
bridge CB2 1EW, U.K 3NTT Research. Correspondence to: Qiyao
Liang <qiyao@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
A core motivation for disentangled representation learning
is the belief that factoring an environment into independent
latent dimensions, or “concepts”, should lead to powerful
combinatorial generalization: if a model can learn the rep-
resentation of each factor separately, then in principle it
can synthesize new combinations of those factors without
extensive retraining. This property is often referred to as
compositional generalization and is considered crucial for
data efficiency and robust extrapolation in high-dimensional
tasks, such as language understanding and vision (Lake &
Baroni, 2018).

Despite many attempts, disentangled representation learning
has shown mixed results when it comes to compositional
generalization. Some studies report clear data-efficiency
gains and OOD benefits (Higgins et al., 2017a; Chen et al.,
2018), while others find no significant advantage or even
detrimental effects (Locatello et al., 2019; Ganin et al.,
2017). This tension motivates a deeper theoretical explo-
ration:

Is a disentangled/factorized1 representation alone
sufficient for compositional generalization? If not,
why, and what other ingredients or constraints
are necessary?

In this paper, we develop a mechanistic perspective on why
even fully disentangling the intermediate (or input) rep-
resentations is often insufficient to enable robust out-of-
distribution (OOD) generalization. Concretely, we focus
on a synthetic 2D Gaussian “bump” generation task, where
a network learns to decode given (x, y) coordinates into a
spatial image. We provide a detailed empirical investigation
into why disentangled representations often fail to achieve
robust compositional generalization. Specifically, we show
that:

• From a representational manifold viewpoint, even if the
input or bottleneck (latent) layer are fully disentangled,
subsequent layers usually “warp” and remix factors, lead-
ing to poor out-of-distribution (OOD) extrapolation.

• From a kernel-based perspective, networks failing to

1We use the terms “disentanglement” and “factorization” inter-
changeably. See Section A.2 for a discussion of the definitions and
distinctions.

1

Compositional Generalization via Forced Rendering of Disentangled Latents

compose have overwritten their disentangled inputs by
“memorizing” training data, rather than combining inde-
pendent factors; they simply superpose memorized states
when attempting OOD generalization.

• Using a Jacobian-based metric tensor to study the repre-
sentational manifold, there is a layer-by-layer erosion of
network disentanglement in standard CNN decoders.

• Finally, forcing disentangled inputs to render into a rep-
resentation that matches the output (pixel) space — via
architectural constraints or curated datasets—enables the
model to overcome memorization strategies and learn
genuinely compositional rules. This approach leads to
data-efficient, out-of-distribution generalization in cases
where factorized latents alone fail.

In addition, we provide in Appendix A a general frame-
work for interpreting compositionality and factorization that
further clarifies these observations. Overall, these results
caution against the assumption that a factorized bottleneck
automatically confers compositional extrapolation, and they
point toward more comprehensive design strategies, such as
disentangled processing and data curriculum that enforce
the rendering of disentangled latents, to achieve genuinely
compositional neural models. 2

2. Related Work
Disentangled representation learning. There is an ex-
tensive body of work on disentanglement, ranging from
early theoretical proposals (Bengio et al., 2013) to various
VAE-based approaches (e.g. β-VAE (Higgins et al., 2017a),
FactorVAE (Kim & Mnih, 2018)) and GAN-based methods
(Chen et al., 2016). Empirical metrics to quantify disentan-
glement include FactorVAE score, MIG score, and others
(Eastwood & Williams, 2018). Yet, these often focus on
axis-aligned or linear independence in the latent space, with-
out explicitly evaluating compositional out-of-distribution
performance. Indeed, (Locatello et al., 2019) show that un-
supervised disentanglement is sensitive to inductive biases
and data assumptions, raising questions about the connec-
tion to systematic compositional generalization.

Compositional generalization & disentanglement. Fac-
torization and compositional generalization have been
widely investigated in various architectures (Zhao et al.,
2018; Higgins et al., 2017b; Burgess et al., 2018; Montero
et al., 2021; Xu et al., 2022; Okawa et al., 2023; Wiede-
mer et al., 2023; Lippl & Stachenfeld, 2024; Liang et al.,
2024b). While many works study how β-VAEs and related
methods can learn disentangled representations (Burgess
et al., 2018; Higgins et al., 2017a), they typically do not
explore whether these representations solve the problem of
compositional extrapolation—particularly in the presence

2Code available at github.com/qiyaoliang/DisentangledCompGen

of mixed discrete and continuous features. However, Xu
et al. (2022) introduced an evaluation protocol to assess
compositional generalization in unsupervised representa-
tion learning, discovering that even well-disentangled rep-
resentations do not guarantee improved out-of-distribution
(OOD) behavior. Similarly, Montero et al. (2021; 2022)
concluded that a model’s capacity to compose novel factor
combinations can be largely decoupled from its degree of
disentanglement; and (Lippl & Stachenfeld, 2024) derived
and demonstrated numerous failure modes in compositional
generalization with disentangled latents. These observa-
tions temper the once-common assumption that factorized
latents automatically yield systematic compositional gen-
eralization. Consequently, a gap remains in understanding
how—and to what extent—models that appear to disentan-
gle latent factors can also robustly compose them under
large distribution shifts, and how to encourage such general-
ization. Our work aims to rigorously illuminate this gap in
the context of a controlled task that enables characterization
of computational generalization performance starting from
exactly disentangled latents. Generalization is tested under
large distributional shifts, and we investigate the detailed
mechanisms of compositionality by the deep neural net-
work decoders, providing a complementary perspective to
prior disentanglement benchmarks and broader generative
modeling approaches.

3. Why Disentangled Latents Often Fail
Compositional Generalization

We present a toy 2D Gaussian “bump” generation task to
highlight and analyze a core phenomenon: even with explic-
itly disentangled inputs or bottleneck, standard feedforward
networks can fail to generalize compositionally.

3.1. Toy example: 2D Gaussian bump generation

Task setup. We consider a generative model that must
output an N × N grayscale image containing a Gaussian
“bump” at a specified 2D (x, y) location within some bound-
ing box (e.g. [0, N]2). The training set covers a square-donut
shaped region of (x, y) with a large OOD region in the cen-
ter of the training distribution (Fig. 1(a)); alternatively, the
OOD region is an equivalent area in the bottom left corner
of image. In both cases, the model sees all x and y values
in training but many combinations are held out.

Architecture. To distinguish the behavior of the decoder
from the encoding process that must learn (and may fail
to fully disentangle) its latent representation, we explicitly
construct a fully disentangled latent representation and ask
whether the downstream decoder can leverage that factor-
ization for compositional generalization. Concretely, we
focus on a CNN-based “decoder-only” architecture that
maps disentangled latent inputs to image outputs. We also

2

https://github.com/qiyaoliang/DisentangledCompGen

Compositional Generalization via Forced Rendering of Disentangled Latents

(b)

(c)

(d)

(e)

(xsuperposed) (ysuperposed)
(xsuperposed)
(ysuperposed)

+ (x, y)

x = 8
y = 20

Disentangled Input Encoding

1-Hot Encoding

Population-based Encodings

Bump Encoding

Scalar Encoding

x
y

x
y 0

1

x
y 0

1

x

Firing
Rate

y
0

N x

y

OOD

N × N

0

N

0 N

(a)

Ramp-based Encoding

ID OOD OOD

Figure 1. Various disentangled input/latent encodings fail to support compositional generalization. (a) shows the experimental
setup for the 2D Gaussian bump toy experiment, where the scalar (x, y) coordinate pair is encoded into disentangled representation
(population-based vs. ramp-based encodings), which is then fed to a decoder-only architecture to generate a N ×N grayscale image of a
single 2D Gaussian bump centered at that corresponding (x, y) location. The training dataset excludes all images that contain 2D Gaussian
bumps centered within the red-shaded OOD region in the center of the image field. (b-c) shows the MSE error contour plots and sample
generated ID/OOD images of bump-based and ramp-based encoding of the x and y input, the compositional OOD region is marked
with by the red-dashed bounding box and the ground truth bump location is marked by a red cross. For a non-compositional network
trained with bump-encoded inputs, (d) demonstrates that it learns to “superpose” seen ID training data when asked to compositionally
generalize, and (e) shows the agreement between a theoretical binary factorized kernel with the similarity matrix (computed based on the
pixel overlap) between the model’s ID and OOD generated samples.

experiment with MLP decoders and provide those results in
Appendix F.3, observing qualitatively similar findings.

Disentangled input encodings. Previous work suggests
that vector-based representations may be key to compo-
sitional generalization (Yang et al., 2023). Inspired by
stimulus coding within brains (Georgopoulos et al., 1986;
O’Keefe & Nadel, 1978; Shadlen & Newsome, 1998), we
test various input encodings:

1. Population-based coding, e.g. a 1-hot, local-bump or
positional encoding of x and y,

2. Ramp coding, an analog ramping code for (x, y) in 2
units.

In each case, the input representation is disentangled w.r.t.
x and y (meaning x and y are independently encoded by
separate neurons). These inputs drive an image-generating
CNN.

3.2. Model fails to compositionally generalize across
various disentangled encodings.

Despite receiving disentangled inputs that correctly specify
OOD (x, y) coordinate combinations, the model does not

learn to generate the correct outputs beyond the ID region,
as seen in the MSE error landscapes of generated images
and from the images themselves Fig. 1(b-c). Networks
trained with different input encodings, bumps (x and y in-
puts embedded as the centers of 1D Gaussian bumps in two
vectors of length N , Fig. 1(b), right) or ramps (x and y
represented as analog ramping rates in two units, Fig. 1(c),
right) demonstrate different degrees of “local” generaliza-
tion: some input encodings can support bumps partially
inside the OOD region if they overlap with the ID region).
However, all networks largely fail in the OOD region, and
all consistently generate multiple bumps when prompted
with an OOD (x, y) input.

Hence, simply providing factorized inputs, regardless of
the form of encodings, does not suffice. The deeper lay-
ers appear to re-entangle x and y or rely on memorized
local features, leading to poor compositional generalization.
While not shown, models trained with disentangled 1-hot
and positional input encodings also fail to compositionally
generalize. These findings confirm that disentangled latents,
across a variety of encoding formats, are not sufficient for
compositional generalization.

3

Compositional Generalization via Forced Rendering of Disentangled Latents

For the remainder of the manuscript, we use inputs encoded
as local bumps or ramps.

3.3. Model “superposes” seen data when asked to
generalize.

The form of failure in OOD generation is suggestive: In
many runs, the CNN appears to memorize the training distri-
bution and when prompted with an OOD (x, y) combination,
seems to perform a lookup: it finds an image or images in
the training data with similar values of x and the closest
values of y, and superposes these to generate a new image,
Fig. 1(b-c), right.

The consistency of these patterns across input encoding for-
mats and architectures indicate a shared underlying mecha-
nism of generalization that we further characterize here.

Kernel-based approach to characterizing OOD gener-
alization. One approach to characterizing model’s per-
formance on unseen data is to characterize a kernel K :
Z × Z → R, where Z = X × Y is the cartesian product
input domain of x and y coordinates of the Gaussian bumps
in our toy example. Here we will focus our discussion to
the 2-feature scenario for 2D Gaussian bump generation. A
generalized introduction to kernel-based approach in charac-
terizing factorization and OOD generalization is given in the
Appendix A.4. We note that any positive-semidefinite, sym-
metric, and square-integrable kernel K can be decomposed
into a Schmidt decomposition (for the 2-feature case):

K
(
(x, y), (x′, y′)

)
=

∞∑
r=1

λr k
(r)
x (x, x′) k(r)y (y, y′), (1)

where each term k
(r)
x (x, x′) k

(r)
y (y, y′) is rank-1 with re-

spect to the (x) and (y) factors, and {λr} are nonnegative
eigenvalues. The number of terms with nonzero λk deter-
mines how mixed the kernel is. In practice, we can construct
the discrete approximation, the Gram matrix K on a finite
set of data inputs {(x(i), y(i))}Mi=1 and their corresponding
outputs:

K(i,j) = K
((

x(i), y(i)
)
,
(
x(j), y(j)

))
. (2)

Non-compositional models learn a binary factorized ker-
nel. In the kernel language, we would expect a compo-
sitional model to break down a novel input combination
(x, y)OOD into factorized kernel, each independently map-
ping x and y to the seen components via Kx and Ky.
From the generated OOD outputs of the networks shown in
Fig. 1(b-c), we observe that the generated bumps seem to
align with the ground truth x and y coordinates of the OOD
bump. Empirically, we found that this is due to the model

memorizing the ID data and “superposing” activations cor-
responding all or some of the seen data of x and y when
asked to generalize to (x, y)OOD.

In Fig. 1(d), we show that the model’s output on a
novel input pair D((x, y)OOD) is the combination of
all of the model outputs with the “superposed” in-
puts, xsuperposed = (x,

∑MID

i y(i)/MID) and similarly
ysuperposed = (

∑MID

i x(i)/MID, y), i.e. D((x, y)OOD) ≈
D(xsuperposed) +D(ysuperposed). Here MID is the number
of ID data. To be more concrete, in the language of kernel,
we can define a binary factorized kernel,

Kbinary
((
xi, yi

)
,
(
xj , yj

))
= κx

(
xi, xj

)
⊗OR κy

(
yi, yj

)
(3)

= κx

(
xi, xj

)
+ κy

(
yi, yj

)
− κx

(
xi, xj

)
κy

(
yi, yj

)
, (4)

where κx (xi, xj) = κy (yi, yj) = δi,j is given by the Kro-
necker delta function. With normalization, the Gram matrix
element is given by K̃i,j =

Kbinary(i,j)∑
j′ Kbinary(i,j′)

. Fig. 1(e), we
visualize the similarity between representations of OOD-
generated samples (sorted by coordinates) and an idealized
binary kernel, where similarity equals 1 if coordinates match
exactly and 0 otherwise. Specifically, Fig.1(e) compares the
ideal binary kernel (top panel) to the actual similarity ma-
trix derived from model-generated Gaussian bump images
(bottom panel). The agreement between these two matrices
quantifies how closely the model’s learned similarity struc-
ture aligns with this ideal binary factorized kernel. Fig. 1(e)
corresponds specifically to the top left sections of the full
matrices shown in Fig.8 in Appendix F.1, which provide a
comprehensive mapping of similarities between all ID and
OOD generated samples. These results indicate that the
disentangled input structure enables the model to indepen-
dently map the x and y coordinates to in-distribution (ID)
samples, a form of novel OOD generation that is not the
same as OOD compositional generalization.

In a set of follow-up experiments on MNIST image ro-
tation, we observe that this same superposition of memo-
rized activation patterns—drawn from related in-distribution
data—emerges as a general OOD generalization strategy
in neural networks that have learned to memorize ID data.
Crucially, this phenomenon applies not only to composi-
tional tasks but also to single-dimension interpolation and
extrapolation. We detail these results in Appendix F.2.

Similarly, in CNN-based guided diffusion models tasked
with Gaussian bump image generation, (Liang et al., 2024a)
reported that the model generated a superposition of mul-
tiple ID bumps when guided to generate an OOD bump.
Similar to both these findings, (Kamb & Ganguli, 2024)
showed that guided diffusion models generate new images
by gluing together local patches from the closest relevant
images in the training data. Together with (Lippl & Stachen-
feld, 2024), these observations suggest an emerging consen-

4

Compositional Generalization via Forced Rendering of Disentangled Latents

Input: Bump Encoding Input: Ramp Encoding(a)

(b)

(c) (d)

R
at

e
E

nc
od

in
g

(e)

(f)

B
um

p
E

nc
od

in
g

In
pu

t:
B

um
p

E
nc

od
in

g
In

pu
t:

R
am

p
E

nc
od

in
g

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Figure 2. Cause of failure of compositional generalization despite disentangled inputs/latents: input memorization by decoder
undoes factorization. (a-b) show the linear probe metrics of the learned representation as a function of x and y for bump- and ramp-
input-encodings, and (c-d) show the factorization score (Eq. 7), and (e-f) show the volume metric log10(dv), all as a function of layer
depth, for models trained with bump-based vs. ramp-based input encodings. The linear probe metric is defined as the R2 scores of fitting
two linear classifiers with respect to x and y.

sus view of how various generative deep networks function
in OOD generation – by combining literal patches of their
training data, rather than combining factors from the data,
even when provided with information on what these factors
should be in the form of disentangled inputs.

3.4. Manifold warping through dimension expansion
ruins factorization in latent space.

Why is disentangled input insufficient for learning disentan-
gled factors of variation? Here we seek deeper mechanistic
insight into model’s learned representations along the net-
work layers. Specifically, we track how strongly x and y
remain disentangled across layers. While the input layer is
disentangled (by construction), subsequent convolutional
layers produce mixed features with large cross-terms, partic-
ularly near the final decoding layer. This “manifold warping”
effectively destroys compositional structure, leaving the net-
work reliant on patterns that do not extend to unseen (x, y)
combinations.

A transport perspective. From a transport perspective,
the model layers effectively learn to interpolate between
the input (source) distribution and the output (target) dis-
tribution. Here the source distribution corresponds to the
disentangled input representation manifold, while the output
corresponds to the ID data representation manifold, which
has an OOD “hole” in the middle. If there is nontrivial
topological or geometrical deformation to the source or
the target distribution representations, the model will have
a hard time maintaining the integrity of the factorization,
especially through dimension expansion (or reduction equiv-

alently) in the generation process. Let the network be a
composition of layers T = TL ◦ · · · ◦ T1, with each
Tl : Zl−1 → Zl. The input measure µ0 (assumed factor-
ized) on Z0 is “pushed forward” through these layers to
match the in-distribution measure µID

L on the final space ZL.
Formally, µl = (Tl ◦ · · · ◦ T1)∗ µ0 for l = 1, . . . , L,
so µL = T∗µ0 should approximate µID

L . If µID
L differs topo-

logically or geometrically from µ0 (e.g. having an OOD
“hole”), each layer Tl may need to warp coordinates signifi-
cantly. These warping steps can easily re-entangle originally
factorized inputs, leading to failures in OOD regions.

Characterization of manifold warping and factorization.
To qualitatively investigate the warping and its effect on the
factorization of the layer-wise representations, we compute
the Jacobian-based metric tensor g, inspired by the approach
of Ref. (Zavatone-Veth et al., 2023). The generalized defini-
tion can be found in Appendix B. In short, the metric tensor
is defined by

g(x, y) = J(x, y)⊤J(x, y), (5)

where J is the Jacobian matrix w.r.t. the different input
feature dimension, which corresponds to x and y in our
synthetic toy setting. We then visualize the volume metric

dv(x, y) =
√
det

(
g(x, y)

)
dxdy (6)

for representation output at each of the network layer.
The metric visualizations log10(dv) are compared between
networks with bump-based vs. ramp-based encodings in
Fig. 2(e) and (f). Visually, we observe significant distor-
tion as a function of network depth, especially in the OOD

5

Compositional Generalization via Forced Rendering of Disentangled Latents

region. To accompany the distortion analysis, we plot the
linear probe metric (linear classifier R2 w.r.t x and y) as
well as the factorization metric proposed based g in Eq. (7)
as a function of network depth in Fig. 2(a-d). Here the
factorization metric is defined as follows

Factorization(g(x, y)) = 1 −
∣∣gxy(x, y)∣∣∣∣gxx(x, y)∣∣ +

∣∣gyy(x, y)∣∣ ,
(7)

where gij’s are the matrix elements of the 2 × 2 matrix g.
We note that both metrics decay relatively gracefully over
the layer depth for both networks with bump-based and
ramp-based input encodings. Intriguingly, shallow networks
with ramp-based encoding experiences a sharper drop in
factorization. This is likely due to the higher demand for
dimension expansion with the ramp-based 2-neuron input,
which leads to higher distortion when allowed fewer net-
work layers to accommodate the expansion. The volume
metric visualization as well as the linear probe metric as
a function of layer depth for different network depths are
shown in Fig. 11 and Fig. 12 (Fig. 13 and Fig. 14 for MLPs)
as well as generated OOD images in Fig. 10 in Appendix F.3.

4. Encouraging Compositional Generalization
Given the above model failures, we ask: Which architec-
tural or training strategies can preserve factorization and
yield robust compositional generalization? We provide two
promising avenues next.

4.1. Architecture regularization for low-rank
embeddings

One approach we adopt is to architecturally encourage the
expansion of abstract latent representations into structured
2D embedding filters, while applying explicit rank regular-
ization during training (Fig. 3(a)). This design promotes
interpretability and compositional disentanglement in the
learned features. For example, Cichocki et al. (2009) demon-
strate that enforcing low-rank tensor factorization can miti-
gate spurious interactions between factors. Inspired by this,
we apply a matrix (or tensor) factorization penalty to the set
of 2D embedding filters associated with each input dimen-
sion, encouraging them to remain approximately low-rank
and spatially consistent.

To formalize this, in the 1-hot input encoding setup, we
generate embedding matrices of shape N × N for each
token x and separately for y (Fig. 3(a)). There are a total
of 2N such matrices. Denoting one of them as Wi,j , we
decompose this matrix using an SVD-like form:

Wi,j =

r∑
n=1

v
(n)
i λ(n)u

(n)
j , (8)

where r is a chosen upper bound on the rank of the de-

composition, λ(n) are scalar singular values, and v
(n)
i , u(n)

j

are orthogonal basis vectors along the row and column di-
mensions, respectively. This formulation enables us to di-
rectly regularize the singular value spectrum and the spatial
smoothness of basis vectors, promoting low-rank structure
in each embedding matrix.

This regularization is particularly effective because each
input dimension is associated with a dedicated 2D embed-
ding matrix, which constrains the model to learn spatially
structured factors aligned with individual input dimensions.
In practice, we observe that this encourages the model to
discover localized or “stripe-like” patterns in the learned
embeddings (see Fig. 3(b)), facilitating compositional gen-
eralization. To further stabilize learning and reduce redun-
dancy, we additionally penalize the entropy and variance of
the singular values, which promotes sparsity and consistent
usage of the factorized components.

The squared magnitudes [λ(n)]2 define a probability distri-
bution across n:

λ̃(n) =
[λ(n)]2∑r

m=1[λ
(m)]2

, (9)

which we regularize using an entropy penalty:

Lent = −η1

r∑
n=1

λ̃(n) ln λ̃(n), (10)

encouraging dominance of only a few modes to enforce low
rank. Additionally, to discourage memorization of individ-
ual indices, we penalize variance in v(n) and u(n):

Lvar = η2

r∑
n=1

[
Var(v(n)) + Var(u(n))

]
. (11)

The total loss function combines these terms with standard
reconstruction loss:

Ltotal = LMSE + Lent + Lvar. (12)

Applying these regularizations to the embedding matrices
of both x- and y-factors results in more structured and fac-
torized representations, improving generalization to unseen
coordinate pairs. Fig. 3(b) illustrates that, without regular-
ization, the model struggles to preserve signal integrity in
OOD regions. With regularization, the embeddings exhibit
structured banding aligned with coordinate axes, indicating
a discovered factorized representation beneficial for com-
positional extrapolation. In addition, Fig. 3(c) shows that
our regularization works even for a corner OOD region, in-
dicating a stronger form of (extrapolative) compositional
generalization. With regularization, the learned represen-
tation is significantly smoother than without, as evidenced
in Fig. 3(d), despite having the same factorized embedding
architecture. These results demonstrate the effectiveness of
our proposed regularization technique.

6

Compositional Generalization via Forced Rendering of Disentangled Latents

(a) (b) (c)

(d) (e)

N
o

R
eg

ul
ar

iz
at

io
n

R
eg

ul
ar

iz
at

io
n

N
o

R
eg

ul
ar

iz
at

io
n

R
eg

ul
ar

iz
at

io
n

Disentangled processingDisentangled
1-Hot input
encodings Extract

embedding Stacking

x

y

OOD

N × N

0

N

0 N

Figure 3. Inducing compositional generalization through architectural rendering and regularization constraints. (a) Schematic of
architecturally forced rendering of the initially disentangled representations (with 1-hot input encodings) into a space matching the output
space (disentangled processing). (b) Sampled embedding activations corresponding to x = 14 and y = 14 for networks trained without
and with regularization, respectively. (c) Generated images when the OOD region is on the top right corner, for the non-regularised (top)
and regularised networks (bottom) respectively. (d) Volume metric comparison between networks trained without and with regularization
as a function of layer depth, respectively. (e) OOD vs. ID MSE plot for various ablation studies over many runs.

Ablation. To assess the impact of our regularization strat-
egy, we compare four configurations: (1) No Reg (baseline
MSE loss), (2) Entropy Only (applying Eq. (10)), (3) Vari-
ance Only (applying Eq. (11)), and (4) Entropy+Var (com-
bining both). Fig. 3 (e) plots MSE in distribution (ID) versus
out-of-distribution (OOD). The condition No Reg yields the
lowest ID error but the highest OOD error, reflecting poor
generalization. Entropy Only marginally improves OOD
performance, while Variance Only significantly enhances
extrapolation at the cost of higher ID loss. Combining both
constraints (Entropy+Var) achieves the best OOD perfor-
mance while maintaining low ID error, striking the optimal
balance for robust factorization.

Intuitively, the regularization leverages simple, low-
dimensional structure in the learned embedding matrices.
By limiting the effective rank, it forces the network to rep-
resent each factor (for example, a coordinate dimension)
through a small set of shared directions rather than sepa-
rately memorizing every possible input combination. Con-
sequently, once the model learns an appropriate low-rank
basis for in-distribution data, it can more easily compose
those basis elements to handle new, unseen factor combi-
nations in the OOD region. In other words, restricting the
embedding to a few dominant modes discourages the net-
work from relying on specific entries for every (x, y), thus
reducing overfitting and promoting a genuinely factorized
representation that better generalizes to novel coordinates.

4.2. Dataset augmentation

Another approach that successfully enabled compositional
generalization in the toy setting is dataset curation. Asking
the network to generate independent factors of variation
in the form of separate x and y “stripes” help the network
discover a representation that enables compositionality.

Concretely, we generate 1D vertical and horizontal stripes
by fixing a single coordinate (either x or y) and applying
a 1D Gaussian in the orthogonal direction (samples shown
in Fig. 4(a), full set shown in Fig. 7(a)). Note that here
the 2D input structure to the model is still maintained via
setting the coordinate to the fixed dimension to −1. These
stripes in the full output representational space act as build-
ing blocks that allow the network to learn each factor of
variation independently in a way that abstract factorized
inputs are unable to. Optionally, we additionally include a
small number of the 2D bumps (outside the OOD region, as
before) in the training set, so the model also sees a small
number of 2D examples. Consequently, the network ac-
quires strong compositional ability: it generalizes to novel
(x, y)-combinations outside the original training distribution
(even with zero 2D bumps). Empirically, as demonstrated
in Fig. 4, this approach markedly improves compositional
generalization performance.

Data efficiency scaling. Remarkably, we observed that
models trained on a dataset consisting of just the stripes

7

Compositional Generalization via Forced Rendering of Disentangled Latents

h = 0

h = 6

w = 0 w = 6

Figure 4. Inducing generalizable composition by training single disentangled factors to render (data curriculum). (a) Sample
grayscale images of 1D Gaussian “stripes” at x = 14 and y = 14. (b) Generated OOD output as a function of number of Gaussian bumps
(all outside the upper right OOD region) included in the training dataset. (c) Data/sample efficiency: data scaling of the stripes-only
(∼ N) vs. bumps-only (∼ N3) datasets to reach 90% accuracy of x and y generation as a function of image size N (accuracy assessed
based on the location of the darkest pixel). Here the stripes + bumps dataset consists of ∼ 7N bumps + 2N stripes; learning breaks the
curse of dimensionality due to the ability to compositionally generalize zero-shot. (d) Volume metric as a function of layer depth of the
network trained on a dataset of stripes + bumps. (e) 2D neuron activations across different channels in the first layer (layer 0) of a network
trained trained on a dataset of stripes + 50 bumps. (f) Neural tuning curves of two sample neurons at layer 0 and layer 3 of the same
network as in (e).

are able to compositionally generalize to generate additive
stripe conjunctions in the OOD region without having seen
any compositional examples (inside or outside the OOD
region) during training, as shown in Fig. 4(b) when 0 2D
Gaussian bump images are included in the training dataset.
Similar to Fig. 3(c), we show here an example of corner
OOD region to demonstrate that our method is robust for
extrapolative compositional generalization. The remaining
panels of Fig. 4(b) show that as we increase the number of
2D Gaussian bump images included in the training dataset,
the model learns to generate proper bumps in the OOD re-
gion (also see Fig. 7(b)). We further characterize the data
efficiency of this approach to learning to compositionally
generate bumps in the OOD region (learning with stripes +
bumps) versus a traditional approach to learning with just
bumps. The total data count scaling with respect to the im-
age size N is shown in Fig. 4(c). Here we benchmark the
compared models based on the minimal threshold amount
of data needed to reach a target accuracy of 90% in gener-
ating the correct x and y coordinates of the stripe conjunc-

tions/bumps. To our surprise, we found that models trained
on datasets consisting of purely bumps have a data threshold
that scales as ∼ N3, and hence the data requirements grow
as the cube of the size of the problem. On the other hand,
due to the zero-shot generalization capability of models
trained on the stripe dataset, the scaling is linear with N ,
since the data set consists of 2N stripes in total, N for x and
N for y (together with 0 or a small number of bumps). Fur-
thermore, with the increase of stripes training with bumps
to obtain bump outputs rather than plus-shaped ones, the
minimum required number of training bumps scales only
linearly with N , meaning that the total training data remains
linear in N , indicative of compositional generalization.

For comparison with the earlier results, we again plotted
the volume metrics for the model trained on the stripes +
bumps dataset, as a function of model layer depth, Fig. 4(d).
The representations remain relatively smooth and uniform
even in the OOD region, contrasting the models trained with
just the bumps shown in Fig. 2. In addition, we show in
Fig. 4(e) the 2D activations of neurons in the first layer of a

8

Compositional Generalization via Forced Rendering of Disentangled Latents

network trained on a dataset of stripes + 50 bumps. The ac-
tivations show consistent “stripe” patterns that resemble the
embeddings shown in Fig. 3(b) with regularization. More-
over, we show neural tuning curves w.r.t. to x and y for two
sample neurons in layer 0 and layer 3 of the same network
in Fig. 4(f), which exhibits “stripes” in early layers, which
localizes to become a “bump” in downstream layers (more
sample neural tuning curve can be found in Fig. 15).

Intuitively, the early-layer stripes allow the network to build
a “scaffold” in its representations that are straightforward
for it to use to perform additive composition. Later lay-
ers in the model then leverage this scaffold to handle the
multiplicative compositional task — to generate stripe in-
tersections instead of unions — thereby achieving efficient
bump generalization in the OOD region. This highlights
the value of data-centric strategies that emphasize the gen-
erative factors in isolation, consistent with the finding that
dataset augmentation with stripes also improves compo-
sitional generalization and data-efficiency scaling for 2D
bump generation in diffusion models in Ref. (Liang et al.,
2024b). While the prior work concluded that stripe training
generated disentangled latent representations, the present
work shows that supplying or learning disentangled latents
is not sufficient for compositional generalization, and that
stripe training even with disentangled latents helps form
pixel-space latents representations that are necessary for
OOD compositional generalization.

Summary. The commonality between the two disparate
approaches that enable OOD generalization is that they both
encourage the network to form disentangled representations
that are encoded in the space of the 2D pixel outputs. By
contrast, even directly supplying the network with factor-
ized representations does not work if those representations
are abstract and in a different latent space than the 2D im-
age space. Factorization in a latent space may not survive
subsequent dimension expansion by a downstream decoder.
By ensuring that the network learns to separate each under-
lying factor (e.g. x and y) at the pixel level, we preserve the
necessary compositional structure for strong extrapolation
to novel conditions.

5. Discussion & Conclusion
Our results highlight two overarching principles:

1. Disentangled latents are not enough. Factorizing a sin-
gle latent layer (e.g. the bottleneck) into a disentangled
representation does not guarantee compositional struc-
ture in deeper layers; manifold warping can re-entangle
factors, leading to failure in OOD regions.

2. Rendering disentangled latents into the same rep-
resentational space as the outputs is key. Through
a specific architecture with low-rank regularization or

domain-centric data curation (training with independent
factors), the network generates pixel-level embeddings
of the individual x, y latents to achieve strong composi-
tional generalization.

Limitations & Future Directions. While our investiga-
tion provides a clean, mechanistic insight into why disentan-
gled representations often fail on a synthetic 2D bump task,
its scope is inherently limited by the toy nature of the setting.
Extending these insights to large-scale models (e.g., diffu-
sion models, autoregressive architectures, Transformers)
and high-dimensional data domains (e.g., vision, language)
is an important next step. Modern architectures like vision
transformers or large language models may already em-
bed implicit factorization biases—through attention mecha-
nisms or prompt-based modularity—but rigorously assess-
ing whether these biases genuinely support compositional
generalization remains an open challenge.

We also acknowledge that translating insights from our syn-
thetic study to more complex, real-world datasets is nontriv-
ial but essential. As highlighted by Montero et al. (2022),
interactive compositionality is unlikely to be addressed by a
one-size-fits-all solution. Accordingly, we do not claim our
approach is universally applicable, but rather that it reveals
two promising and generalizable directions: (1) training
modular, output-level embedding filters dedicated to each
disentangled input dimension, and (2) leveraging dataset
augmentation strategies that isolate factors of variation. Our
simplified setting was deliberately chosen to cleanly expose
the underlying failure modes, such as the model memo-
rizing ID configurations for OOD generalization, without
confounding interactions.

In future work, we plan to explore how these principles
scale to standard disentanglement datasets and more natu-
ralistic settings, explicitly investigating whether modular
embedding and low-rank factorization constraints retain
their utility. Finally, we emphasize the need for new met-
rics and frameworks to characterize partial and hierarchical
compositional structures, which are far more representative
of real-world cognition. We provide a preliminary attempt at
capturing such structures in Appendix A. Developing prin-
cipled tools to measure subtler forms of compositionality
may better guide both architectural and algorithmic choices
in the pursuit of robust generalization in complex domains.

Ultimately, bridging the gap between disentangled represen-
tations and compositional generalization requires a holistic
view of how a network’s entire forward pass maintains or
destroys factorization. We hope this work provides a step
toward that goal, clarifying both the pitfalls of standard
bottleneck-based approaches and the promise of structural
or regularized solutions.

9

Compositional Generalization via Forced Rendering of Disentangled Latents

Acknowledgements
The authors would like to thank Alan (Junzhe) Zhou, Zim-
ing Liu, Federico Claudi, Megan Tjandrasuwita, Mitchell
Ostrow, Sarthak Chandra, Ling Liang Dong, Hao Zheng,
Tomaso Poggio, Cheng Tang for helpful discussions and
feedback at various stages of this work.

Impact Statement
Our work develops theoretical and empirical insights into
why disentangled or factorized inputs do not necessarily
yield compositional generalization, and proposes practical
strategies (data augmentation, low-rank regularization) to
preserve factorization within the network. By illuminating
how and why factorization can break down—or be main-
tained—this research can guide future model designs that
are more transparent, data-efficient, and capable of robust
extrapolation beyond the training distribution.

From an ethical or societal standpoint, we do not foresee
immediate risks arising directly from these factorization
techniques: the methods and analyses we present are primar-
ily at the conceptual and architectural level. However, we
note that improvements in compositional generalization can
enable models to be more adaptable, including in sensitive
real-world domains such as medical imaging or autonomous
systems. While better extrapolation is desirable, it also
entails that models could behave in unintended ways un-
der distribution shifts if they mix factors in novel, untested
combinations. Ultimately, we believe our framework, by
clarifying the conditions needed for truly factorized repre-
sentations, will enhance the interpretability and reliability
of neural networks, a net positive for the broader machine
learning community.

References
Bengio, Y., Courville, A. C., and Vincent, P. Representation

learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013. doi:
10.1109/TPAMI.2013.50. URL https://doi.org/10.1109/
TPAMI.2013.50.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters, N.,
Desjardins, G., and Lerchner, A. Understanding disen-
tangling in β-vae. CoRR, abs/1804.03599, 2018. URL
http://arxiv.org/abs/1804.03599.

Chen, T. Q., Li, X., Grosse, R. B., and Duvenaud, D.
Isolating sources of disentanglement in variational
autoencoders. In Bengio, S., Wallach, H. M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December

3-8, 2018, Montréal, Canada, pp. 2615–2625, 2018.
URL https://proceedings.neurips.cc/paper/2018/hash/
1ee3dfcd8a0645a25a35977997223d22-Abstract.html.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adver-
sarial nets. In Lee, D. D., Sugiyama, M., von Luxburg,
U., Guyon, I., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain, pp. 2172–2180, 2016.
URL https://proceedings.neurips.cc/paper/2016/hash/
7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html.

Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.
Nonnegative Matrix and Tensor Factorizations - Appli-
cations to Exploratory Multi-way Data Analysis and
Blind Source Separation. Wiley, 2009. ISBN 978-
0-470-74666-0. doi: 10.1002/9780470747278. URL
https://doi.org/10.1002/9780470747278.

DeMoss, B., Sapora, S., Foerster, J. N., Hawes, N., and Pos-
ner, I. The complexity dynamics of grokking. CoRR,
abs/2412.09810, 2024. doi: 10.48550/ARXIV.2412.
09810. URL https://doi.org/10.48550/arXiv.2412.09810.

Eastwood, C. and Williams, C. K. I. A framework for the
quantitative evaluation of disentangled representations.
In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=By-7dz-
AZ.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V. S.
Domain-adversarial training of neural networks. In
Csurka, G. (ed.), Domain Adaptation in Computer Vi-
sion Applications, Advances in Computer Vision and
Pattern Recognition, pp. 189–209. Springer, 2017. doi:
10.1007/978-3-319-58347-1\ 10. URL https://doi.org/
10.1007/978-3-319-58347-1 10.

Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E.
Neuronal population coding of movement direction. Sci-
ence, 233(4771):1416–1419, 1986. doi: 10.1126/science.
3749889.

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glo-
rot, X., Botvinick, M. M., Mohamed, S., and Lerch-
ner, A. beta-vae: Learning basic visual concepts with
a constrained variational framework. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017a. URL https:
//openreview.net/forum?id=Sy2fzU9gl.

10

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/1804.03599
https://proceedings.neurips.cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/1ee3dfcd8a0645a25a35977997223d22-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7c9d0b1f96aebd7b5eca8c3edaa19ebb-Abstract.html
https://doi.org/10.1002/9780470747278
https://doi.org/10.48550/arXiv.2412.09810
https://openreview.net/forum?id=By-7dz-AZ
https://openreview.net/forum?id=By-7dz-AZ
https://doi.org/10.1007/978-3-319-58347-1_10
https://doi.org/10.1007/978-3-319-58347-1_10
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl

Compositional Generalization via Forced Rendering of Disentangled Latents

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glo-
rot, X., Botvinick, M. M., Mohamed, S., and Lerch-
ner, A. beta-vae: Learning basic visual concepts with
a constrained variational framework. In 5th Interna-
tional Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017b. URL https:
//openreview.net/forum?id=Sy2fzU9gl.

Kamb, M. and Ganguli, S. An analytic theory of creativity in
convolutional diffusion models. CoRR, abs/2412.20292,
2024. doi: 10.48550/ARXIV.2412.20292. URL https:
//doi.org/10.48550/arXiv.2412.20292.

Kim, H. and Mnih, A. Disentangling by factorising. In
Dy, J. G. and Krause, A. (eds.), Proceedings of the 35th
International Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, volume 80 of Proceedings of Machine Learning
Research, pp. 2654–2663. PMLR, 2018. URL http://
proceedings.mlr.press/v80/kim18b.html.

Lake, B. M. and Baroni, M. Generalization without sys-
tematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 2879–2888.
PMLR, 2018. URL http://proceedings.mlr.press/v80/
lake18a.html.

Liang, Q., Liu, Z., and Fiete, I. R. Do diffusion models learn
semantically meaningful and efficient representations? In
ICLR 2024 Workshop on Mathematical and Empirical
Understanding of Foundation Models, 2024a. URL https:
//openreview.net/forum?id=pAAMFQiAuD.

Liang, Q., Liu, Z., Ostrow, M., and Fiete, I. How diffusion
models learn to factorize and compose. In 38th Confer-
ence on Neural Information Processing Systems, NeurIPS
2024, 2024b.

Lippl, S. and Stachenfeld, K. When does compositional
structure yield compositional generalization? A kernel
theory. CoRR, abs/2405.16391, 2024. doi: 10.48550/
ARXIV.2405.16391. URL https://doi.org/10.48550/arXiv.
2405.16391.

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S.,
Schölkopf, B., and Bachem, O. Challenging common
assumptions in the unsupervised learning of disentangled
representations. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long

Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 4114–4124. PMLR, 2019.
URL http://proceedings.mlr.press/v97/locatello19a.html.

Montero, M., Bowers, J., Ponte Costa, R., Ludwig, C.,
and Malhotra, G. Lost in latent space: Examining
failures of disentangled models at combinatorial gen-
eralisation. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances in
Neural Information Processing Systems, volume 35,
pp. 10136–10149. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper files/paper/2022/
file/41ca8a0eb2bc4927a499b910934b9b81-Paper-
Conference.pdf.

Montero, M. L., Ludwig, C. J. H., Costa, R. P., Malho-
tra, G., and Bowers, J. S. The role of disentanglement
in generalisation. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=qbH974jKUVy.

Okawa, M., Lubana, E. S., Dick, R. P., and Tanaka, H. Com-
positional abilities emerge multiplicatively: Exploring dif-
fusion models on a synthetic task. CoRR, abs/2310.09336,
2023. doi: 10.48550/ARXIV.2310.09336. URL https:
//doi.org/10.48550/arXiv.2310.09336.

O’Keefe, J. and Nadel, L. The Hippocampus as a Cognitive
Map. Oxford University Press, Oxford, UK, 1978.

Shadlen, M. N. and Newsome, W. T. The variable discharge
of cortical neurons: implications for connectivity, com-
putations, and coding. The Journal of Neuroscience, 18
(10):3870–3896, 1998. doi: 10.1523/JNEUROSCI.18-
10-03870.1998.

Wiedemer, T., Mayilvahanan, P., Bethge, M., and Brendel,
W. Compositional generalization from first principles.
In Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., and Levine, S. (eds.), Advances in Neural
Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper files/
paper/2023/hash/15f6a10899f557ce53fe39939af6f930-
Abstract-Conference.html.

Xu, Z., Niethammer, M., and Raffel, C. Composi-
tional generalization in unsupervised compositional
representation learning: A study on disentanglement
and emergent language. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, 2022.

11

https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.48550/arXiv.2412.20292
https://doi.org/10.48550/arXiv.2412.20292
http://proceedings.mlr.press/v80/kim18b.html
http://proceedings.mlr.press/v80/kim18b.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://openreview.net/forum?id=pAAMFQiAuD
https://openreview.net/forum?id=pAAMFQiAuD
https://doi.org/10.48550/arXiv.2405.16391
https://doi.org/10.48550/arXiv.2405.16391
http://proceedings.mlr.press/v97/locatello19a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/41ca8a0eb2bc4927a499b910934b9b81-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/41ca8a0eb2bc4927a499b910934b9b81-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/41ca8a0eb2bc4927a499b910934b9b81-Paper-Conference.pdf
https://openreview.net/forum?id=qbH974jKUVy
https://doi.org/10.48550/arXiv.2310.09336
https://doi.org/10.48550/arXiv.2310.09336
http://papers.nips.cc/paper_files/paper/2023/hash/15f6a10899f557ce53fe39939af6f930-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/15f6a10899f557ce53fe39939af6f930-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/15f6a10899f557ce53fe39939af6f930-Abstract-Conference.html

Compositional Generalization via Forced Rendering of Disentangled Latents

URL http://papers.nips.cc/paper files/paper/2022/
hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-
Conference.html.

Yang, T., Wang, Y., Lan, C., Lu, Y., and Zheng, N.
Vector-based representation is the key: A study on dis-
entanglement and compositional generalization. CoRR,
abs/2305.18063, 2023. doi: 10.48550/ARXIV.2305.
18063. URL https://doi.org/10.48550/arXiv.2305.18063.

Zavatone-Veth, J. A., Yang, S., Rubinfien, J. A., and Pehle-
van, C. Neural networks learn to magnify areas near
decision boundaries. CoRR, abs/2301.11375, 2023. doi:
10.48550/ARXIV.2301.11375. URL https://doi.org/10.
48550/arXiv.2301.11375.

Zhao, S., Ren, H., Yuan, A., Song, J., Goodman,
N. D., and Ermon, S. Bias and generalization in
deep generative models: An empirical study. In
Bengio, S., Wallach, H. M., Larochelle, H., Grau-
man, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada, pp. 10815–10824, 2018.
URL https://proceedings.neurips.cc/paper/2018/hash/
5317b6799188715d5e00a638a4278901-Abstract.html.

12

http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9f9ecbf4062842df17ec3f4ea3ad7f54-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2305.18063
https://doi.org/10.48550/arXiv.2301.11375
https://doi.org/10.48550/arXiv.2301.11375
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5317b6799188715d5e00a638a4278901-Abstract.html

Compositional Generalization via Forced Rendering of Disentangled Latents

A. A Framework for Compositionality, Factorization, and Modularity
Existing literature is divided on whether disentangled representation learning truly fosters compositional generalization and
data efficiency. Despite extensive empirical studies and numerous proposed metrics, there is still no unified framework that
clearly defines factorization, disentanglement, and compositionality or their interrelationships. A key challenge lies in the
lack of a systematic “language” to characterize the various types and degrees of these concepts. Furthermore, real-world
datasets often exhibit multiple, overlapping forms of compositionality, each with its own failure modes that can obscure one
another. In response, we aim to develop a more general framework that makes these distinctions explicit.

This section aims to establish a framework for unifying the concepts of compositionality, factorization, disentanglement,
and modularity. Specifically, we introduce two core components of our framework. First, we define the compositional
complexity of a target function or distribution via the minimal number of rank-1 product terms needed to represent it. Then,
we formalize factorization (disentanglement) for the intermediate activations of a neural network, allowing for arbitrary
invertible transformations.

A.1. Definition of compositionality and compositional complexity

Here we take on a function learning perspective of defining factorization and compositionality. Specifically, for learning a
compositional solution, we expect network to first learn how to “break down” (factorize) component factors and then flexibly
“re-combine” them for compositional generation. For a neural network learning a generic N -way composite target function
f : X1 × · · · × XN → RM of N features {x1, x2, . . . , xN}, we can write the tensor decomposition of this function as

f(x1, . . . , xN) =

R∑
r=1

λr ϕ
(x1)
r (x1) · · ·ϕ(xN)

r (xN), (13)

where ϕ
(xi)
r (xi) : Xi → RM and λi ∈ R are lumped factors.

Note that this decomposition is not unique, meaning that a given function f might permit multiple degenerate decomposition
with the same rank or different ranks. This means that the network is not guaranteed to learn a compositional decomposition
that aligns with the canonical axes of variation, as required by some of the disentanglement metrics in existing literature.

Probability Distributions as a Sum of Product Factors. In some settings, rather than learning a deterministic function
f : X1×· · ·×XN → RM , we aim to model a joint probability distribution p(x1, . . . , xN). An analogous “sum-of-products”
factorization can be written as:

p(x1, . . . , xN) =

R∑
r=1

λr p
(r)
1 (x1) · · · p(r)N (xN), with

R∑
r=1

λr = 1, λr ≥ 0. (14)

Here, each p
(r)
i (xi) denotes a univariate (or lower-dimensional) distribution on Xi, and λr are nonnegative mixture weights.

In discrete domains, p(r)i can be categorical distributions; in continuous domains, they can be densities (e.g. Gaussian
components or neural-network–based PDFs). Intuitively, we are representing p as a mixture of “fully factorized” product
distributions, each contributing a rank-1 tensor p(r)1 × · · · × p

(r)
N in the joint space.

Defining Compositional Complexity. There are some compositional functions or probability distributions that are
inherently more difficult to learn than others. Here we formalize the “compositional complexity” of a target function or
distribution via the minimal number of rank-1 (factorized) terms required in a sum-of-product decomposition. Let N be the
number of factors (or dimensions), and let {ϕ(xi)

r } or {p(r)i } denote per-factor functions or distributions.

Case 1: Deterministic Function. For f : X1 × · · · × XN → RM , assume M = 1 for simplicity, or treat each output
dimension independently. A sum-of-product (CP) representation is

f(x1, . . . , xN) =

R∑
r=1

N∏
i=1

ϕ(xi)
r (xi), (up to a scalar factor λr if desired). (15)

Define the exact rank of f as:

R∗(f) = min

{
R

∣∣∣∣ f(x1, . . . , xN) =

R∑
r=1

N∏
i=1

ϕ(xi)
r (xi)

}
. (16)

13

Compositional Generalization via Forced Rendering of Disentangled Latents

If f cannot be exactly decomposed with finite R, we consider an ε-approximation in some norm or error measure ∥ · ∥:

R∗
ε(f) = min

{
R

∣∣∣∣ ∥∥∥f −
R∑

r=1

N∏
i=1

ϕ(xi)
r (xi)

∥∥∥ ≤ ε

}
. (17)

A smaller R∗(f) (or R∗
ε(f)) indicates f is more “compositional” or factorized.

Case 2: Probability Distribution. For a joint probability p(x1, . . . , xN), a sum-of-products corresponds to a finite
mixture of product distributions:

p(x1, . . . , xN) =

R∑
r=1

λr

N∏
i=1

p
(r)
i (xi),

R∑
r=1

λr = 1, λr ≥ 0. (18)

Its exact rank is:

R∗(p) = min

{
R

∣∣∣∣ p =

R∑
r=1

λr

N∏
i=1

p
(r)
i (xi)

}
. (19)

If no finite R yields an exact factorization, we allow an ε-approximation w.r.t. a suitable divergence D(·, ·) (e.g. KL
divergence or total variation distance):

R∗
ε(p) = min

{
R

∣∣∣∣ D(p ∥∥ R∑
r=1

λr

N∏
i=1

p
(r)
i

)
≤ ε

}
. (20)

Again, smaller ranks correspond to “low compositional complexity” (fewer factorized terms), whereas large R indicates
more intricate cross-factor entanglements.

A.2. Definition of Factorization/Disentanglement of Neural Networks

Having introduced the notion of intrinsic compositionality for a target function or distribution, we now shift to defining
factorization (a.k.a. disentanglement) in the context of a neural network’s activation space. This concept applies to an
intermediate layer or the entire network.

Defining factorization vs. disentanglement. Despite the frequent usage of these terms, there is no universal consensus on
their precise definitions in the literature. Some works treat them as strictly synonymous, while others reserve “factorization”
for representations whose coordinates directly correspond to physically or semantically independent factors (e.g. each
latent dimension controlling one ground-truth variable). By contrast, “disentanglement” can refer to a broader class of
methods or criteria (e.g. axis-aligned independence, mutual information scores, or partial correlations). In this paper, we do
not distinguish sharply between these nuances. Wherever we refer to “disentangled” or “factorized” representations, we
mean that a model’s latent (or intermediate) dimensions reflect independently varying components of the data. The specific
implementation details—whether formalized via a β-VAE objective, mutual-information measures, or other constraints—are
secondary to the overall idea that each latent dimension ideally captures a different underlying factor. Hence, we use the two
terms interchangeably throughout the manuscript.

Activation Matrix Setup. Let
α : X1 × · · · × XN → RD (21)

represent the activations of a given network layer. For an input (x1, . . . , xN), the output α(x1, . . . , xN) ∈ RD. Over NID

training samples
{
(x1,i, . . . , xN,i)

}NID

i=1
, we can assemble an activation matrix

α ∈ RNID×D, where row i is α(x1,i, . . . , xN,i). (22)

Optionally, we may project α to a lower dimension K ≤ D via W ∈ RK×D (e.g. PCA), yielding

αfeat(x1, . . . , xN) = α(x1, . . . , xN) W⊤ ∈ RK . (23)

14

Compositional Generalization via Forced Rendering of Disentangled Latents

General Definition of Factorization. A purely linear test might require an invertible matrix U ∈ RK×K such that

αfeat(x1, . . . , xN)U⊤ =
[
β1(x1), . . . , βN (xN)

]
, (24)

where each block of coordinates depends only on a single factor xj . However, factorization may emerge only under a
nonlinear reparametrization. Hence, we relax the requirement to any invertible map

T : RD → RD (e.g. a diffeomorphism or normalizing flow). (25)

Definition (General Factorization). We say α : X1 × · · · × XN → RD is nonlinearly factorized w.r.t. (x1, . . . , xN) if
there exist:

1. An invertible transformation T : RD → RD,

2. A partition of {1, . . . , D} into N disjoint subsets I1 ∪ · · · ∪ IN ,

such that defining
β(x1, . . . , xN) = T

(
α(x1, . . . , xN)

)
∈ RD, (26)

we have, for every coordinate i ∈ Ij ,

βi(x1, . . . , xN) = βi(xj) depends only on xj . (27)

Concretely, in these transformed coordinates (β1, . . . , βN), each subset of coordinates implements the feature(s) of a
single factor xj , with no cross-dependence among different factors.

Modularity via Factorization. A representation is functionally modular if, under some invertible transform T , we can
rearrange the coordinates into sub-blocks that each depend on exactly one factor xj . This directly matches the factorization
criterion above. In contrast, a structurally modular network places each factor’s neurons in physically separate submodules
(e.g. block-diagonal connectivity), making the separation visible without any transform. Hence, functional modularity
(factorization) is more general and only requires a suitable reparametrization in RD, whereas structural modularity is a
stricter design property at the raw parameter level.

A.3. Partial Factorization, Entanglement, and Reversibility

Sections A.2 gave a definition of factorization vs. entanglement: if any invertible map T can reorder the coordinates into
blocks that depend purely on x or purely on y, we call the representation factorized; otherwise, it is entangled. In practice,
however, real-world data and deep networks often produce partial factorization, where some features mix x and y only
mildly or separate them only in certain regions. Further, certain layers introduce irreversible steps (e.g. pooling, saturations),
which can destroy factor structure. We elaborate on these points below.

Partial Factorization. A representation need not split perfectly into two blocks (Ix and Iy) to convey some compositional
benefits. For example, consider a multi-factor domain (x, y, z) in which the representation merges two of the factors (x, y)
but leaves z separate. One might say the network has partially factorized the input. More formally, partial factorization
arises if some invertible map T can partition the D coordinates into sub-blocks, each depending on a subset (not necessarily
size 1) of the factors. This differs from pure factorization in that each block may mix more than one factor, yet remain
independent of other blocks. Concretely:

T
(
α(x, y, z)

)
=

[
βxy(x, y), βz(z)

]
, with minimal cross-dependence among blocks. (28)

This partial structure still yields some compositional benefits (e.g. reusing the (x, y) sub-block in new contexts of z). But
it may not qualify as fully “disentangled” in the strict sense of Section A.2. Indeed, such partial factorization commonly
appears if x and y are correlated in training data or if the network’s architecture merges them early.

Entanglement via Irreversible Mixing. Even if a representation starts factorized in an early layer, the network may
subsequently entangle factors by applying irreversible operations such as:

• Pooling or Striding: Combining multiple spatial positions (or multiple channels) into one, discarding the ability to
invert them individually.

15

Compositional Generalization via Forced Rendering of Disentangled Latents

• Nonlinear Saturation: A ReLU or sigmoid can “clip” signals, so the original amplitude differences from x vs. y can
no longer be fully recovered.

• Dimension Reduction: Fully connected layers that collapse from a higher dimension D to a smaller one D′ < D can
forcibly merge features.

Because our definition of factorization requires an invertible map T to unscramble the coordinates, any irreversible merge
that loses information effectively prevents us from re-separating x and y. Thus, irreversible mixing is a key mechanism by
which networks destroy factorization.

Reversible Mixing Need Not Break Factorization. By contrast, a reversible or bijective layer can combine factors in
intermediate channels without permanently entangling them, so long as there exists an inverse transform. For instance, a
normalizing-flow block may shuffle or mix (x, y) channels in a fully invertible manner; the overall system can still preserve
factorization if the subsequent training does not “pinch” those degrees of freedom. In principle, any invertible map that
merges coordinates can be “undone” later, so the final representation might remain factorized.

A.4. A Kernel-Based Perspective on Factorization

To operationalize the above definitions of factorization/disentanglement concretely, we here propose a kernel-based
perspective and define a factorization metric that assess the factorization of the kernel learned by the neural network. The
goal here is to characterize such a kernel, given its potentially factorized form, to understand the different regimes in which
it compositionally generalize (or not).

We now consider an N-partite domain X1 × · · · × XN and a positive-semidefinite (PSD) kernel

K :
(
X1 × · · · × XN

)
×

(
X1 × · · · × XN

)
→ R. (29)

Under suitable conditions (e.g. an analogue of Mercer’s theorem), K often admits a sum-of-product (canonical polyadic)
expansion:

K
((

x1, . . . , xN

)
,
(
x′
1, . . . , x

′
N

))
=

R∗∑
r=1

λr

N∏
j=1

k
(r)
j

(
xj , x

′
j

)
, (30)

where each term λr

∏N
j=1 k

(r)
j (xj , x

′
j) is rank-1 across the N factors, and R∗ may be finite or infinite.

Interpretation. If R∗ = 1 in (30), we say K is a purely factorized (rank-1) kernel, effectively separating each factor xj .
Larger R∗ > 1 signals partial or full entanglement across these factors in K.

Rank-Based Measure of Factorization. We define the CP rank of K by

rank(K) = min
{
R∗ ∣∣ (30) holds exactly

}
, (31)

in analogy to the Schmidt rank in bipartite systems. A small rank implies that K is closer to a “fully separable” structure
across (x1, . . . , xN), while a large rank means more cross-term mixing.

A.5. Polynomial Expansions and a Generalized Factorization Metric

Suppose K admits a polynomial-like expansion enumerating single-factor, pairwise, and higher-order cross terms:

K =
∑
ℓ

θℓ Kℓ, (32)

where each Kℓ might be an n-factor product kernel on a subset of coordinates, and θℓ is its coefficient. We assign each θℓ
a “weight” w(θℓ), for instance |θℓ| or θ2ℓ . A generalized factorization metric then measures the fraction of K’s “weight”
contributed by a chosen subset of “lower-order” terms. Formally, if S denotes the subset of indices corresponding to
single-factor (or low-order) terms, we define

PF Coeff(S)(K) =

∑
ℓ∈S w(θℓ)∑
ℓ w(θℓ)

. (33)

By varying S (e.g. only single-factor vs. single-plus-pairwise), we obtain a family of “explained fraction” values—analogous
to cumulative explained variance in PCA. A higher fraction indicates that K is dominantly factorized by low-order expansions
(less entangled), whereas large higher-order terms imply more cross-variable mixing.

16

Compositional Generalization via Forced Rendering of Disentangled Latents

Operational Regimes of NNs in light of this decomposition. Based on the defined rank-based measure of factorization,
we can imagine two operational regime limits of the neural networks, namely

• Pure memorization regime: in which case the network resorts to tabular learning (memorization), i.e. learning a single
N -factor kernel term

• Pure factorization regime: in which case the network learns a completely compositional kernel (assuming each of the
N factors are independent).

These are obviously theoretical limits, and in reality, the network probably operates in a regime that interpolates between the
two, i.e. learning partially/imperfectly factorized solutions.

How to estimate this metric in practice. In real-world scenarios, we rarely have direct access to the continuous kernel
K : (X1 × · · · × XN)2 → R. Instead, we can discretize K by selecting a finite set of data points {(x1,i, . . . , xN,i)}Mi=1 and
forming the M ×M Gram matrix:

K(i,j) = K
((

x1,i, . . . , xN,i

)
,
(
x1,j , . . . , xN,j

))
. (34)

We can interpret this matrix as a discrete approximation to K. To apply our generalized factorization metric (§A.5), we then:

1. Approximate expansions. Attempt to factor (or partially factor) K into a sum-of-product form among the N factors,
e.g. through low-rank tensor methods or suitable polynomial expansions on the sampled coordinates.

2. Coefficient extraction. If we assume a polynomial-like expansion, K ≈
∑

ℓ θℓ Kℓ, we obtain finite-dimensional
coefficients {θℓ} by fitting or projecting onto a chosen basis.

3. Compute the factorization ratio. Restrict attention to the “low-order” terms (e.g. single-factor or pairwise) to form a
subset S. Define

PF Coeff(S)(K) =

∑
ℓ∈S w(θℓ)∑
ℓ w(θℓ)

, (35)

just as in the continuous setting, but now ℓ indexes a finite set of basis or fitted components.

This procedure yields a practical, data-driven measure of how “factorized” the empirical kernel is on the sampled domain.
Notably, if the sampling is sparse or unrepresentative, the resulting K may fail to capture subtle cross-factor structure.
In that sense, one can view PF Coeff(S)(K) as an approximate or lower-dimensional proxy for PF Coeff(S)(K) in the
continuous limit.

B. Metric Tensor and Factorization Metric for N -Dimensional Inputs
In this appendix, we outline a generic procedure to quantify the local geometry of a neural representation f defined on an
N -dimensional input space, with the metric tensor g from Ref. (Zavatone-Veth et al., 2023), and then specialize to the 2D
case with an explicit factorization metric that we propose based on g.

B.1. General N -Dimensional Definition
Representation and Jacobian. Let

f : RN → RD, (36)

where f(x1, . . . , xN) = (f1, . . . , fD) for each input vector x = (x1, . . . , xN). We define the Jacobian J of f at a point x by

J(x) =

∂f1/∂x1 · · · ∂f1/∂xN

...
. . .

...
∂fD/∂x1 · · · ∂fD/∂xN

 ∈ RD×N . (37)

17

Compositional Generalization via Forced Rendering of Disentangled Latents

Metric Tensor. The induced metric tensor g(x) is then an N ×N matrix,

g(x) = J(x)⊤ J(x), (38)

where gµν(x) =
∑D

i=1(∂fi/∂xµ)(∂fi/∂xν). Geometrically, g captures how infinitesimal distances in input space map to
distances in the representation space RD. By computing g, we gain insights into how the native space becomes wraped in
the embedding space (Fig. 5).

native space embedding space

f(x)

Figure 5. The action of the neural net can be imagined as wrapping of the (originally flat) native space (left) into the embedding space
(right).

Volume Element. The local volume element is given by

dv(x) =
√
det

(
g(x)

)
dx1 . . . dxN . (39)

This indicates how the network “stretches” or “distorts” volumes near each x.

Factorization. While there is no single universal scalar for “factorization” in the N -dimensional case, one can investigate
off-diagonal elements of gµν (or sub-blocks of the Jacobian) to see how strongly certain input dimensions (xµ) mix with
others (xν). For instance, if ∂f/∂xµ is approximately orthogonal to ∂f/∂xν for all µ ̸= ν, the representation preserves
independence among coordinates.

B.2. Specialization to the 2D Case

When N = 2, let the input be (x, y). Then the metric g is a 2× 2 matrix:

g =

[
⟨ ∂f∂x ,

∂f
∂x ⟩ ⟨ ∂f∂x ,

∂f
∂y ⟩

⟨ ∂f∂y ,
∂f
∂x ⟩ ⟨ ∂f∂y ,

∂f
∂y ⟩

]
. (40)

Its volume element is
dv(x, y) =

√
det(g(x, y)) dxdy. (41)

A Simple Factorization Metric in 2D. If one desires a single scalar capturing how “uncoupled” x and y remain, we can
define:

Factorization(g(x, y)) = 1 −
∣∣gxy(x, y)∣∣∣∣gxx(x, y)∣∣ +

∣∣gyy(x, y)∣∣ , (42)

where gxx ≡ g0,0, gyy ≡ g1,1, and gxy ≡ g0,1 = g1,0. In words:

• gxx and gyy measure how much the representation changes when moving purely in the x- or y-direction.

• gxy captures cross-direction entanglement.

• The closer Factorization(g) is to 1, the more orthogonal (uncoupled) these directions are in RD.

By averaging this score over a grid of (x, y) points, one obtains a global measure of whether the representation remains
factorized or becomes entangled.

18

Compositional Generalization via Forced Rendering of Disentangled Latents

Without Regularization With Regularization

Figure 6. Visualization of x and y embedding matrices without and with regularization.

C. Low-rank Regularization for Compositional Generalization
In our generative approach, each input factor (e.g. the one-hot code for coordinate x or y) is mapped to a two-dimensional
embedding matrix. Concretely, suppose we have a factor γ (which can be x or y), and we define a matrix

Wi,j(γ) ∈ Rd×d, (43)

where the indices (i, j) correspond to a row and column in this 2D embedding. The matrix W (γ) is then passed, possibly
along with other embeddings, into subsequent layers (e.g. a small convolutional network) to produce the final output image.

Low-Rank Decomposition. To encourage each embedding matrix Wi,j to remain factorized, we represent it via an
SVD-like decomposition:

Wi,j =

r∑
n=1

v
(n)
i λ(n) u

(n)
j , (44)

where r is an upper bound on the rank, λ(n) ∈ R are scalar coefficients, and v
(n)
i , u

(n)
j are the row- and column-basis vectors

for the n-th mode. We then regularize these parameters to encourage a low-rank and spatially consistent solution.

Entropy and Variance Penalties. First, we interpret the squared magnitudes [λ(n)]2 as a probability distribution across n,

λ̃(n) =
[λ(n)]2∑r

m=1[λ
(m)]2

, (45)

and add an entropy penalty (DeMoss et al., 2024)

Lent = − η1

r∑
n=1

λ̃(n) ln
[
λ̃(n)

]
. (46)

Minimizing Lent reduces the distribution’s entropy, making only a few modes dominant (i.e. low rank).

Second, we penalize large row- or column-wise variance of the vectors v(n), u(n). Concretely, let Var(v(n)) denote the
sample variance of v(n) across indices i. Then we define

Lvar = η2

r∑
n=1

[
Var

(
v(n)

)
+ Var

(
u(n)

)]
. (47)

19

Compositional Generalization via Forced Rendering of Disentangled Latents

(a)

(b)

Figure 7. Augmenting 2D Gaussian bump dataset with 1D Gaussian stripes enables compositional generalization. (a) shows the 1D
Gaussian stripe dataset for N = 28. (b) shows 4 sample generated OOD images for models trained on 1D Gaussian stripes + p% ID 2D
Gaussian bumps subsampled.

Minimizing Lvar discourages the model from “memorizing” individual entries (i, j), thus promoting spatial invariance.
Summing both these terms along with the usual reconstruction loss (e.g. MSE) yields

Ltotal = LMSE + Lent + Lvar. (48)

By applying (44)–(46) to the embedding matrices for both x- and y-factors, the network learns a more factorized, compo-
sitional representation that generalizes better to unseen coordinate combinations. Fig. 6 demonstrate the 2D embedding
matrices corresponding to different values of x and y in the cases without and with the entropy + variance regularization. In
the case of no regularization, the model fails to preserve the integrity of the signal across the OOD region. In contrast, with
regularization, each embedding matrix exhibits more pronounced vertical or horizontal banding that aligns cleanly with
the chosen x- or y-coordinate. This indicates the network has discovered a more factorized structure, making it easier to
recombine x and y to generate a 2D Gaussian bump in unseen OOD configurations.

D. Experimental Details
In this section, we describe the neural network architectures used for generating bump functions, including exact layer sizes,
activation functions, optimization algorithms, hyperparameters, and training protocols. Code to reproduce the experiments
can be found in this Github repository. We explored various input formats and model depths; below are detailed descriptions
of representative CNN and MLP models using bump-encoding inputs:

Property CNN Architecture MLP Architecture

Input Dimensions 56 (reshaped to 56× 1× 1) 56
Output Dimensions 1× 28× 28 1× 28× 28
Layers 4 ConvTranspose2d layers (upsampling from 7× 7 to 28× 28) 3 fully-connected linear layers
Hidden Layer Size 64 channels per hidden layer 256 units per hidden layer
Parameter Count ∼315K ∼272K
Activation Function ReLU ReLU
Optimizer AdamW (Learning Rate: 1× 10−3) AdamW (Learning Rate: 1× 10−3)

Table 1. Comparison of CNN and MLP architectures

These details clearly communicate the architectural specifics and ensure reproducibility.

20

https://github.com/qiyaoliang/DisentangledCompGen

Compositional Generalization via Forced Rendering of Disentangled Latents
B

um
p

E
nc

od
in

g
R

at
e

E
nc

od
in

g

ID

OOD

ID

OOD

ID

OOD

ID

OOD

ID

OOD

ID

OOD

Figure 8. Full similarity/distance/overlap matrices visualization across the entire ID-OOD data distribution, compared between
networks with bump (top) and rate (bottom) input encodings.

E. Dataset Augmentation
One way of improving compositional generalization in our synthetic toy example is to augment the 2D Gaussian bump
dataset with 1D Gaussian stripes, thereby encouraging a more factorized representation in the pixel domain. Concretely, we
generate vertical stripes by fixing a particular x-index and applying a 1D Gaussian along the y-axis, and horizontal stripes
by fixing a y-index and applying a 1D Gaussian along the x-axis. Fig. 6(a) shows these stripes for N = 28, with each panel
corresponding to a specific row or column coordinate. We then combine all stripes with a fraction p% of the original 2D
bump dataset, so that examples of the 1D patterns are always present even when the 2D samples are subsampled.

This augmentation strategy allows the network to learn separate “axes” of variation (along x and y) more explicitly.
Empirically, as shown in Fig. 6(b), models trained on these augmented datasets exhibit improved extrapolation to out-
of-distribution (OOD) regions, even with limited 2D bump data. The presence of 1D stripes encourages a form of
compositional inductive bias, wherein the model learns to additively combine horizontal and vertical factors in the pixel
domain. Consequently, we gain the insight that guiding models toward simpler, factorized building blocks can significantly
enhance their ability to recombine learned components in novel settings, an essential capability for robust compositional
generalization.

F. Supplementary Experimental Results
F.1. Full Kernel Characterization

In Sec. 3.3, we characterized the model’s OOD generalization behavior from a kernel-based perspective. In Fig. 1(e),
we showed the agreement between the similarity (overlap) matrix with the theorized binary factorized kernel, which
showed that the model independently “processes” novel input combinations of x and y. Here, we provide the full
similarity/distance/overlap matrices across the entire generated dataset, ID and OOD. We note that Fig. 1(e) essentially
shows a slice of what are shown in Fig. 8. We compare between generated image by models trained with bump-encoding
and ramp-encoding inputs, and the matrices are constructed based on three metrics: 1) cosine similarity, 2) L2 distance, and
3) pixel overlap. We notice that the kernel matrices of bump-encoded model exhibit stronger “block” structure as compared

21

Compositional Generalization via Forced Rendering of Disentangled Latents

2D
 U

M
A

P
E

m
be

dd
in

gs
(a)

(b)

(c)

(d)

Figure 9. MNIST digit “4” image rotation experiment with OOD range of 160◦ − 200◦. (a) shows the reconstruction MSE as a
function of rotation angle. (b) shows the 2D UMAP embeddings for representations at different layers of the network. (c) and (d) shows
the generated rotated images in the OOD range vs. the pixel-wise interpolated images between 160◦ and 200◦.

to those of the ramp-encoded model. Here we note that the matrices have interesting diagonal structure from the non-finite
width of the Gaussian bumps.

F.2. MNIST Digit Image Rotation Experiments

In Sec. 3.3, we mentioned that the phenomenon of activation superposition corresponding to memorized ID data seem to be
generically applicable beyond the compositional setting. In Fig. 9, we present a simple toy experiment on rotating a single
MNIST image data of number “4.” We generate a dataset of this rotated image “4” for various rotation angles θ ∈ [0, 360◦]
while leaving out an OOD range θOOD ∈ (160◦, 200◦). We then train a CNN on the ID data, with input (cos θ, sin θ),
and test if the model can interpolate/extrapolate to the θOOD range. Unsurprisingly, the model fails to generalize to the
unseen rotation angle range, as shown by the MSE plot in Fig. 9(a). Nevertheless, the generated OOD images reveal that
the model performs linear interpolation between the edge-most ID samples, namely the images rotated at 160◦ and 200◦.
In Fig. 9(d), we show the linear interpolation between the ground truth rotated images at 160◦ and 200◦, which strongly
resembles the generated OOD images shown in Fig. 9(c). Intriguingly, in Fig. 9(b) we show that the UMAP-embedded latent
representations across the network layers remain smooth without significant deformation, unlike the case of 2D Gaussian
bump generation presented in the main text. Nonetheless, the OOD outputs of the model as linear interpolation of ID images
confirms that the model is indeed memorizing all ID images and superposing the corresponding activation patterns, which
resonates with our findings for the 2D Gaussian bump generation experiment.

F.3. Volume Metric Plots and Generated OOD Images

In Sec. 3.4, we characterized manifold warping using the Jacobian based volume metric, as well as factorization and linear
probe metrics as a function of layer depth. Here we show the same metrics for networks of different depths, for both CNNs
(Fig. 11 and Fig. 12) and MLPs (Fig. 13 and Fig. 14). We also show the generated images as a function of network depth for
CNNs in Fig. 10. An interesting phenomenon here is that the MLP models seems to have the opposite “warping” effect in the
OOD region as compared to the CNN models. Moreover, the MLPs seem to have a smoother but more drastic degradation
of factorization as a function of layer depth. Nonetheless, we expect similar conclusions regarding disentanglement and
factorization to hold for CNNs and MLPs alike.

F.4. Neural Tuning Curves

In Sec. 4.2, we discussed the potential benefits of training models with augmented datasets that contain isolated factors
of variation. Specifically, we showed that models trained with stripes+bumps are able to compositionally generalize in a
data efficient manner. Mechanistically, the stripes provide the model a shortcut bias that leads the model to form additive
composition in early layers of the network, which manifests as “stripe conjunctions,” which become “bumps” in downstream
layers. In Fig. 15, we visualize four layers of a CNN trained with stripes only (left) and with stripes+100 bumps (right).
Each sub-panel shows a 2D activation map for a selected neuron, along with its mean activation when collapsed over y

22

Compositional Generalization via Forced Rendering of Disentangled Latents

Bump Encoding Rate Encoding

Figure 10. Comparison of generated OOD images for different network depths between networks with bump-based (left) and
ramp-based (right) input encodings.

(middle plot) or x (right plot). Across the layers, we observe that early-layer neurons primarily capture stripe-like features,
with broader activations that vary more strongly along one dimension than the other. In deeper layers, these “stripes”
begin to intersect more tightly, forming increasingly localized “bump”-like patterns. This indicates that the model is
successfully learning to capture the complex compositional structures present in the augmented data, reflecting the additive-
to-multiplicative transition in its internal representations. Furthermore, as bumps accumulate, the activations demonstrate a
clear shift toward more focused and precise tuning, which supports the idea that the neural network is generalizing bump-like
structures efficiently through additive composition early in the architecture and refining this understanding as the network
deepens.

23

Compositional Generalization via Forced Rendering of Disentangled Latents

Figure 11. Evolution of manifold density and linear probe as a function of layer depth for different CNN network depths (bump
encoding).

Figure 12. Evolution of manifold density and linear probe as a function of layer depth for different CNN network depths (rate
encoding).

24

Compositional Generalization via Forced Rendering of Disentangled Latents

Figure 13. Evolution of manifold density and linear probe as a function of layer depth for different MLP network depths (bump
encoding).

Figure 14. Evolution of manifold density and linear probe as a function of layer depth for different MLP network depths (bump
encoding).

25

Compositional Generalization via Forced Rendering of Disentangled Latents

S
tri

pe
s

O
nl

y

S
tri

pe
s

+1
00

 B
um

ps

Figure 15. Neural tuning curves for sample neurons across different layers of a 4-layer CNN trained on a dataset of only stripes
(left) and stripes + 100 bumps (right).

26

