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ABSTRACT

Distilling robust reasoning capabilities from large language models (LLMs) into
smaller, computationally efficient student models remains an unresolved chal-
lenge. Despite recent advances, distilled models frequently suffer from superficial
pattern memorization and subpar generalization. To overcome these limitations,
we introduce a novel distillation framework that moves beyond simple mimicry
to instill a deeper conceptual understanding. Our framework features two key
innovations. First, to address pattern memorization, Explanatory Inversion (EI)
generates targeted “explanatory probes” that compel the student to articulate the
underlying logic behind an answer, rather than just memorizing it. Second, to im-
prove generalization, Explanatory GRPO (EXGRPO) uses a reinforcement learning
algorithm with a novel Dialogue Structure Utility Bonus, which explicitly rewards
the student for maintaining a coherent reasoning process across these probes. Ex-
tensive evaluations on 12 datasets demonstrate significant improvements. Using
Gemma-7b as the student model, our method yields an average 20.39% increase
over zero-shot performance and a 6.02% improvement over the state-of-the-art
distillation baselines. Moreover, models distilled with our method show remarkable
training efficiency (e.g., surpassing vanilla fine-tuning with 10-25% training data)
and strong generalization to out-of-distribution tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning
tasks, frequently leveraging techniques such as Chain-of-Thought (CoT) prompting to articulate
step-by-step reasoning processes (Wei et al., 2022; Kojima et al., 2022). However, distilling these
sophisticated reasoning abilities into smaller, more computationally efficient student models remains
a significant open challenge (Hinton et al., 2015; Hsieh et al., 2023; Li et al., 2025b). The difficulties
include exposure bias due to fixed supervision targets (Xu et al., 2019), loss of multimodal (Tian
et al., 2025) or long-context reasoning capabilities (Yan et al., 2025; Yeo et al., 2025), sensitivity
to distribution shifts (Yang et al., 2024c), and inefficiencies in capturing nuanced preference or
alignment signals from teachers (Gu et al., 2025).
More recently, studies show that LLMs suffer from generalization limitations, exemplified by chal-
lenges like compositional generalization (Yang et al., 2024b) and out-of-distribution generaliza-
tion (Zhao et al., 2025). Our work goes a step further by pioneering the finding that generalization
limitations are not only present but are amplified in distilled LLMs, as illustrated in Figure 1(a).
Existing knowledge distillation (KD) methods (Xu et al., 2024; Yang et al., 2024a) rely heavily on
Supervised Fine-Tuning (SFT), forcing the student to mimic fixed teacher outputs. Such training en-
courages superficial pattern memorization that breaks down under even mild distribution shifts (Chu
et al., 2025). The reversal curse (Guo et al., 2024; Berglund et al., 2023) exemplifies this issue
(Figure 1(b)): while distilled models may correctly solve forward problems (e.g., 5− 2 = 3), they
often fail on the inverse (e.g., 3 + 2 = 5).
Although not explicitly studying this challenge, recent KD methods (SU et al., 2025; Zhang et al.,
2025b) have attempted to mitigate such generalization issues by employing “reverse thinking” (Deng
& Li, 2022) to augment the training data, particularly on creating symmetric samples from a known
solution back to the problem. As illustrated in Figure 1(c), frameworks like RevThink (Chen
et al., 2025a) train models on explicitly generated backward questions and reasoning, essentially
learning the A-to-Q path (e.g., training on “End with 3, Add 2 → Started with 5” for the example
above). While beneficial, these methods still encourage the student to internalize another directional
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(d) ExGRPO(b) Reversal Curse (c) RevThink
(a) Generalization Limitation of

Distilled LLMs

Student
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Logic 1 Q1 R1 A1

Logic 2

...

Q R A

Q2 R2 A2

... ... ...

EI
Probes

RL
Distillation

Q: John has 3 apples left. He gave
2 apples to Mary. How many did he
start with?

Q: John started with 5 apples and
gave 2 to Mary. How many are left?

 A: 3 − 2 = 1 apple. (Incorrect)

 A: 5 − 2 = 3 apples. (Correct)

Student
Model

SFT
Distillation

Reverse Forward Thinking

Q R A

Backward Thinking

A R' Q

Figure 1: (a) Distilled LLMs often exhibit generalization limitations compared to teacher models
(e.g., Gemini-1.5-Pro v.s. smaller distilled models on Test v.s. EI-Test set, which is the augmented
version of the test set using Gemini-1.5-Pro and Explanatory Inversion (EI)). See more experimental
details in Appendix D. (b) This is exemplified by the reversal curse, where a model correctly solves
a forward problem (e.g., 5-2=3) but fails its inverse. (c) Prior “Reverse Thinking” approaches,
like RevThink (Chen et al., 2025a), attempt A-to-Q reasoning. (d) Our ExGRPO method enhances
distillation by using EI probes to challenge and refine student models via RL.

mapping, rather than developing a conceptual grasp of the underlying mathematical relationships
(e.g., addition-subtraction duality). As a result, the model may learn to invert outputs mechanically
without cultivating the deeper understanding needed for robust generalization.
We tackle the generalization limitations from two perspectives. From the data perspective, we move
beyond A-to-Q reversals and draw inspiration from the concept of Explanatory Inversion (EI),
rooted in cognitive science’s emphasis on explanation-seeking for true understanding (Searle, 1998;
Potochnik & Sanches de Oliveira, 2020; Woodward, 2005). Genuine comprehension transcends rote
memorization, involving recognition of understanding its context, the underlying principles, and its
implications (Ausubel, 1966). Considering again the apple problem, a deeper understanding involves
grasping why subtraction is used, the inverse relationship with addition, and the conditions under
which the calculation holds. EI operationalizes this depth of inquiry. As dipicted in Figure 1 (d),
our EI technique generates targeted “explanatory probes” (Qaug

i ) related to the original reasoning
(Q → A,RT ). For the apple example (5− 2 = 3), probes might include: “Why is subtraction the
correct operation here?”, “What operation would find the starting number if you know the end number
(3) and the amount given away (2)?”, “Does the order ‘5−2’ matter? What about ‘2−5’?”, or “What
if Mary gave apples to John instead?”. By learning from the teacher model to answer the diverse set
of probes, which require understanding the logic rather than just reversing sequences, the student
model is compelled to build a richer conceptual model of the task, thereby promoting generalizability.
Furthermore, from the optimization perspective, we propose to leverage Reinforcement Learning
(RL) to tackle the intrinsic limitation of SFT. RL promotes internalization by encouraging exploration
and developing more generalizable strategies (Chu et al., 2025; Guo et al., 2025a). Although RL
is often used for post-training of large models (Guo et al., 2025a), we propose the Explanatory
GRPO (ExGRPO) algorithm, as a core component of the distillation process itself. The goal is not
only to learn from a reward detached from the teacher, but to use RL to guide the student towards
internalizing the complex reasoning structures revealed by the teacher through EI. ExGRPO leverages
the outcome reward and crucially incorporates the novel Dialogue Structure Utility Bonus. This
bonus is designed to reward the student for demonstrating a coherent understanding across the
sequence of explanatory probes derived from the teacher’s logic, thereby optimizing for a deeper
form of knowledge transfer than simple imitation through EI.
Our main contributions include: (i) We pioneer the identification of the amplified generalization limita-
tion of distilled LLMs. (ii) We introduce EI, a cognitively inspired reasoning augmentation technique
that systematically probes and reinforces the student model’s understanding of the underlying logic,
moving beyond superficial pattern memorization. (iii) We propose ExGRPO, a novel reinforcement
learning-based distillation algorithm that leverages a specifically designed Dialogue Structure Utility
Bonus to promote internalization and coherent reasoning processes explicitly revealed by EI. (iv)
Comprehensive experiments across 12 datasets demonstrate significant improvements in reasoning
capability (avg. 20.39% over zero-shot, 6.02% over state-of-the-art KD baselines), robustness, sample
& token efficiency, and out-of-distribution (OOD) generalization for distilled models.

2 RELATED WORK

We briefly discuss the most critical related works here. A detailed version is given in Appendix A.
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Knowledge Distillation for LLMs. Knowledge Distillation (KD) is a popular technique for creating
smaller, efficient student LLMs from larger teacher models (Xu et al., 2024). While KD is widely
used for various model refinement tasks, such as self-distillation (Yang et al., 2024c), we focus on
the canonical setting where a small, efficient student model distills knowledge from a strong, large
teacher. While early methods focused on aligning logits (Sanh et al., 2019), modern approaches
distill reasoning capabilities by training students on teacher-generated outputs like Chain-of-Thought
(CoT) rationales (Hsieh et al., 2023; Mukherjee et al., 2023). Our work extends this line of research
by using novel Explanatory Inversion (EI) probes to elicit and distill more robust reasoning.
Challenges of Distilled LLMs. Despite progress, distilled LLMs often suffer from limited gen-
eralization due to challenges like exposure bias, teacher-student discrepancies, and an inability to
internalize complex reasoning (Xu et al., 2019; Chen et al., 2025d). This can lead to shallow reasoning
and logical inconsistencies. While methods like RevThink (Chen et al., 2025a) address specific
failure modes like the reversal curse by augmenting data, our work aims to foster a deeper, more
generalizable understanding beyond rote pattern matching.
Rule-based RL for LLMs. Reinforcement Learning (RL) is increasingly used to enhance LLM
generalizability (Schulman et al., 2017; Rafailov et al., 2023). While rule-based methods like
GRPO can elicit reasoning from outcome-only rewards (Guo et al., 2025a), they are ill-suited for
distillation. GRPO optimizes the policy using only final answer correctness as the reward signal. It
does not incorporate any intermediate reasoning steps or teacher-generated traces, making it unable to
supervise the student’s reasoning behavior. Our Explanatory GRPO (ExGRPO) algorithm overcomes
this by introducing a novel Dialogue Structure Utility (DSU) reward, which enables the teacher model
to explicitly supervise coherent reasoning across multi-turn dialogues while encouraging exploration.

3 REINFORCEMENT DISTILLATION VIA EXPLANATORY INVERSION

This work aims to improve the limited generalizability of distilled LLMs. We achieve this by first
using Explanatory Inversion (EI) to systematically probe the student model’s understanding with
targeted challenges derived from teacher reasoning. Subsequently, our novel Explanatory GRPO
(ExGRPO) algorithm refines the student model, using these interactions to promote not only final
answer accuracy but also the coherent processing of explanatory dialogues, effectively enhancing the
distillation of nuanced reasoning. All the hyperparameters are detailed in Appendix I.

3.1 EXPLANATORY INVERSION: CRAFTING PROBES FOR DEEPER REASONING

The core of our data augmentation strategy is Explanatory Inversion (EI), a technique designed to
generate a diverse set of “explanatory probes” that compel student models to move beyond superficial
pattern matching towards deeper conceptual understanding. Given an original distillation data point
containing question-answer pair D(Q) = (Q,A,RT ) where RT = (s1, s2, . . . , sj , . . . , sT ) its
corresponding teacher-generated CoT reasoning and sj is a reasoning step, EI aims to deconstruct,
challenge, and explore the underlying logic, assumptions, and principles within RT . EI systematically
applies N(= 10 in this paper) distinct categories of transformation rules, F = {f1, . . . , fN}, to
(Q,A,RT ) to generate a spectrum of new probing questions Qaug

i = fi(Q,A,RT ). The specific
formulation of each fi involves template-based transformations. This process yields a set of up
to N augmented data tuples for each original example: Dcand(Q) = F (D(Q)) = {dk}Ni=1 =
{(Qaug

i , Aaug
i , Raug

T,i)}Ni=1. These tuples serve as candidate augmentations. The choices of the EI
probes are based on diverse cognitive findings (Keil, 2006; Sloman & Sloman, 2009; Machamer et al.,
2000; Byrne, 2007; Gentner, 1983; Klahr & Dunbar, 1988; Lave & Wenger, 1991; Newell et al.,
1972; Zacks et al., 2007; Chi et al., 1989). Each probe is engineered to contain a rule fi to assess
and cultivate specific facets of reasoning. For brevity, we present two adopted rules below, which
transform an original task by creating a counterfactual scenario (R1) or demanding a more detailed
justification of its premise (R2). The full lists with examples are detailed in Appendix E and O.

Explanatory Inversion Rule Examples

R1. Counterfactual Scenario Generation (f1): Creates probes exploring outcomes if a premise were altered. This tests
understanding of conditional dependencies and logical consequences (Byrne, 2007).
• Original Task: Premise: “All passengers and crew survived the crash.” Hypothesis: “No children died.” Label: Entailment.
• Augmented Probe: How would the entailment change if the premise stated that “most” rather than “all” passengers survived?
R2. Explanatory Challenge (f3): Poses questions that demand justification for a specific logical transition. This encourages
explicit articulation of granular inferences and fosters self-reflection (Chi et al., 1989).
• Original Task: Premise: “All passengers and crew survived.” Is it reasonable to conclude that no children died?
• Augmented Probe: Explain the logical steps connecting the premise “all passengers and crew survived” to the conclusion that

“no children were killed.”
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3.2 STAGE 1: DATA CURATION

The initial stage of our framework involves curating a high-quality dataset from the EI-generated
probes and then performing Supervised Fine-Tuning (SFT) to warm up the student model to the
diverse reasoning challenges generated by EI, providing an initial alignment with teacher insights.
We carefully study the effect of SFT in Section 4.3.

Data Curation (DEI ). The dataset DEI is constructed through a two-step filtering process applied
to the candidate EI-augmented tuples Dcand(Q) generated for each original question Q.
First, an EI Consistency Filter ensures that the probe and its teacher-generated reasoning do not
detract from solving the original problem. Let Predict(M, Prompt) denote the final answer predicted
by a model M for a given prompt. A tuple dk passes this filter, i.e., ζEI(dk) = 1, if the teacher model
T , when conditioned on the probe Qaug

k , its reasoning Raug
T,k, its answer Aaug

T,k, and then prompted with
the original question Q, still correctly predicts the original answer A:

ζEI(dk) ⇔ T ([Qaug
k ||Raug

T,k||A
aug
T,k||Q]) = A, (1)

where || indicates concatenation. Let D′
EI(Q) = {dk ∈ Dcand(Q) | ζEI(dk) = 1} be the set of

EI-consistent probes for a specific original question Q, and N ′
Q = |D′

EI(Q)| be the count of such
probes for that Q. Note that while N ′

Q ≤ N , the overall training process across many original
questions Q still exposes the student model to the full diversity of the N EI rule types, as different
rules will be applicable and pass filtering for different Q.
Second, we apply a Rejective Filtering step to remove original questions Q (and all their associated
probes in D′

EI(Q)) that are either “too easy” or “too hard” for a baseline student model Sbase (the
student model before SFT) to learn effectively from their EI probes. Let λSbase,j = 1 if Sbase

correctly answers probe Qaug
j ∈ D′

EI(Q) with Aaug
T,j , and 0 otherwise. Let ΛQ,Sbase

=
∑N ′

Q

j=1 λSbase,j

be the count of EI-consistent probes for Q that Sbase answers correctly. An original question Q
(along with all its probes in D′

EI(Q)) is included in the final dataset DEI if:(
¬(ΛQ,Sbase = N ′

Q ∧N ′
Q > 0)

)
∧
(
¬(ΛQ,Sbase ≥ τhard ∧N ′

Q > 0)
)
, (2)

where τhard is a predefined integer threshold (τhard ≥ 1). The first clause ensures that Sbase does
not answer all N ′

Q EI-consistent probes correctly (i.e., at least one probe is challenging for Sbase).
The second clause ensures that Sbase answers at least τhard of the EI-consistent probes correctly. If
N ′

Q = 0, Q is also discarded. The final dataset DEI comprises all tuples (Qaug
k , Aaug

T,k, R
aug
T,k) from

D′
EI(Q) for all original questions Q that pass this rejective filter. This DEI is used for the initial

SFT, the source for teacher trajectories for LSFT-aux, and for sampling EI rule types in the RL stage.

3.3 STAGE 2: SUPERVISED FINE-TUNING FOR COLD START

The student model, with parameters θ, is then fine-tuned on DEI for P epochs. For each selected
tuple (Qaug

i , Aaug
T,i, R

aug
T,i) ∈ DEI , the target output Ti is the concatenation of the teacher’s reasoning

and answer [Raug
T,i||A

aug
T,i]. The SFT objective is to maximize the likelihood of generating Ti given

Qaug
i by minimizing the negative log-likelihood loss:

LSFT (θ) = −
∑

(Q
aug
i ,Ti)∈DEI

|Ti|∑
t=1

logP (Ti,t|Qaug
i , Ti,<t; θ), (3)

where Ti,t is the t-th token of the target sequence Ti. This stage warms up the student model to the
diverse reasoning challenges generated by EI, providing an initial alignment with teacher insights.

3.4 STAGE 3: REINFORCEMENT DISTILLATION VIA EXPLANATORY GRPO (EXGRPO).

Following SFT, the student model’s policy πθ (parameterized by θ) is further refined using our
ExGRPO algorithm. ExGRPO adapts Group Relative Policy Optimization (GRPO) to specifically
enhance the distillation of reasoning by leveraging the structured interactions derived from EI.

3.4.1 INTERACTION PROTOCOL WITH RANDOMIZED EXPLANATORY PROBE SAMPLING

For an original question Q in an ExGRPO training batch, a k-turn explanatory dialogue is constructed
to probe and refine the student’s reasoning. The construction and interaction unfold as follows:

Probe Selection: From the N available Explanatory Inversion (EI) rule categories, k distinct rule
types are randomly sampled without replacement (where k ≤ N , e.g., k = 5) to generate a sequence
of k augmented questions (probes Qaug

1 , . . . , Qaug
k ).

4
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Figure 2: ExGRPO framework overview.
The student model learns from multi-turn
explanatory probe dialogues.

Sequential Interaction Formulation: These k
probes are presented to the student one by one, and fi-
nally the original Q. For each turn j ∈ {1, . . . , k}, the
student receives the current probe Qaug

j . The dialogue
history, including all previous probe-response pairs
(Qaug

1 , Raug
S,1, A

aug
S,1), . . . , (Q

aug
j−1, R

aug
S,j−1, A

aug
S,j−1),

forms the context for this turn. Finally, the student
generates its reasoning (R̂S , ÂS) in response to
Q, given the accumulated context. Note that each
intermediate turn is supervised using an SFT loss
LSFT-aux defined in Equation (8). The final response
ÂS is used for computing rewards.

Final Response Generation: After completing all
k turns of interaction with the EI probes, the student
model is prompted again with the original question Q
(now enriched by the preceding dialogue) to produce
its final reasoning and answer for Q.

As shown in Figure 2, this entire sequence of k probe interactions followed by the final answer
to Q constitutes a Full Dialogue (Scenario A). Randomly sampling a subset of EI probes for each
dialogue instance offers several benefits: (1) It introduces diversity in training dialogues over epochs,
encouraging robust and generalizable reasoning rather than overfitting to a fixed set or order of N
probes. (2) It enhances computational efficiency during RL compared to processing all N probes
in every k-turn dialogue if k were always N . (3) It allows for focused yet varied probing in each
dialogue, preventing potential cognitive overwhelm from too many simultaneous challenges.

For the purpose of computing the Dialogue Structure Utility Bonus (rdsu), contrastive trajectories
under a Partial Dialogue (Scenario B) are also generated for a subset of training instances. Scenario
B is constructed similarly but involves interaction with only k′ probes sampled from the k probes
(k′ < k, e.g., k′/2 turns) before the student answers the original question Q. A group of G trajectories
is generated for each scenario (Scenario A and Scenario B) per input Q.

3.4.2 RULE-BASED REWARD DESIGN FOR EXGRPO

Each of the G generated trajectories receives a rule-based reward. Let g be the trajectory index.
Outcome Reward (Routcome): The primary reward, assessing the correctness of the student’s final
answer to Q for trajectory g.

R
(g)
outcome(Q,A) =

{
1, if student’s final answer in trajectory g to Q matches ground-truth A,

0, otherwise.
(4)

This serves as the base reward: R(g)
base = R

(g)
outcome.

Dialogue Structure Utility Bonus (rdsu): This bonus rewards the student if engaging in the full
k-turn probing dialogue (Scenario A) leads to better overall outcomes than a partial k′-turn dialogue
(Scenario B). Let Pfull be average Rbase for Scenario A trajectories, and Ppartial for Scenario B:

rdsu =

{
δ, if Pfull > ν · Ppartial,

0, otherwise,
(5)

where δ > 0 is the bonus value and ν ≥ 1.0 is a performance margin. This bonus encourages
effective learning from the entire sequence of explanatory probes.

Total Augmented Rule-Based Reward (Rtotal): For trajectory g from Scenario A:

R
(g)
total =

{
R

(g)
base + rdsu, if R(g)

outcome = 1 (from Scenario A) and Equation (5) yields δ,
R

(g)
base, otherwise.

(6)

3.4.3 ADVANTAGE COMPUTATION AND POLICY UPDATE

Advantages U (g) are computed by normalizing {R(m)
total}Gm=1 within the group. The policy πθ is

updated using the ExGRPO objective, LExGRPO(θ):

LExGRPO(θ) = Etrajg∼πθold

[
G∑

g=1

min
(
ρ(g)(θ)U (g), clip(ρ(g)(θ), 1− ϵ, 1 + ϵ)U (g)

)]
− βDKL(πθ||πref), (7)

5
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where πθold is the policy before update, ρ(g)(θ) is the probability ratio, ϵ is the clipping hyperparameter,
πref is a reference policy, and β is the KL coefficient. We set the model after stage 1 as the reference.

3.4.4 IMITATION-BASED POLICY REGULARIZATION:

To guide student reasoning during the EI turns, an auxiliary SFT loss, LSFT-aux, encourages imitation
of teacher responses Raug

T,j :

LSFT-aux = −
k∑

j=1

log πθ(R
aug
T,j |Q

aug
j , context). (8)

This loss is combined with or alternated with LExGRPO. In practice, we add more regularization losses
for training stability. See details in Appendix D.
Theorem 3.1. Let πk and πk′ be student policies trained with full (k-turn) and partial (k′ < k)
explanatory probe sequences, respectively. If the utility bonus rdsu is applied only when:

Eπk [Routcome(Q,A)] > ν · Eπk′ [Routcome(Q,A)] for some ν ≥ 1. (9)

Then the ExGRPO policy update with clipped importance sampling ensures:

Eπnew [Routcome(Q,A)] ≥ Eπk [Routcome(Q,A)], (10)

with strict inequality if rdsu > 0 for any training instance.

The proof is provided in Appendix J. With the derived theorem, we guarantee that learning from
coherent and complete explanatory dialogues leads to performance improvements.

3.5 INFERENCE PROCEDURE

During inference, the trained student model πθ generates reasoning and the final answer for an input
Q in a single pass. The multi-turn probing dialogues, random rule sampling, and reward computations
(including rdsu logic) are training-time mechanisms for refinement.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For training, we follow (Chen et al., 2025a) and utilize a diverse set of source datasets
covering various reasoning tasks: Commonsense reasoning: StrategyQA (SQA (Geva et al., 2021)),
CommonsenseQA (CSQA (Talmor et al., 2018)), ARC-challenge (ARC (Clark et al., 2018)). Math
reasoning: MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021). Tabular data reasoning:
TabMWP (Lu et al., 2022). Natural Language Inference: ANLI (Nie et al., 2019). Logical Reasoning:
Date Understanding (Srivastava et al., 2022). Our Explanatory Inversion (EI) augmentation process
employs Gemini-1.5-Pro as the teacher model to generate responses to N = 10 categories of EI
probes (detailed in Appendix E). Statistics of the augmented dataset are provided in Appendix G.
Models. Our main experiments employ a weaker Gemma-7b-it and a stronger Qwen2.5-7b-instruct as
student models. Following (Chen et al., 2025a), we compare our approach against these baselines. (1)
Zero-shot: We compare with the student’s zero-shot performance (Kojima et al., 2022) as a reference.
(2) Knowledge distillation: We compare with Symbolic Knowledge Distillation (SKD (Li et al., 2023;
West et al., 2021)) and Distilling Step-by-Step (Hsieh et al., 2023) (3) Data augmentation: This set of
baselines uses various methods to augment the dataset while applying the same next-token prediction
objective. We compare with: Question Rephrasing (Yu et al., 2023), Question Augmentation (Li
et al., 2024), Answer Augmentation (Yu et al., 2023), and RevThink (Chen et al., 2025a). Their
detailed descriptions are given in Appendix H.
Evaluation Metrics & Implementation Details. The primary metric for evaluation across all tasks
is accuracy. Specific values for all hyperparameters (e.g., learning rate) are detailed in Appendix I.

4.2 MAIN RESULTS: OVERALL PERFORMANCE

Table 1 presents the main experimental results Our ExGRPO method demonstrates a clear and
consistent advantage, achieving an average accuracy of 82.54% for Qwen and 67.19% for Gemma.
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Table 1: Main results comparing our ExGRPO against zero-shot performance and various knowledge
distillation and data augmentation baselines across eight held-in reasoning datasets for Qwen2.5-7B-
Instruct and Gemma-7B-it student models. Teacher model performance is also shown for reference.
ExGRPO shows consistent improvements. Scores are reported in percentage (%). * indicates the score
is quoted from RevThink (Chen et al., 2025a).The contribution of each rule is studied in Appendix F.

Methods SQA CSQA ARC-c MATH GSM8K TabMWP ANLI Date Avg.
Gemini-1.5-Pro (Teacher Model)

Zero-shot (Kojima et al., 2022) 78.60 77.90 92.00 77.20 94.50 95.10 71.00 81.50 83.48
Zero-shot-EI [Ours] 78.55↓0.05 78.78↑0.88 96.82↑4.82 80.59↑3.39 93.51↓0.99 97.61↑2.51 74.02↑3.02 85.75↑4.25 85.70↑2.22

Qwen2.5-7B-Instruct (Student Model)

Zero-shot (Kojima et al., 2022) 72.93 71.33 85.36 74.40 90.90 93.88 61.67 73.43 77.99
SKD (Li et al., 2023; West et al., 2022) 73.51↑0.58 73.12↑1.79 87.26↑1.90 74.88↑0.48 86.20↓4.70 94.17↑0.29 62.73↑1.06 75.10↑1.67 78.01↑0.02
Distill Step-by-Step (Hsieh et al., 2023) 74.12↑1.19 74.33↑3.00 88.40↑3.04 75.32↑0.92 86.85↓4.05 94.76↑0.88 63.58↑1.91 76.42↑2.99 78.65↑0.66
Rephrase Question (Yu et al., 2024) 75.26↑2.33 75.18↑3.85 89.05↑3.69 75.64↑1.24 87.21↓3.69 95.12↑1.24 63.95↑2.28 77.80↑4.37 79.19↑1.20
Question Aug (Li et al., 2024) 75.70↑2.77 76.40↑5.07 89.64↑4.28 75.97↑1.57 87.60↓3.30 95.67↑1.79 64.45↑2.78 78.21↑4.78 79.81↑1.82
Answer Aug (Yu et al., 2024) 76.20↑3.27 77.36↑6.03 90.10↑4.74 76.18↑1.78 87.92↓2.98 96.12↑2.24 64.83↑3.16 78.74↑5.31 80.34↑2.35
RevThink (Chen et al., 2025a) 77.02↑4.09 78.45↑7.12 90.55↑5.19 76.40↑2.00 88.00↓2.90 96.73↑2.85 65.10↑3.43 79.01↑5.58 80.89↑2.90
ExGRPO (Ours) 79.04↑6.11 80.85↑9.52 91.45↑6.09 76.58↑2.18 91.46↑0.56 97.10↑3.22 64.00↑2.33 79.80↑6.37 82.54↑4.55

Gemma-7B-it (Student Model)

Zero-shot (Kojima et al., 2022) 56.33* 66.26* 68.34* 8.58* 41.09* 55.67* 37.92* 40.24* 46.80*
SKD (Li et al., 2023; West et al., 2022) 56.77*↑0.44 72.48*↑6.22 73.29*↑4.95 16.86*↑8.28 52.24*↑11.15 60.52*↑4.85 45.42*↑7.50 59.62*↑19.38 54.65*↑7.85
Distill Step-by-Step (Hsieh et al., 2023) 56.77*↑0.44 73.01*↑6.75 72.92*↑4.58 16.04*↑7.46 51.88*↑10.79 62.11*↑6.44 44.23*↑6.31 60.91*↑20.67 54.73*↑7.93
Rephrase Question (Yu et al., 2024) 54.15*↓2.18 70.22*↑3.96 72.37*↑4.03 16.96*↑8.38 53.07*↑11.98 57.62*↑1.95 43.07*↑5.15 57.99*↑17.75 53.18*↑6.38
Question Aug (Li et al., 2024) 55.10*↓1.23 68.11*↑1.85 72.74*↑4.40 17.76*↑9.18 56.38*↑15.29 63.16*↑7.49 41.22*↑3.30 59.83*↑19.59 54.29*↑7.49
Answer Aug (Yu et al., 2024) 57.21*↑0.88 73.01*↑6.76 73.92*↑5.58 18.92*↑10.34 57.37*↑16.28 65.93*↑10.26 42.72*↑4.80 64.14*↑23.90 56.65*↑9.85
RevThink (Chen et al., 2025a) 64.19*↑7.86 74.53*↑8.27 75.09*↑6.75 19.96*↑11.38 57.21*↑16.12 84.71*↑29.04 47.36*↑9.44 66.27*↑26.03 61.17*↑14.37
ExGRPO (Ours) 69.43↑13.10 76.82↑10.56 79.94↑11.60 25.82↑17.24 65.27↑24.18 90.55↑34.88 55.75↑17.83 73.96↑33.72 67.19↑20.39

This surpasses all baselines. ExGRPO outperforms standard knowledge distillation techniques such as
Distill Step-by-Step, as well as strong data augmentation strategies such as RevThink. The impact of
ExGRPO is particularly notable when contrasted across student models of varying initial strengths.
For the stronger Qwen model, ExGRPO yields a significant average improvement of +4.55% over
its zero-shot performance. For the initially weaker Gemma model, ExGRPO delivers a remarkable
+20.39% average improvement, showing its effectiveness in enhancing reasoning potential, especially
for less capable base models. Notably, on the GSM8K dataset, where the strong Qwen student
model already has a strong performance, ExGRPO is the only method that yields positive transfer.
This consistent pattern of strong improvement across both student models and individual datasets
highlights the robustness and broad applicability of our approach. Interestingly, our EI-based data
augmentation also improved the Gemini-1.5-Pro teacher’s zero-shot performance by +2.22% (85.71%
“Zero-shot-EI” vs. 83.48% zero-shot), suggesting EI can beneficially structure reasoning tasks even
for powerful models (We further show the improvement of each EI logic in Appendix E). The best
student performance (Qwen with ExGRPO at 82.54%) approaches the teacher’s zero-shot capability,
demonstrating effective knowledge transfer. In summary, ExGRPO, by probing and refining reasoning
pathways via EI and our novel RL strategy, achieves state-of-the-art results among evaluated methods,
significantly enhancing distilled LLM reasoning across different capabilities.

4.3 ABALTION STUDY

Table 2 presents our ablation study on the impact of SFT warm-up and key RL components within
ExGRPO, using the same EI-augmented datasets for all variants. The results show several critical
factors. Firstly, different from post-training, most of the time SFT is useful for distillation; RL
from a cold start with only Rbase results in catastrophic performance degradation for both Qwen (avg.
-62.00% drop from zero-shot) and Gemma (avg. -34.46% drop from zero-shot). However, vanilla
or insufficient SFT does not always improve the student model, especially when the model is
strong, as shown for the GSM8K dataset using Qwen2.5-7b as the student. Secondly, LSFT-aux, the
imitation-based policy regularization, proves highly beneficial. Adding LSFT-aux to cold-start RL
recovers significant performance, bringing avg. +9.53% gain to Qwen and +31.15% gain to Gemma-
7B. When combined with a 3-epoch SFT warm-up, LSFT-aux further lifts students’ performance.
Finally, the introduction of rdsu provides the crucial boost, elevating Qwen2.5-7B to 82.54% (an
additional +1.31%) and Gemma-7B to 67.19% (an additional +5.39%). This demonstrates that while
SFT warm-up and LSFT-aux are vital for stabilizing RL and guiding intermediate reasoning, the rdsu
component uniquely incentivizes coherent processing of the entire explanatory dialogue. A post-hoc
analysis of each individual EI rule is given in Appendix F.

4.4 TRAINING DYNAMICS: REWARD EVOLUTION

Figure 3 depicts the training dynamics of key reward components within our ExGRPO framework.
The average base outcome reward (Rbase), reflecting final answer correctness, steadily increases from
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Table 2: Ablation study on the impact of SFT warm-up training and RL components for ExGRPO.
We evaluate performance across eight reasoning datasets. All model variants are trained using the
same augmented datasets with EI probes. RL without rdsu treats each EI probe as an independent
training sample without grouping across reasoning paths.

Model Configuration SQA CSQA ARC-c MATH GSM8K TabMWP ANLI Date Avg.
Qwen2.5-7B-Instruct (Student Model)

Zero-shot 72.93 71.33 85.36 74.40 90.90 93.88 61.67 73.43 77.99
SFT (1 epoch only) 73.42↑0.49 72.10↑0.77 85.90↑0.54 74.80↑0.40 86.55↓4.35 94.12↑0.24 62.10↑0.43 74.02↑0.59 77.88↓0.11
SFT (3 epochs only) 76.40↑3.47 74.50↑3.17 89.30↑3.94 74.65↑0.25 86.60↓4.30 94.25↑0.37 62.75↑1.08 76.90↑3.47 79.17↑1.18
RL (cold start, Rbase) 10.20↓62.73 15.80↓55.53 18.60↓66.76 5.10↓69.30 20.90↓70.00 22.30↓71.58 13.40↓48.27 18.60↓54.83 15.99↓62.00
RL (cold start, Rbase) + LSFT-aux 63.10↓9.83 62.45↓8.88 79.40↓5.96 66.55↓7.85 85.90↓5.00 88.95↓4.93 54.80↓6.87 67.10↓6.33 71.53↓6.46
SFT (1 ep) + RL (Rbase) 71.90↓1.03 70.20↓1.13 84.10↓1.26 73.20↓1.20 89.50↓1.40 93.60↓0.28 60.80↓0.87 72.20↓1.23 76.69↓1.30
SFT (3 ep) + RL (Rbase) 76.21↑3.28 78.60↑7.27 89.22↑3.86 74.10↓0.30 90.40↓0.50 96.40↑2.52 63.20↑1.53 76.80↑3.37 80.13↑2.14
SFT (3 ep) + RL (Rbase) + LSFT-aux 77.30↑4.37 79.50↑8.17 90.10↑4.74 75.40↑1.00 90.80↓0.10 96.85↑2.97 63.75↑2.08 78.10↑4.67 81.23↑3.24
SFT (3 ep) + ExGRPO (Rbase + rdsu) + LSFT-aux 79.04↑6.11 80.85↑9.52 91.45↑6.09 76.58↑2.18 91.46↑0.56 97.10↑3.22 64.00↑2.33 79.80↑6.37 82.54↑4.55

Gemma-7B-it (Student Model)

Zero-shot 56.33 66.26 68.34 8.58 41.09 55.67 37.92 40.24 46.80
SFT (1 epoch only) 53.90↓−2.43 64.13↓−2.13 66.06↓−2.28 6.36↓−2.22 37.35↓−3.74 53.33↓−2.34 35.45↓−2.47 38.20↓−2.04 44.35↓−2.45

SFT (3 epochs only) 63.93↑+7.60 70.83↑+4.57 73.83↑+5.49 15.89↑+7.31 37.74↓−3.35 63.27↑+7.60 40.64↑+10.72 57.30↑+17.06 52.93↑+7.3

RL (cold start, Rbase) 9.10↓47.23 12.40↓53.86 14.20↓54.14 3.80↓4.78 13.75↓27.34 18.20↓37.47 11.90↓26.02 15.33↓24.91 12.34↓34.46
RL (cold start, Rbase) + LSFT-aux 50.10↓6.23 62.40↓3.86 65.30↓3.04 7.20↓1.38 38.60↓2.49 52.90↓2.77 35.60↓2.32 38.80↓1.44 43.49↓3.31
SFT (1 ep) + RL (Rbase) 54.80↓1.53 64.00↓2.26 67.21↓1.13 7.81↓0.77 39.60↓1.49 55.44↓0.23 36.10↓1.82 39.30↓0.94 45.79↓1.01
SFT (3 ep) + RL (Rbase) 66.11↑9.78 74.12↑7.86 76.43↑8.09 22.20↑13.62 40.70↑0.39 86.30↑30.63 52.60↑14.68 69.01↑28.77 58.94↑12.14
SFT (3 ep) + RL (Rbase) + LSFT-aux 67.70↑11.37 75.01↑8.75 77.80↑9.46 23.95↑15.37 43.00↑1.91 88.00↑32.33 53.40↑15.48 71.50↑31.26 61.80↑14.99
SFT (3 ep) + ExGRPO (Rbase + rdsu) + LSFT-aux 69.43↑13.10 76.82↑10.56 79.94↑11.60 25.82↑17.24 65.27↑24.18 90.55↑34.88 55.75↑17.83 73.96↑33.72 67.19↑20.39
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Figure 3: RL training curves with Gemma as student. Evolution of key reward components during
ExGRPO training. Left: Rbase. Right: rdsu, scaled for visualization.

approximately 0.6 to stabilize near 0.8 after around 0.3 epochs, indicating the student model’s improv-
ing ability to solve the primary task. Concurrently, rdsu, which rewards effective use of the multi-turn
explanatory dialogue, exhibits a similar upward trend and stabilization. This synchronized improve-
ment suggests that the ExGRPO policy successfully learns to achieve correct outcomes, potentially
by leveraging the structured interactions with explanatory probes to foster deeper reasoning.

4.5 GENERALIZATION TO OUT-OF-DISTRIBUTION DATASETS

We further evaluate ExGRPO’s ability to generalize to datasets unseen during distillation fol-
lowing Chen et al. (2025a), a critical indicator of robust reasoning. Table 3 compares OOD
performance against baselines on four held-out datasets: BoolQ (Clark et al., 2019) (trained
on StrategyQA), OpenbookQA (Mihaylov et al., 2018) (trained on ARC-c), e-SNLI (Camburu
et al., 2018) (trained on ANLI), and GSM8K-Reversal (Guo et al., 2024) (trained on GSM8K).

Table 3: OOD generalization on four held-out
datasets. ExGRPO significantly improves general-
ization across both Qwen2.5-7B and Gemma-7B.

Method BoolQ Openbook e-SNLI GSM8K-Rev Avg.
Qwen2.5-7B-Instruct (student)

Zero-shot 71.25 77.80 69.33 75.10 73.87
SKD 74.62↑3.37 79.80↑2.00 71.20↑1.87 78.45↑3.35 76.52↑2.65
AnsAug 75.53↑4.28 80.30↑2.50 70.80↑1.47 79.62↑4.52 76.56↑2.69
RevThink 77.10↑5.85 82.85↑5.05 73.91↑4.58 82.40↑7.30 79.06↑5.19
ExGRPO 80.30↑9.05 86.41↑8.61 78.44↑9.11 86.22↑11.12 82.34↑8.47

Gemma-7B-it (student)

Zero-shot 53.18 70.20 52.27 17.37 48.76
SKD 58.65↑5.47 73.12↑2.92 54.40↑2.13 26.05↑8.68 53.56↑4.80
AnsAug 59.42↑6.24 73.80↑3.60 53.75↑1.48 26.90↑9.53 53.97↑5.21
RevThink 61.85↑8.67 77.20↑7.00 58.30↑6.03 30.12↑12.75 56.87↑8.11
ExGRPO 66.23↑13.05 80.70↑10.50 63.21↑10.94 34.88↑17.51 61.76↑13.00

Our ExGRPO method demonstrates superior
generalization. For the Gemma student model,
ExGRPO outperforms RevThink by +4.89% on
average, with consistent gains across all four
OOD tasks Notably, for the stronger Qwen stu-
dent, ExGRPO surpasses RevThink by a signif-
icant margin of +3.28% on average. This in-
cludes strong individual gains such as +3.82%
on GSM8K-Reversal. These results suggest that
ExGRPO’s approach of probing and refining rea-
soning pathways improves the generalizability
of learned reasoning skills to unseen domains.

4.6 EFFICIENCY STUDY

Data Sample Efficiency. Figure 4 illustrates the data sample efficiency of our ExGRPO compared to
SFT and the student model’s zero-shot performance, evaluated across eight reasoning datasets using
varying percentages (p) of the available training data. ExGRPO consistently demonstrates superior
sample efficiency. Across all datasets and at every data fraction, our method achieves higher accuracy
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Figure 4: Sample efficiency comparison on eight datasets. Our ExGRPO method achieves higher
accuracy than standard SFT across all training data fractions (p ∈ {0.1, 0.25, 0.5, 1.0}), often
surpassing SFT trained on the full dataset with only 10− 25% of the data.

than SFT. Notably, for instance, on SQA and CSQA, ExGRPO with just 10% of the data already
outperforms SFT with 100% of the data. This trend is also evident in datasets. This signifies that our
approach not only achieves higher peak performance but also learns more effectively from limited
data augmented through EI, making it a more efficient distillation strategy.
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Figure 5: Average accuracy v.s. average
training token count. The dashed line
shows the regression over the baselines.

Token Efficiency. Figure 5 compares the average test-
time accuracy against the average token count per sam-
ple used during training for ExGRPO and baseline meth-
ods. ExGRPO generates a comparable number of tokens
across baselines during inference. Notably, ExGRPO sig-
nificantly outperforms the general trendline established by
the baseline methods, indicating a more effective use of
training tokens for performance gain, suggesting that the
richer interactions facilitated by EI and our RL framework
lead to more impactful learning per token.

4.7 CASE STUDY

Question: 
Let , if ; , if ; ,
if  . Find  if the piecewise function is continuous (which means
that its graph can be drawn without lifting your pencil from the paper).
Ground Truth:

Gemma-7b-it:
For the function to be continuous, the limit of   as  approaches  …

,   … And finally, 

.
Augmented Questions:
What values of  and  make the function join smoothly at  and 
so that it is continuous everywhere, and what is their sum ?
Augmented Solutions (teacher):

, continuity requires , giving ; at ,
continuity requires , giving ; therefore .
Augmented Solutions (student):
At , the middle gives  and the right side  must match, so

; at , the middle gives  and the left side  must
match, so ; adding gives .

Figure 6: An example in dataset MATH.

Figure 6 illustrates an example from the MATH
dataset requiring continuity at x = −2 and
x = 2. While the ground truth solution yields
a = −3, b = 3, and a+ b = 0, the base model
(Gemma-7b-it) fails by repeating template-like
“limit” statements without enforcing the neces-
sary equalities. This reflects pattern follow-
ing rather than true constraint reasoning. By
contrast, EI probes reformulate the task into
explanation-seeking questions (e.g., “Which two
pieces must be equal at x = 2?”). These en-
courage explicit matching of adjacent pieces,
guiding both the teacher and the student to re-
cover the correct logic and solution. Moreover,
with ExGRPO, rewards are tied not only to final
correctness but also to maintaining a coherent reasoning trajectory across probes. This enforces
alignment to structural steps, helping the student generalize beyond rote imitation.

5 CONCLUSION

We introduce ExGRPO, a novel distillation framework that enhances student LLM reasoning by
integrating Explanatory Inversion (EI) with a tailored rule-based reinforcement learning algorithm.
By using EI to generate diverse “explanatory probes” and leveraging a Dialogue Structure Utility
Bonus, ExGRPO fosters deeper engagement with the reasoning process beyond simple imitation. Our
experiments confirm substantial improvements in student model performance, sample efficiency, and
OOD generalization, marking a promising step towards more capable and reliable distilled LLMs.
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ETHICS STATEMENT

The primary contribution of this work is the development of methods to create more computationally
efficient and robust reasoning language models. The positive societal impact of this research includes
enhancing the accessibility of advanced AI capabilities. By enabling smaller models to perform
complex reasoning, our work can lower the computational and financial barriers to entry, allowing
for wider use in beneficial applications such as education and scientific research, particularly in
resource-constrained environments. Furthermore, the use of more efficient models can contribute to
reducing the overall energy consumption associated with AI technologies.

However, we also recognize potential risks. A core ethical consideration is the propagation of biases
from the teacher model to the student. As with all distillation methods, any societal biases, factual
inaccuracies, or harmful stereotypes present in the teacher model can be inherited and potentially
amplified by the student. Additionally, the creation of more powerful and accessible reasoning
models raises concerns about potential misuse, such as the large-scale generation of sophisticated
misinformation or deceptive content.

To mitigate these risks, we advocate for continued research into bias detection and mitigation
techniques specifically tailored for distilled models. We also recommend that practitioners deploying
models trained with our method conduct thorough evaluations for fairness and safety in their specific
use cases. We believe that transparently acknowledging these limitations and encouraging responsible
development practices are crucial steps toward ensuring the positive impact of this line of research.

REPRODUCIBILITY STATEMENT

Reproducibility is central to our work. All public datasets used in our experiments are standard
benchmarks that are publicly available. We provide full details of the training setup, model architec-
tures, and evaluation metrics in the main paper and appendix. Upon acceptance, we will release our
codebase, including scripts for preprocessing, training, and evaluation, along with configuration files
and documentation to facilitate exact reproduction of our results. Random seeds and hyperparameters
will also be included to further ensure reproducibility.
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A COMPREHENSIVE REVIEW OF RELATED WORK

Knowledge Distillation for LLMs. Knowledge Distillation (KD) has become a pivotal technique
for compressing large language models (LLMs) into more compact and computationally efficient
counterparts (Hinton et al., 2015; Xu et al., 2024). Initial KD methodologies predominantly centered
on transferring knowledge through the alignment of the teacher model’s logits or hidden states (Sanh
et al., 2019; Jiao et al., 2019). With the ascent of prompting (Wei et al., 2022; White et al., 2023)
and instruction-tuning paradigms (Zhang et al., 2023; Zhou et al.), subsequent research has adapted
KD to imbue student models with reasoning rationales and instruction-following capabilities, often
by directly learning from the outputs of teacher LLMs (Fu et al., 2023; Li et al., 2023; West et al.,
2022; Chiang et al., 2023; Hsieh et al., 2023; Tian et al., 2025). For instance, the Distilling step-
by-step methodology (Hsieh et al., 2023) extracts CoT rationales from the teacher model, which
are then employed as supplementary supervision within a multi-task training framework. Similarly,
Orca (Mukherjee et al., 2023) and MiniChat (Li et al., 2025b) utilize synthetic datasets generated by
teacher models via prompting and use next token prediction as the training objective. Extending this
line of research, we propose to leverage EI probes to elicit and distill reasoning from teacher models.
Challenges of Distilled LLMs. Distilled LLMs face challenges limiting their practical utility. Com-
monly cited limitations include exposure bias due to complying with teacher-derived supervision
targets (Xu et al., 2019; Chu et al., 2025), inability to capture multi-teacher learning (Tian et al., 2025;
Chen et al., 2024) or generate long-context reasoning (Yan et al., 2025; Chen et al., 2025b; Yeo et al.,
2025) caused by teacher-student discrepancies, and inefficiencies in internalizing complex preference
signals from the teacher (Gu et al., 2025; Zhang et al., 2025c; Gu et al., 2025). Additionally, recent
studies have noted that distilled models exhibit limitations specific to reasoning-intensive tasks,
including shallow reasoning depth (Chen et al., 2025d; Yang et al., 2025), inconsistent multi-step
reasoning (Chen et al., 2025c; Guo et al., 2025b), and logical coherence issues (Li et al., 2025a;
Magister et al., 2022; Zelikman et al., 2022). The above-mentioned limitations undermine the gener-
alization ability of distilled LLMs. Seminal work such as RevThink (Chen et al., 2025a) has shown
that the integration of forward and backward reasoning can facilitate performance on downstream
tasks. Nevertheless, a fundamental question remains: how to advance the generalization capabilities
of distilled student models—beyond rote memorization and towards contextual understanding.
Rule-based RL for LLMs Reinforcement learning (RL) has recently been explored as a promising
approach to refine LLMs’ generalizability (Schulman et al., 2017; Rafailov et al., 2023; Chu et al.,
2025; Shao et al., 2024). Recent advancements in rule-based RL approaches, such as GRPO, have
demonstrated that even coarse, outcome-only rewards can elicit strong reasoning behavior (Guo et al.,
2025a; Xie et al., 2025). Moreover, multi-turn RL methods exploit dialogue interactions to reinforce
intermediate reasoning coherence (Zhou et al., 2024; Shani et al., 2024; Zhang et al., 2025a). Inspired
by these advancements, our proposed Explanatory GRPO (ExGRPO) algorithm uniquely extends
rule-based RL for distillation. A key challenge is that standard GRPO is ill-suited for this task, as its
outcome-only reward cannot supervise the intermediate reasoning steps present in teacher-generated
traces. We address this limitation by introducing the novel Dialogue Structure Utility (DSU) reward,
which is co-designed with our Explanatory Inversion (EI) framework. This synergy allows ExGRPO
to explicitly reward coherent reasoning across the multi-turn explanatory dialogues generated by EI,
compelling the student to internalize the reasoning process rather than merely imitating final outputs.

B DISCUSSION ON POTENTIAL LIMITATIONS

While our proposed ExGRPO framework demonstrates significant improvements in reasoning dis-
tillation, we identify several limitations that offer avenues for future research and are important for
contextualizing our contributions.

• Dependence on Teacher Model Quality: The efficacy of our Explanatory Inversion (EI) probe
generation is inherently tied to the capabilities of the teacher model (Gemini-1.5-Pro in our
experiments). While the structured nature of our probe templates provides benefits even with
weaker teachers, the quality and nuance of the generated explanatory dialogues are undoubtedly
influenced by the teacher’s reasoning abilities. Errors, biases, or logical gaps in the teacher’s
outputs could be propagated to the student model. Future work will include experiments with a
wider range of open-source and less capable teacher models to quantify this dependency.
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• Manual Design of Explanatory Probes: The ten categories of EI probes were inspired by
principles from cognitive science but were ultimately manually designed. While we use templates
to generalize these probes across different tasks, this approach may not scale perfectly to all
possible reasoning domains. We are exploring more automated methods for probe generation, such
as learned probe controllers or self-play mechanisms, which could enhance the scalability and
adaptability of our framework without altering its core logic.

• Limited Scope of Out-of-Distribution (OOD) Evaluation: Our current OOD evaluation primarily
focuses on robustness to structural and format-level perturbations (e.g., GSM8K-Reversal) rather
than broad semantic or domain-level shifts. This was a deliberate choice to test the specific
generalization failures we identified, but we acknowledge that testing on more diverse domains
would provide a more comprehensive assessment of the model’s generalization capabilities.

C FURTHER DETAILS ON METHODOLOGY AND CONTRIBUTIONS

This section provides additional details on key aspects of our methodology to ensure clarity.

• Contribution Regarding the “Reversal Curse”: Our work’s contribution is to systematically
identify and address the amplified generalization limitation in distilled LLMs, for which the
Reversal Curse is a primary example. Our research investigates why distillation pipelines can
exacerbate such failures (e.g., by encouraging superficial pattern matching) and proposes a solution
that moves beyond simple A-to-Q data augmentation toward deeper reasoning alignment.

• Contribution regarding Reinforcement Learning or GRPO: A key distinction of our work is
the specific design of our RL component. Standard GRPO is incompatible with distillation settings
involving teacher reasoning traces. GRPO optimizes the policy using only final answer correctness
as the reward signal. It does not incorporate any intermediate reasoning steps or teacher-generated
traces, making it unable to supervise the student’s reasoning behavior. Our framework introduces
a novel Dialogue Structure Utility (DSU) reward, which is crucial for enabling GRPO to reward
reasoning consistency across the multi-turn dialogues generated by EI. This allows the student to
internalize reasoning behaviors, not just mimic outputs, a fact supported by our ablation studies.
Furthermore, applying a DSU-style reward to standard SFT baselines like RevThink would be
non-trivial, as they do not produce the coherent, multi-step dialogue structures necessary for such a
reward. Our EI probe design and DSU reward function are co-designed to uniquely enable this
form of structured reasoning supervision.

• Computation of the Dialogue Structure Utility Bonus (rdsu): The Dialogue Structure Utility
Bonus (rdsu) is a purely outcome-based reward and is not based on semantic "agreement" or string
matching between different probe answers. A bonus is awarded if the student model’s final-answer
accuracy for the original question Q is higher after engaging with a full k-turn explanatory dialogue
compared to a partial k′-turn dialogue (k′ < k). This mechanism incentivizes the model to
effectively utilize the entire reasoning scaffold provided by the probes, thereby promoting a deeper
internalization of the reasoning process.

• Use of Explanatory Probes at Inference Time: The multi-turn explanatory dialogues are a
training-time-only mechanism. They function as a scaffold to build robust reasoning abilities within
the student model. At inference time, the distilled model processes the input question in a single
pass without any probes. This design ensures that our method does not introduce any inference-time
latency or complexity. The resulting strong single-pass performance indicates that the reasoning
structures have been successfully internalized.

• Order of Probing Questions: In our training protocol, the order of the k probes used in each
dialogue is randomized. This is a deliberate design choice to encourage order-invariant robustness
and prevent the model from overfitting to a fixed sequence of explanatory challenges.

• Clarification on Framework Complexity and Computational Cost: Most distillation methods,
including our baselines, utilize a teacher LLM to augment data. Similarly, data filtering and
supervised warm-up are standard in RL-based LLM pipelines. The primary additional step in our
framework is the ExGRPO reinforcement learning stage. Therefore, the overall complexity and
training cost are comparable to existing practices (Guo et al., 2025a). Our design is modular: EI
generation is a one-time, offline process; filtering and warm-up are lightweight; and RL training
is efficient on curated datasets (1–3k examples). In practice, ExGRPO is approximately 1.5x
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more compute-intensive than a single-stage SFT baseline while achieving significantly better
generalization. Critically, inference remains as efficient as the baselines, as the multi-turn probing
is a training-only scaffold.

D IMPLEMENTATION DETAIL

Models. The teacher model used for generating Explanatory Inversion (EI) probes is Gemini-
1.5-Pro. Student models used in our main experiments are Gemma-7b-it and Qwen2.5-7b-instruct,
initialized from their official pre-trained weights from Huggingface. The reference model (πref) used
for KL regularization in the ExGRPO objective (Equation (7) in the main paper) is the student model
obtained after Stage 1 SFT (Section 3.3 in the main paper).

Training Procedure. Stage 2 (SFT): Student models are fine-tuned on the curated DEI dataset.
We use the AdamW optimizer with a learning rate of 2× 10−5, a batch size of 32, and train for P
epochs (e.g., P = 1 or P = 3 as per ablation studies).

Stage 3 (ExGRPO): The SFT-warmed-up student model is further trained using our ExGRPO algo-
rithm. We use the AdamW optimizer with a learning rate of 1× 10−6 and a batch size of 16. The RL
phase runs for 1 epoch. For ExGRPO, the group size G for generating trajectories (for both Scenario
A and Scenario B) is set to 4. The clipping hyperparameter ϵ (Equation (7) in the main paper) is set
to 0.2. The KL regularization coefficient β is set to 0.01. For the Dialogue Structure Utility Bonus
(rdsu), the number of EI turns k in the Full Dialogue (Scenario A) is set to 5. For the Partial Dialogue
(Scenario B), k′ is set to 2. The bonus value δ is 0.1 and the performance margin ν is 1.05. The
imitation-based policy regularization loss LSFT-aux (Equation (8) in the main paper) is applied with a
weight of [Specify SFT-aux weight, e.g., 0.1] relative to the ExGRPO loss. Note that we manually
add a pair of special tokens <think> and </think> to wrap the dialog and use a format reward as
standard GRPO to strengthen the output of the tokens. We observe that this reward is easy to learn
and converge, and thus omit the details in the main contents.

E FULL LIST OF EXPLANATORY INVERSION RULES

This appendix details the full set of N = 10 Explanatory Inversion rule categories used in our work,
complementing the subset presented in Section 3.1. Illustrative examples for each category are
provided below.

R1. Why-Based Transformation (f1): Transforms a descriptive aspect of Q or a step sj ∈ RT

into an inquiry about its underlying reasons or justifications. Formally, if Q → A or sj ⊢ sj+1,
then Qaug

1 ≈ Why(Q → A via RT ) or Why(sj ⊢ sj+1). This aligns with cognitive drives for
explanation-seeking and understanding causality (Keil, 2006).

R2. Causal Relationship Probing (f2): Rephrases elements of Q or RT to explicitly elicit or verify
directional cause-effect chains. If RT implies C ⇒ E, then Qaug

2 ≈ HowDoes(C lead to E)?. This
taps into fundamental causal cognition (Sloman & Sloman, 2009).

R3. Process and Mechanism Elucidation (f3): Generates probes requiring detailed, step-by-step ex-
planations of processes or mechanisms implied or stated in RT . Qaug

3 ≈ DescribeProcess(P in RT ).
This relates to forming and querying mental models of systems (Machamer et al., 2000).

R4. Counterfactual Scenario Generation (f4): Creates probes exploring outcomes if a premise
p within Q or RT were altered (¬p). Qaug

4 ≈ WhatIf(¬p,Q,RT )?. This is central to counterfactual
thinking and robust understanding (Byrne, 2007).

R5. Comparative and Contrastive Framing (f5): Reformulates questions to require com-
parison or contrast between concepts C1, C2 (from Q,A,RT ) or conditions. Qaug

5 ≈
Compare(C1, C2,wrt dimension D). This engages analogical and comparative reasoning faculties
(Gentner, 1983).

R6. Hypothesis Generation and Evaluation (f6): Generates questions prompting the model
to propose or evaluate alternative hypotheses or explanations H ′ for A given Q. Qaug

6 ≈
EvaluateAlternative(H ′, Q → A). This mirrors scientific inquiry and hypothesis testing in cog-
nition (Klahr & Dunbar, 1988).
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R7. Applied Scenario Generalization (f7): Transforms Q or concepts in RT into new, related
practical scenarios to test generalization. If RT uses concept C, Qaug

7 ≈ Apply(C,NewScenario S′)?.
This connects to situated cognition and transfer of learning (Lave & Wenger, 1991).

R8. Multi-Step Reasoning Decomposition/Construction (f8): Probes understanding of complex
reasoning chains by asking for intermediate steps, or the logical antecedents/consequents of a step
sj ∈ RT . Qaug

8 ≈ WhatPrecedes(sj)? or WhatFollows(sj)?. This relates to problem decomposition
and planning (Newell et al., 1972).

R9. Temporal or Sequential Dynamics Exploration (f9): If RT involves a sequence or temporal
evolution, probes are generated to question the order, dependencies, or changes over time/steps.
Qaug

9 ≈ HowEvolves(X, time/sequence in RT )?. This taps into temporal reasoning and narrative
comprehension (Zacks et al., 2007).

R10. Direct Explanatory Challenge of Reasoning Steps (f10): Poses questions directly asking for
justification of specific assertions or logical transitions sj → sk within RT . Qaug

10 ≈ Justify(sj →
sk in RT ). This encourages metacognitive reflection and articulable understanding (Chi et al., 1989).

F ANALYSIS OF INDIVIDUAL EXPLANATORY INVERSION (EI) RULE
CONTRIBUTIONS

To understand the relative importance of different probe types, we performed a post-hoc analysis
where the Qwen2.5-7B-Instruct student model was fine-tuned using augmented data from each of
our 10 EI rule categories in isolation. We compare these against a standard “Rephrase Question"
augmentation baseline. Table 4 presents the accuracy of the resulting models on four diverse reasoning
datasets.

The results show that most EI rule, when applied individually, outperforms the rephrasing baseline,
underscoring the general effectiveness of our cognitively-inspired approach. However, certain probe
types are clearly more impactful. Notably, Counterfactual (R1), Why-Based (R10), and Decom-
position (R2) probes yield the highest average performance gains. This suggests that compelling a
model to reason about alternative realities, question the fundamental basis of statements, and break
down complex problems are particularly effective strategies for enhancing its reasoning capabilities.

The data also reveals task-specific affinities. For instance, Decomposition (R2) shows exceptional
strength on the logic-heavy GSM8K dataset, while Counterfactual (R1) excels on the commonsense-
oriented SQA and ARC-c tasks. No single rule dominates across all benchmarks, reinforcing our main
finding that the combination of all 10 EI rules provides the most robust and significant performance
improvement, achieving the highest scores across all datasets.

Table 4: Performance (Accuracy %) of SFT with single EI probe types on Qwen2.5-7B-Instruct. All
EI rules outperform the baseline, and the full EI combination yields the best results.

Probe Type (Rule) SQA ARC-c GSM8K ANLI Avg.
Rephrase Question (Yu et al., 2024) 75.3 89.1 87.2 63.9 78.88

Counterfactual (R1) 76.8 89.5 91.2 63.1 80.15
Decomposition (R2) 76.1 88.9 90.5 63.5 79.75
Justification (R3) 75.7 88.3 89.8 62.8 79.15
Analogy-Based (R4) 74.9 87.1 88.4 61.7 78.03
Contrastive (R5) 75.3 87.5 88.6 62.1 78.38
Hypothesis Gen. (R6) 75.5 88.1 89.5 62.5 78.90
Causal Probing (R7) 76.0 88.5 90.1 63.0 79.40
Generalization (R8) 74.5 86.9 88.0 61.5 77.72
Temporal Dynamics (R9) 74.8 87.0 88.2 61.9 77.98
Why-Based (R10) 76.5 89.2 90.8 63.3 79.95

Full EI (All 10 rules) 79.0 91.5 91.5 64.0 81.50

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G DATASETS

In this subsection, we provide detailed descriptions of the datasets used in our experiments, encom-
passing both the primary training datasets and the out-of-distribution (OOD) evaluation datasets.
Dataset statistics, including licensing, number of training samples (original and filtered), and test
sizes, are provided in Table 5.

G.1 TRAINING DATASETS

Commonsense Reasoning:

• StrategyQA (SQA) (Geva et al., 2021): A dataset of yes/no questions that require implicit
multi-hop reasoning. It contains 2,061 training samples, of which 1,544 are retained after EI
filtering, and 229 test samples. Licensed under MIT.

• CommonsenseQA (CSQA) (Talmor et al., 2019): This dataset includes 9,741 original
multiple-choice questions with rich commonsense demands; 6,478 filtered training examples
and 1,140 test examples are used in our experiments. Licensed under MIT.

• ARC-Challenge (ARC-c) (Clark et al., 2018): A benchmark of 1,199 challenging grade-
school science questions. After filtering, 1,035 are retained for training, with 1,172 samples
used for testing. Licensed under CC BY-SA 4.0.

Mathematical Reasoning:

• GSM8K (Cobbe et al., 2021): Comprises 7,379 grade-school math problems written by
professional educators. 4,293 filtered training samples and 1,339 test questions are used.
Licensed under MIT.

• MATH (Hendrycks et al., 2021): A competition-level dataset with 7,500 original math
problems, 2,511 filtered training samples, and 5,000 test samples. Licensed under MIT.

Tabular Data Reasoning:

• TabMWP (Lu et al., 2022): Contains 23,059 math word problems grounded in tables. After
filtering, 15,544 training samples remain, with 7,686 samples used for testing. Licensed
under CC BY-SA 4.0.

Natural Language Inference:

• ANLI (Round 3) (Nie et al., 2020): A large-scale NLI dataset collected via an adversarial
human-in-the-loop process. We randomly sample 2,000 examples from the original 100,459,
of which 883 remain after filtering. We use 1,200 samples for testing. Licensed under CC
BY-NC 4.0.

Logical Reasoning:

• Date Understanding (Srivastava et al., 2022): This dataset challenges models with temporal
reasoning tasks about specific dates. We randomly split the small dataset into 200 training
samples (all retained) and 169 test samples. Licensed under Apache.

G.2 OUT-OF-DISTRIBUTION (OOD) EVALUATION DATASETS

To evaluate the generalization capabilities of our models, we employ the following OOD datasets.
These are held out during training and used exclusively for testing:

• BoolQ (Clark et al., 2019): A dataset of 3,270 naturally occurring yes/no questions, designed
to reflect real-world information-seeking queries. No training samples are used. Licensed
under CC BY-SA 3.0.

• OpenBookQA (Mihaylov et al., 2018): Features 500 science questions that test both factual
recall and application. No training samples are used. Licensed under Apache.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• e-SNLI (Camburu et al., 2018): An extended version of SNLI with 9,824 test samples,
augmented with natural language explanations. No training data is included in our setting.
Licensed under CC BY-NC 4.0.

• GSM8K-Reversal (Guo et al., 2024): A reversed-format variant of GSM8K, assessing the
model’s ability to infer inputs from outputs. We evaluate using 777 test samples without
training. Licensed under Apache.

Table 5: The datasets used in this work are listed in the order of appearance. For each dataset, we
report the domain, the number of original training samples, the number of filtered training samples,
and the number of testing samples. Note that the last four datasets are held out and thus contain
no filtered training samples. Due to the large size of ANLI’s training set, we randomly sampled
2,000 instances, of which 883 remained after filtering. For the Date Understanding dataset, given its
small size, we randomly split the data into 200 training and 169 testing samples, and we keep all the
training data.

Dataset Domain License Train (Original) Train (Filtered) Test

SQA (Geva et al., 2021) Commonsense MIT 2061 1656 209
CSQA (Talmor et al., 2019) Commonsense MIT 9741 7770 1221
ARC (Clark et al., 2018) Commonsense CC BY-SA 4.0 1199 1080 1172
MATH (Hendrycks et al., 2021) Math MIT 7500 6228 5000
GSM8K (Cobbe et al., 2021) Math MIT 7379 7085 1319
TabMWP (Lu et al., 2022) Math (Tabular) CC BY-SA 4.0 23 059 22 802 7684
ANLI (r3) (Nie et al., 2020) NLI CC BY-NC 4.0 100 459 1584 1200
Date (Srivastava et al., 2022) Logic Apache 200 185 169
BoolQ (Clark et al., 2019) Commonsense CC BY-SA 3.0 9427 0 3270
OpenbookQA (Mihaylov et al., 2018) Commonsense Apache 4957 0 500
e-SNLI (Camburu et al., 2018) NLI CC BY-NC 4.0 549 367 0 9824
GSM8K-Rev (Guo et al., 2024) Math Apache – 0 777

H BASELINE METHODS

We compare ExGRPO with a diverse suite of baseline methods spanning three main categories:

(1) Zero-shot Reasoning: As a reference point, we evaluate the zero-shot performance of the student
models by prompting them to directly answer questions without any fine-tuning. This follows the CoT
prompting paradigm introduced in (Kojima et al., 2022), which reveals the model’s native reasoning
capability when provided with a task-specific instruction and an example prompt.

(2) Knowledge Distillation: We include baselines that perform knowledge distillation from a stronger
teacher model to a student model using chain-of-thought (CoT) reasoning traces:

• Symbolic Knowledge Distillation (SKD) (Li et al., 2023; West et al., 2021): This method
extracts symbolic reasoning traces (i.e., CoT rationales) from the teacher model and trains
the student using a next-token prediction objective on the rationale, followed by supervision
on the final answer.

• Distilling Step-by-Step (Hsieh et al., 2023): In addition to standard next-token prediction
on the CoT rationale, this method introduces an auxiliary loss term to supervise the student’s
final answer directly. The goal is to jointly distill both intermediate reasoning steps and the
conclusive decision.

(3) Data Augmentation: This category of baselines augments the training set with additional samples
generated by prompting a teacher model, while maintaining the standard next-token prediction loss
on the rationale and answer:

• Question Rephrasing (Yu et al., 2023): The teacher model is prompted to paraphrase
an original question, yielding a semantically equivalent variant with the same answer and
reasoning rationale. This increases input diversity and reduces overfitting.

• Question Augmentation (Li et al., 2024): The teacher is asked to generate new, logically
related questions based on the original input, allowing the model to generalize across similar
yet distinct reasoning scenarios.
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• Answer Augmentation (Yu et al., 2023): For each original question, the teacher generates
alternative correct reasoning paths (CoTs) that arrive at the same answer. This provides
multi-rationale supervision and improves robustness to reasoning variation.

• RevThink (Chen et al., 2025a): A recent augmentation strategy where the teacher model is
queried with reversed formulations of the original questions. These backward-style prompts
yield contrastive reasoning samples that encourage deeper conceptual alignment during
student training.

All baseline methods are implemented using the same student architectures (Gemma-7B-it and
Qwen2.5-7B-Instruct) and trained under consistent settings to ensure fair comparison with our
proposed ExGRPO method.

I HYPERPARAMETERS

For the training procedure, we adopt a three-stage training pipeline:

Stage 1 (EI Generation): EI probes are generated from the Gemini teacher model using 10 predefined
categories (Appendix E).

Stage 2 (Supervised Fine-Tuning): The student models are fine-tuned on the curated EI-augmented
dataset DEI .

• Optimizer: AdamW

• Learning Rate: 2× 10−5

• Batch Size: 32

• Epochs: P = 1 or P = 3 (depending on ablation)

Stage 3 (ExGRPO): The student is further optimized via our ExGRPO algorithm using reward-based
training.

• Optimizer: AdamW

• Learning Rate: 1× 10−6

• Batch Size: 16

• Epochs: 1

• Group Size G: 4

• KL Regularization Coefficient β: 0.01

• Clipping Coefficient ϵ: 0.2

Dialogue Structure Utility Bonus (DSU). This reward-shaping mechanism is used to encourage
structured explanatory probes. We perform parameter search on variables:

• EI Turns in Full Dialogue (k): 5

• EI Turns in Partial Dialogue (k′): 2

• Bonus Value (δ): {0.1, 0.2, 0.5, 1.0}

• Performance Margin (ν): {0.50, 1.00, 1.05, 1.10, 1.15}

Infrastructure. All experiments are run on 8 NVIDIA A100 GPUs with 80GB RAM using the
Huggingface Transformers library.

J PROOF OF THEOREM 3.1

Formal Assumptions. We state the assumptions required for the theoretical guarantee:
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A1 (Finite-horizon POMDP) The explanatory probe process is modeled as a finite-horizon
POMDP M = (O,C,A, T, µ1, R,N), where O are observations, C hidden context, A
actions, T transitions, µ1 initial state distribution, R the reward function, and N the horizon.

A2 (Support overlap) πnew and πk have overlapping support, so importance ratios ρ(g) are well
defined.

Theorem 3.1. Let πk and πk′ be student policies trained with full (k-turn) and partial (k′ < k)
explanatory probe sequences, respectively. Suppose the Dialogue Structure Utility Bonus rdsu is
applied only when

Eπk
[Routcome(Q,A)] > ν · Eπk′ [Routcome(Q,A)] , for some ν ≥ 1. (11)

Then, under the ExGRPO update with clipped importance sampling and KL regularization, the
updated policy πnew satisfies

Eπnew
[Routcome(Q,A)] ≥ Eπk

[Routcome(Q,A)] , (12)

with strict inequality whenever rdsu > 0 applies to a nonzero-probability set of trajectories.

Proof. We first show that reward shaping induces a positive advantage shift, then appeal to conserva-
tive policy improvement to obtain a monotonic increase in shaped return, and finally translate this
into outcome return.

Step 1. POMDP formulation. By Assumption A1, the explanatory probe process is modeled as a
finite-horizon partially observable Markov decision process (POMDP):

M = (O,C,A, T, µ1, R,N),

where O denotes the observable history (probes and responses), C denotes hidden context such as
ground-truth answers, A denotes student actions, T the transition, µ1 the initial distribution, R the
reward function, and N the horizon. At each turn t, the agent observes ot, produces an action at, and
transitions to ot+1.

Step 2. Value, Q-, and advantage functions. For a policy π:

Qπ(ot, at, c) = Eπ

[ N∑
t′=t

r(ot′ , at′ , c)
]
, (13)

V π(ot, c) = Eat∼π[Q
π(ot, at, c)], (14)

Aπ(ot, at, c) = Qπ(ot, at, c)− V π(ot, c). (15)

We focus on the outcome reward:

Routcome(Q,A) = 1{student’s final answer matches A}. (16)

Step 3. Reward shaping with rdsu. Define the total shaped reward as

Rtotal = Routcome + rdsu, (17)

where rdsu = δ > 0 is applied only when the full k-turn sequence outperforms a partial k′-turn
sequence by a factor ν. By construction,

Rtotal ≥ Routcome pointwise. (18)

Let Jout(π) = Eπ[Routcome] and Jtot(π) = Eπ[Rtotal]. Clearly Jtot(π) ≥ Jout(π).

Step 4. Decomposition. Because rdsu applies only to outcome-correct trajectories in Scenario A, we
can write

Jtot(π) = Jout(π) + δ · pA(π), (19)
where pA(π) = Prπ[Scenario A, B,Routcome = 1].

Step 5. Advantage shift. On trajectories where rdsu > 0, the shaped advantage satisfies

Atot(ot, at, c) = Aout(ot, at, c) + δ, (20)

so outcome-correct actions are strictly more advantageous than without shaping.
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Step 6. Conservative policy improvement. ExGRPO optimizes the clipped surrogate objective:

LExGRPO(θ) = Eτ∼πk

[
G∑

g=1

min
(
ρ(g)U (g), clip(ρ(g), 1−ϵ, 1+ϵ)U (g)

)]
−βDKL(πθ ||πref), (21)

where U (g) are group-normalized advantages based on Rtotal. Here, Assumption A2 guarantees that
the importance ratios ρ(g) are well-defined because πnew and πk share overlapping support. Together
with the KL penalty, this ensures the surrogate objective satisfies the conditions of conservative policy
improvement (as in PPO/TRPO theory (Schulman et al., 2017)), so that

Jtot(πnew) ≥ Jtot(πk), (22)

with strict improvement if there exists a nonzero set with Atot > 0.

Step 7. From shaped to outcome reward. Using Step 4,

Jout(πnew) + δpA(πnew) ≥ Jout(πk) + δpA(πk). (23)

By Step 5, pA(πnew) ≥ pA(πk). Therefore,

Jout(πnew) ≥ Jout(πk). (24)

If rdsu > 0 applies with positive probability, the inequality is strict.

Conclusion. ExGRPO with the dialogue-structure utility bonus ensures monotonic improvement
in outcome accuracy, with strict gains when bonus-triggered trajectories exist. This completes the
proof.

K BROADER IMPACT

This work advances the development of generalizable and efficient reasoning in language models,
which has both positive implications and potential risks.

• Positive Impact: Our method enables smaller models to acquire strong reasoning capabilities
through distillation and augmentation. This promotes efficient deployment in educational, health-
care, and resource-constrained environments.

• Fairness and Accessibility: By reducing the reliance on large-scale, task-specific data and enabling
transfer to unseen domains, our approach improves model usability in low-resource and non-English
settings.

• Potential Risks: Enhanced reasoning in compact models may be misused for automated misin-
formation or deceptive content generation if not properly constrained. Inherited biases from the
teacher model may also go unnoticed.

• Mitigation Strategies: We recommend the integration of transparency tools (e.g., explanation
audits, provenance tracking) and the use of diagnostic evaluations to monitor the integrity of
generated reasoning.

L CODE

Code is provided in the supplementary material.

M QUALITATIVE ANALYSIS AND CASE STUDIES

In this section, we present illustrative examples of EI-augmented samples and model-generated
rationales, as well as the prompts used for EI augmentation. These case studies demonstrate that
ExGRPO-trained models produce more structured, faithful, and task-sensitive reasoning compared
to standard SFT and RevThink baselines. For instance, in GSM8K and ARC, the model correctly
decomposes multi-step logic and avoids common distractors.
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Example: Teacher and Student CoT in Dataset GSM8K

question: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?

answer_key: “72”
answer_text: “72”

augmented_questions:
- Why would adding half of 48 to 48 give us the total number of clips Natalia sold in April and
May?
- What is the total number of clips Natalia sold, given that her May sales were directly influenced
by – and specifically, half the amount of – her April sales of 48 clips?
- What are the steps involved in calculating the total number of clips Natalia sold, considering she
sold 48 clips in April and half that amount in May?

augmented_solutions_teacher:
- Because Natalia sold 48 clips in April, and half as many in May. "Half as many" means half of
the April amount. So, the May sales are half of 48. To find the total sales, we need to add the
April sales (48) and the May sales (half of 48) together.
- Natalia sold half as many clips in May as she did in April. Since she sold 48 clips in April, she
sold 48 / 2 = 24 clips in May. Add April sales and May sales: 48 + 24 = 72 clips. Therefore,
Natalia sold a total of 72 clips.
- Calculate clips sold in May: Natalia sold half as many clips in May as in April. Half of 48 is 24.
Calculate total clips: 48 + 24 = 72. So, Natalia sold 72 clips in total.

augmented_solutions_student:
- If she sold 48 clips in April and only half that in May, that means 48 / 2 = 24 clips in May, right?
So to get the total, I guess we just add them: 48 + 24 = 72?
- Okay, so in April it was 48 clips. If May was only half, then it should be 24 clips. Then 48 plus
24 gives us... 72? That seems to make sense.
- Let me think this through—Natalia sold 48 in April, then half of that in May. Half of 48 is 24.
So I just need to add them: 48 + 24. That gives 72, so that’s probably the total.

Example: Teacher and Student CoT in Dataset ARC

question: George wants to warm his hands quickly by rubbing them. Which skin surface will
produce the most heat?

choices:
text: [“dry palms”, “wet palms”, “palms covered with oil”, “palms covered with lotion”]
label: [“A”, “B”, “C”, “D”]

answer_key: “A”
answer_text: “dry palms”

augmented_questions:
- Why would rubbing wet palms, dry palms, palms covered with oil, or palms covered with lotion
produce different amounts of heat?
- How does the presence of water, oil, or lotion on George’s palms affect the friction generated
when rubbing them together?
- What are the mechanisms of heat generation through friction, and how do the different surface
materials affect these mechanisms?

augmented_solutions_teacher:
- Dry skin has a relatively high coefficient of friction, leading to more resistance and thus more
heat generated. Water, oil, and lotion reduce friction and hence generate less heat.
- Friction converts kinetic energy into heat. Lubricants like water and oil reduce friction, resulting
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in lower heat generation. Dry palms produce the most heat.
- Lotion and oil act as lubricants that decrease interlocking between skin surfaces. Dry palms
generate more heat due to higher resistance and rough texture.

augmented_solutions_student:
- Dry palms make more heat because they rub more. Things like water or lotion make hands
slippery, so less heat happens.
- When you rub dry hands, it gets hot. But if hands are wet or have oil, they slide more and don’t
make as much heat. So dry palms are best.
- Oil and lotion make your hands smooth, so rubbing doesn’t make much heat. Dry hands don’t
slide as easy, so they get warmer when rubbed.

Example: Final-Turn Student CoT in Dataset ARC during RL

<think>
1. **Core**: - The core is isolated and has a high pressure and temperature. The intense heat
from the impacts would not significantly affect the core composition or structure. Therefore, the
core is the least likely recipient of cometary material.
2. **Mantle**: - The mantle can absorb some cometary material, but the amount delivered is
relatively small compared to the total volume of the mantle. The mantle’s stability and high heat
capacity make it resistant to significant compositional changes. Therefore, the mantle is less likely
to be the main recipient of cometary material.
3. **Atmosphere**: - The atmosphere is highly dynamic and can quickly cycle and lose
significant portions of cometary material. While it can retain some volatiles, the atmosphere’s
high volume and rapid cycling make it less likely to be the primary recipient of cometary material.
4. **Hydrosphere**: - The hydrosphere is a vast and stable reservoir. The impacts can release
water and other volatiles into the atmosphere, which can then condense and form precipitation,
contributing to the hydrosphere. The hydrosphere’s large volume and stability make it the most
likely recipient of cometary material.
Given these insights, the hydrosphere is the most plausible part of the Earth system that received
significant amounts of matter from the Late Heavy Bombardment.
</think>
The best answer is D.

Example: Final-Turn Student CoT in Dataset GSM8K during RL

<think>
1. **April Sales**: - Natalia sold 48 clips in April. This is clearly stated in the problem and
serves as the base value for the total calculation.
2. **May Sales**: - The question states that she sold half as many clips in May as she did in
April. Half of 48 is calculated as 48 ÷ 2 = 24. So, Natalia sold 24 clips in May.
3. **Total Sales**: - To determine the total number of clips sold in April and May, we add the
two amounts: 48 (April) + 24 (May) = 72. This sum represents the complete sales over both
months.
Given these steps, the total number of clips Natalia sold in April and May is 72.
</think>
The best answer is 72.

N FAILURE CASE ANALYSIS

While ExGRPO demonstrates robust performance, analyzing its failure modes provides valuable
insights into the remaining challenges in reasoning distillation. Below, we present a case study from
the CommonsenseQA dataset where the model exhibits a specific type of reasoning error we term
shallow distractor override.
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Example: Failure Case on CommonsenseQA

Question (Q): What would you use to remove nail polish?
A. Hammer B. Toothpaste C. Nail polish remover D. Paint thinner

Correct Answer: C. Nail polish remover

ExGRPO Student Model Output:

Nail polish is a cosmetic that is
typically removed using a solvent.
While paint thinner can remove paint,
it’s not designed for use on the
human body. Toothpaste is for dental
care. Therefore, the answer is A.
Hammer.

Analysis: In this example, the student model correctly identifies the function of a solvent and
appropriately rules out both “Paint thinner” and “Toothpaste” with sound reasoning. However,
it fails to eliminate the most absurd distractor (“Hammer”) and incorrectly selects it as the
final answer. This indicates a failure to apply its isolated reasoning coherently to the final
decision-making process, instead getting overridden by a superficial association or a flaw in its
final selection logic.

Associated Explanatory Probe (from EI during training):
“Why is toothpaste not appropriate for removing nail polish?”

Student’s Response to Probe (during training):
“Because toothpaste is not strong enough to remove nail polish and is used for teeth.”

Further Analysis: The model’s correct response to the targeted probe demonstrates that it can
reason correctly about specific components of the problem in isolation. The failure arises when
it must synthesize this understanding and weigh it against illogical distractors in the context of
the original multiple-choice question. This highlights the challenge of ensuring that probe-level
understanding is robustly transferred to the final answer-selection step, a key area for future
improvement.

O PROMPT FOR EI AUGMENTATION

EI Question Augmentation Rules – GSM8K

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
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entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
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Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – ARC

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
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flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – ANLI

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
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Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’
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EI Question Augmentation Rules – CommonsenseQA

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
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flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – Date

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
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Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – Math

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
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Christian worship?
Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?
Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?
Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?
Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?
Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?
Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
flight?
Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?
Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?
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Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – StrategyQA

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?
Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?
Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?
Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?
Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?
Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?
Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

flight?
Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?
Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?
Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

EI Question Augmentation Rules – TabMWP

Convert Direct Questions into Why-Based Questions
Rule: Reformulate the question to ask about the reasons or mechanisms behind the original
query.
Example:
Original: Does the premise entail that the day mentioned is important for religious worship?
Augmented: Why would Sunday being mentioned in the premise entail that it’s a day for
Christian worship?

Emphasize Cause-Effect Relationships
Rule: Reframe the question to highlight causal relationships rather than surface-level
descriptions.
Example:
Original: What does the premise state about the plane crash?
Augmented: How does the statement that all passengers and crew survived establish the
entailment relationship with the hypothesis about no children being killed?

Focus on Processes or Mechanisms
Rule: Augment questions to ask about the step-by-step processes involved in a phenomenon.
Example:
Original: How does the premise information about Kit Kat in Japan relate to the hypothesis?
Augmented: What is the inferential process by which we can conclude Japanese people like
Kit Kat based on the premise about product variety and continued production since 1973?

Include Counterfactual Scenarios
Rule: Reformulate the question to explore what would happen if a certain condition were
different.
Example:
Original: Is the hypothesis about survival entailed by the premise?
Augmented: How would the entailment relationship change if the premise stated that ’most’
rather than ’all’ passengers survived the crash?

Highlight Comparisons and Contrasts
Rule: Augment the question to compare different cases or conditions.
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Example:
Original: What relationship exists between the premise about technology articles and the
hypothesis about Sunday?
Augmented: How does the inference that Sunday is a Christian worship day differ from other
possible inferences about Sunday mentioned in the technology news premise?

Encourage Hypothesis Exploration
Rule: Reformulate the question to ask about possible explanations or hypotheses.
Example:
Original: Why is there an entailment between the Kit Kat production and Japanese
preferences?
Augmented: What alternative explanations beyond consumer preference might account for
the continued production of various Kit Kat flavors in Japan since 1973?

Incorporate Real-World Scenarios
Rule: Tie the question to practical or observable scenarios to encourage applied reasoning.
Example:
Original: What can we infer about safety from the plane crash description?
Augmented: In a real-world aviation investigation scenario, how would the premise
information about survival rates support or refute claims about the safety of children on the
flight?

Use Chain-of-Reasoning Prompts
Rule: Reformulate the question to require multi-step reasoning to reach the answer.
Example:
Original: Does the premise about technology news entail the hypothesis about Sunday
worship?
Augmented: What cultural and historical knowledge must be applied to connect the mere
mention of Sunday in a technology news context to the religious significance of the day, and
how does this create an entailment relationship?

Introduce Temporal Dynamics
Rule: Reformulate questions to explore how phenomena change over time.
Example:
Original: What does the Kit Kat example tell us about Japanese consumer preferences?
Augmented: How has the relationship between Kit Kat production and Japanese consumer
preferences evolved since the product’s 1973 introduction, and what does this evolution
imply about the entailment in the current example?

Integrate Explanatory Questions
Rule: Directly ask for an explanation of the reasoning behind an answer.
Example:
Original: Is it reasonable to conclude no children died in the crash?
Augmented: Explain the logical steps that connect the premise statement ’all passengers and
crew have survived’ to the entailment of ’no children were killed in the accident.’

P THE USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance clarity and readability, we utilized OpenAI GPT-5 and Google Gemini 2.5-Pro exclusively
as a language polishing tool. Its role was confined to proofreading, grammatical correction, and
stylistic refinement—functions analogous to those provided by traditional grammar checkers and
dictionaries. This tool did not contribute to the generation of new scientific content or ideas, and its
usage is consistent with standard practices for manuscript preparation
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