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ABSTRACT

Interactions such as double negation in sentences and scene interactions in images
are common forms of complex dependencies captured by state-of-the-art machine
learning models. We propose Mahé, a novel approach to provide Model-agnostic
hierarchical éxplanations of how powerful machine learning models, such as deep
neural networks, capture these interactions as either dependent on or free of the
context of data instances. Specifically, Mahé provides context-dependent explana-
tions by a novel local interpretation algorithm that effectively captures any-order
interactions, and obtains context-free explanations through generalizing context-
dependent interactions to explain global behaviors. Experimental results show
that Mahé obtains improved local interaction interpretations over state-of-the-art
methods and successfully provides explanations of interactions that are context-
free.

1 INTRODUCTION

State-of-the-art machine learning models, such as deep neural networks, are exceptional at model-
ing complex dependencies in structured data, such as text (Vaswani et al., 2017; Tai et al., 2015),
images (He et al., 2016; Huang et al., 2017), and DNA sequences (Alipanahi et al., 2015; Zeng et al.,
2016). However, there has been no clear explanation on what type of dependencies are captured in
the black-box models that perform so well (Ribeiro et al., 2018; Murdoch et al., 2018).

In this paper, we make one of the first attempts at solving this important problem through interpreting
two forms of structures, i.e., context-dependent representations and context-free representations. A
context-dependent representation is the one in which a model’s prediction depends specifically on a
data instance level (such as a sentence or an image). In order to illustrate the concept, we consider
an example in image analysis. A yellow round-shape object can be identified as the sun or the moon
given its context, either bright blue sky or dark night. A context-free representation is one where the
representation behaves similarly independent of instances (i.e., global behaviors). In a hypothetical
task of classifying sentiment in sentences, each sentence carries very different meaning, but when
“not” and “bad” depend on each other, their sentiment contribution is almost always positive - i.e.,
the structure is context-free.

To investigate context-dependent and context-free structure, we lend to existing definitions in inter-
pretable machine learning (Ribeiro et al., 2016; Kim et al., 2018). A context-dependent interpreta-
tion is a local interpretation of the dependencies at or within the vicinity of a single data instance.
Conversely, a context-free interpretation is a global interpretation of how those dependencies be-
have in a model irrespective of data instances. In this work, we study a key form of dependency:
an interaction relationship between the prediction and input features. Interactions can describe arbi-
trarily complex relationships between these variables and are commonly captured by state-of-the-art
models like deep neural networks (Tsang et al., 2018; Murdoch et al., 2018). Interactions which are
context-dependent or context-free are therefore local or global interactions, respectively.

We propose Mahé, a framework for explaining the context-dependent and context-free structures of
any complex prediction model, with a focus on explaining neural networks. The context-dependent
explanations are built based on recent work on local intepretations (such as (Ribeiro et al., 2016;
Murdoch et al., 2018; Singh et al., 2018)). Specifically, Mahé takes as input a model to explain
and a data instance, and returns a hierarchical explanation, a format proposed by Singh et al. (2018)
to show local group-variable relationships used in predictions (Figure 1). To provide context-free
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Figure 1: An overview of the steps used to obtain a context-dependent hierarchical explanation. Step
1 inputs a data instance of interest (e.g. a sentence) into a complex model, in this case a classifier.
Step 2 locally perturbs the data instance and obtains their predictions results from the model. Instead
of only fitting a linear model as linear LIME does to the perturbed samples and outputs, Mahé fits a
neural network to them to learn the highly nonlinear decision boundary used to classify the instance.
The nonlinearity indicates that there should be an interaction between variables, and an interpretation
of the neural network is used to extract the interactions (Tsang et al., 2018). Attribution scores of
those interactions can then be shown for the data instance, as displayed in Step 3.

explanations, Mahé generalizes those context-dependent interactions with consistent behavior in
a model and determines whether a local representation in the model is responsible for the global
behavior. In this case, Mahé takes as input a model and representative data corresponding to an
interaction of interest and returns whether or not that interaction is context-free. We conduct ex-
periments on both synthetic datasets and real-world application datasets, which shows that Mahé’s
context-dependent explanations can significantly outperform state-of-the-art methods for local in-
teraction interpretation, and Mahé is capable of successfully finding context-free explanations of
interactions. In addition, we identify promising cases where the methodology for context-free ex-
planations can successfully edit models. Our contributions are as follows: 1) Mahé achieves the task
of improved context-dependent explanations based on interaction detection and fitting performance
and model-agnostic generality, compared to state-of-the-art methods for local interaction interpreta-
tion, 2) Mahé is the first to provide context-free explanations of interactions in deep learning models,
and 3) Mahé provides a promising direction for modifying context-free interactions in deep learning
models without significant performance degradation.

2 RELATED WORKS

Attribution Interpretability: A common form of interpretation is feature attribution, which is
concerned with how features of a data instance contribute to a model output. Within this category,
there are two distinct approaches: additive and sensitivity attribution. Additive attribution interprets
how much each feature contributes to the model output when these contributions are summed. In
contrast, sensitivity attribution interprets how sensitive a model output is to changes in features.
Examples of additive attribution techniques include LIME (Ribeiro et al., 2016) and CD (Murdoch
et al., 2018). Examples of sensitivity attribution methods include Integrated Gradients (Sundararajan
et al., 2017), DeepLIFT (Shrikumar et al., 2017), and SmoothGrad (Smilkov et al., 2017). Unlike
previous approaches, Mahé provides additive attribution interpretations that consist of non-additive
groups of variables (interactions) in addition to the normal additive contributions of each variable.

Interaction Interpretability: An interaction in its generic form is a non-additive effect between
features on an outcome variable. Only until recently has there been development in interpreting non-
additive interactions despite often being learned in complex machine learning models. The difficulty
interpreting non-additive interactions stems from their lack of exact functional identity compared to,
for example, a multiplicative interaction. Methods that exist to interpret non-additive interactions
are NID (Tsang et al., 2018) and Additive Groves (Sorokina et al., 2008). In contrast, many more
methods exist to interpret specific interactions, namely multiplicative ones. Notable methods include
CD (Murdoch et al., 2018), Tree-Shap (Lundberg & Lee, 2017), and GLMs with multiplicative
interactions (Purushotham et al., 2014). Unlike previous methods, our approach provides local
interpretations of the more challenging non-additive interaction.

Locally Interpretable Model-Agnostic Explanations (LIME): LIME (Ribeiro et al., 2016) is a
very popular type of model interpretation. Its popularity comes from additive attribution interpreta-
tions to explain the output of any prediction model. The original and most popular version of LIME
uses a linear model to approximate model predictions in the local vicinity of a data instance. Since
its introduction, variants of LIME have been proposed, for example Anchors (Ribeiro et al., 2018)
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and LIME-SUP (Hu et al., 2018). While Anchors generates a form of context-free explanation, its
method of selecting fully representative features for a prediction does not consider interactions. For
example, Anchors assumes that (not, bad) “virtually guarentees” a sentiment prediction to be posi-
tive, whereas in Mahé this is not necessarily true; only their interaction is positive (See Table 6 for
an example). LIME-SUP touches upon interactions but does not study their interpretation.

3 INTERACTION EXPLANATIONS

Let f(·) be a target function (model) of interest, e.g. a classifier, and φ(·) be a local approximation
of f and is interpretable in contrast to f . A common choice for φ is a linear model, which is
interpretable in each linear term. Namely, for an data instance x ∈ Rp, weights w ∈ Rp and bias b,
interpretations are given by wixi, known as additive attributions (Lundberg & Lee, 2017) from

φ(x) =

p∑
i=1

wixi + b. (1)

Given a set of n data points {x(i)}ni=1 that are infinitesimally close or local to x, a linear approx-
imation of D = {(x(1), f(x(1))), . . . , (x(n), f(x(n)))} will accurately fit to the functional surface
of f at the data instance, such that φ(x) = f(x). Because it is possible in such scenarios that
φ(x) = f(x) ≈ b, there must be some nonzero distances between x and x(i) to obtain informative
attribution scores. LIME, as it was originally proposed, uses a linear approximation as above where
samples are generated in a nonzero local vicinity of x (Ribeiro et al., 2016). The drawback of linear
LIME is that there is often an error ε = |f(x)− φ(x)| > 0.

For complex models f , the functional surface at x can be nonlinear. Because D consists of x(i)

with distance d > 0 from x, a closer fit to f(x) in its nonlinear vicinity, i.e. {f(x(i))}ni=1, can be
achieved with the following generalization of Eq. 1:

φ(x) =

p∑
i=1

gi(xi) + b, (2)

where gi(·) can be any function, for example one that is arbitrarily nonlinear. This function is called
a generalized additive model (GAM) (Hastie & Tibshirani, 1990), and now attribution scores can
be given by gi(xi) for each feature i. For the purposes of interpreting individual feature attribution,
the GAM may be enough. However, if we would like broader explanations, we can also obtain non-
additive attributions or interactions between variables (Lou et al., 2013), which can provide an even
better fit to the complex local vicinity. Expanding Eq. 2 with interactions yields:

φK(x) =

p∑
i=1

gi(xi) +

K∑
i=1

g′i(xI) + b, (3)

where g′i(·) can again be any function, xI ∈ R|I| are interacting variables corresponding to the
variable indices I, and {Ii}Ki=1 is a set ofK interactions. Attribution scores are now generated from
both g′i and g′i. In this paper, we learn gi and g′i using Multilayer Perceptrons (MLPs). φ or φK can
be converted to classification by applying a sigmoid function.

Adding non-additive interactions, I, that are truly present in the local vicinity increases the repre-
sentational capacity of φK(x). I corresponds to non-additive interacting features if and only if g′(·)
(Eq. 3) cannot be decomposed into a sum of |I| arbitrary subfunctions δ, each not depending on a
corresponding interacting variable (Tsang et al., 2018), i.e.

g′(xI) 6=
∑
i∈I

δi(xI\{i}).

4 Mahé FRAMEWORK

In this section, we introduce our Mahé framework, which can provide context-dependent and
context-free explanations of interactions. To provide context-dependent explanations, we propose
to use a two-step procedure that first identifies what variables interact locally, then learns a model
of interactions (as Eq. 3) to provide a local interaction score at the data instance in question. The
procedure of first detecting interactions then building non-additive models for them has been stud-
ied previously (Lou et al., 2013; Tsang et al., 2018); however, previous works have not focused on
using the same non-additive models to provide local interaction attribution scores, which enable us
to visualize interactions of any size as demonstrated later in §5.2.3.
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4.1 CONTEXT-DEPENDENT EXPLANATIONS

Local Interaction Detection: To perform interaction detection on samples in the local vicinity of
data instance x, we first sample n points in the ε-neighborhood of x with a maximum neighborhood
distance ε under a distance metric d. While the choice of d depends on the feature type(s) of x,
we always set ε = σ, i.e. one standard deviation from the mean of a Gaussian weighted sampling
kernel. When all features are continuous, neighborhood points are sampled with mean x ∈ Rp and
d = `2 to generate x(1), . . . ,x(n), x(i) ∼ N (x, σ2I), where N is a normal distribution truncated
at ε. When features are categorical, they are converted to one-hot binary representation. For x of
binary features, we sample each point around x by first selecting a number of random features to
flip (or perturb) from a uniform distribution between 0 and min(p, ε′). The max number of flips ε′ is
derived from ε for a distance metric that is usually cosine distance (Ribeiro et al., 2016). Distances
between local samples and x are then weighted by a Gaussian kernel to become sample weights (e.g.
the frequency each sample appears in the sampled dataset).1 For context-dependent explanations,
the exact choice of σ depends on the stability and interaction orders of explanations. The interaction
orders may become too large and uninformative because the local vicinity area covers too much
complex representation from f(·). Thus we recommend tuning σ to the task at hand.

Our framework is flexible to any interaction detection method that applies to the dataset D =
{(x(1), f(x(1))), . . . , (x(n), f(x(n)))}. Since we seek to detect non-additive interactions, we use
the neural interaction detection (NID) framework (Tsang et al., 2018), which interprets learned neu-
ral network weights to obtain interactions. To the best of our knowledge, this detection method is
the only polynomial-time algorithm that accurately ranks any-order non-additive interactions after
training one model, compared to alternative methods that must train an exponential number O(2p)
of models. The basic idea of NID is to interpret an MLP’s accurate representation of data to accu-
rately identify the statistical interactions present in this data. Because MLPs learn interactions at
nonlinear activation functions, NID performs feature interaction detection by tracing high-strength
`1-regularized weights from features to common hidden units. In particular, NID efficiently detects
any-order interactions by first assuming each first layer hidden unit in a trained MLP captures at
most one interaction, then NID greedily identifies these interactions and their strengths through a
2D traversal over the MLP’s input weight matrix, W ∈ Rp×h. The result is that instead of testing
for interactions by training O(2p) models, now only O(1) models and O(ph) tests are needed.

In addition to its efficiency, applying NID to our framework Mahé has several advantages. One
is the universal approximation capabilities of MLPs (Hornik, 1991), allowing them to approximate
arbitrary interacting functions in the potentially complex local vicinity of f(x). Another advantage
is the independence of features in the sampled points of D. Normally, interaction detection methods
cannot identify high interaction strengths involving a feature that is correlated with others because
interaction signals spread and weaken among correlated variables (Sorokina et al., 2008). Without
facing correlations, NID can focus more on interpreting the data-generating function, the target
model f . One disadvantage of our application of NID is the curse of dimensionality for MLPs when
p is large (e.g. p > n) (Theodoridis et al., 2008), which is oftentimes the case for images. In general,
large input dimensions should be reduced as much as possible to avoid overfitting. For images, p is
normally reduced in model-agnostic explanation methods by using segmented aggregations of pixels
called superpixels as features (Ribeiro et al., 2016; Lundberg & Lee, 2017; Ribeiro et al., 2018).

Hierarchical Interaction Attributions: Upon obtaining an interaction ranking from NID,
GAMs with interactions (Eq. 3) can be learned for different top-K interactions ranked by their
strengths (Tsang et al., 2018). In the Mahé framework, there are L + 1 different levels of a hier-
archical explanation which constitutes our context-dependent explanation, where L is the number
of levels with interaction explanations, and K = L at the last level. When presenting the hierarchy
such as Figure 1 Step 3, the first level shows the additive attributions of individual features from by a
trained φ(·) in Eqs. 1 or 2, such as the explanation from linear LIME. Subsequently, the parameters
w of φ(·;w, b) are frozen before interaction models are added to construct φK(·) in Eq. 3. The next
levels of the hierarchy can be presented either as the interaction attribution of g′K(·) as in Figure 1 or

1In cases where features are a mixture of continuous and one-hot categorical variables, a way of sampling
points is to adapt the approach for binary features to handle the mixture of feature types (Ribeiro et al., 2016).
The main difference now is that continuous features are drawn from a uniform distribution truncated at σ and
are standard scaled to have similar magnitudes as the binary features. Since continuous features are present, d
can be `2 distance, then a Gaussian kernel can be applied to sample distances as before.
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those of {g′i(·)}Ki=1 (Eq. 3), where at each level K is increased and {g′i(·)}Ki=1, bias b are retrained.
The practice of training interaction models g′i on the residual of φ is used to prevent degeneracy of
univariate functions in φ in the presence of any overlapping interaction functions (Lou et al., 2013).
Since φK is trained at each hierarchical level on D, the fit of each φK can also be explained via
predictive performance, such as R2 performance in Figure 1 Step 3. The stopping criteria for the
number of hierarchical levels can depend on the predictive performance or user preference.

4.2 CONTEXT-FREE EXPLANATIONS

In order to provide context-free explanations, we propose determining whether the local interac-
tions assumed to be context-dependent in §4.1 can generalize to explain global behavior in f . To
this end, we first define ideal conditions for which a generic local explanation can generalize. For
choosing distance metric d and sampling points in the local vicinity of x, please refer to §4.1 and
our considerations for generalizing explanations at the end of this section.
Definition 1 (Generalizing Local Explanations). Let f(·) be the model output we wish to explain,
and Xf be the data domain of f . Let a local explanation of f at x ∈ Xf be some explanation
E that is true for f(x) and depends on samples x` ∈ Xf that are only in the local vicinity of x,
i.e. d(x,x`) ≤ ε provided a distance metric d and distance ε ≥ 0. The local explanation E is a
global explanation if the following two conditions are met: 1) Explanation E is true for f at all data
samples in Xf , including samples outside the local vicinity of x, i.e. all samples xg ∈ Xf satisfying
d(x,xg) > ε. 2) There exists a sample x′ ∈ Xf and a local modification to f(x′) (modifying f(x`)
in the vicinity d(x′,x`) ≤ ε) that changes E for all samples in Xf while still meeting condition 1).

For example, consider a simple linear regression model we wish to explain, f(x) = w1x1 + w2x2.
Let its local explanation be the feature attributionsw1x1 andw2x2. This local explanation is a global
explanation because 1) for all values of x1 and x2, the feature attributions are still w1x1 and w2x2,
and 2) if any of the weights are changed, e.g. w1 → w′1, the attribution explanation will change, but
the feature attributions are still w′1x1 and w2x2 for all values of x1 and x2.

Our context-free explanation of interaction I is: whenever local interaction I exists, its attribution
will in general have the same polarity (or sign). Since it is impossible to empirically prove that a
local explanation is true for all data instances globally (via Definition 1), this work is focused on
providing evidence of context-free interactions. This evidence can be obtained by checking whether
our explanation is consistent with the two conditions from Definition 1 for the interaction of interest
I: 1) For representative data instances in the domain of f , if local interaction I exists, does it always
have the same attribution polarity? The representative data instances should be separated from each
other at an average distance beyond ε. 2) Can local interaction I at a single data instance x̃ be used
to negate I’s attribution polarity for all representative data instances where I exists?

The advantage of checking the response of f to local modification is determining if consistent ex-
planations across data instances are more than just coincidence. This is especially important when
only a limited number of data instances are available to test on. We propose to modify an interaction
attribution of the model’s output f(x) at data instance x by utilizing a trained model g′k(xI) of inter-
action Ik, where 1 ≤ k ≤ K (Eq. 3). Let g̃′k(·) be a modified version of g′k(·). We can then define a
modified form of Eq. 3:
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common manifold (right) in a model.

φ̃k(x) = φ(x) + g̃′k(xI) +

K∑
i=1,i6=k

g′i(xI). (4)

Without retraining φ̃k(·), we use φ̃k and the same local
vicinity {x(i)}ni=1 in D to generate a new dataset D̃ =

{(x(1), φ̃k(x
(1)), . . . , (x(n), φ̃k(x

(n)))}. Finally, we can
modify the interaction attribution of f(x) by fine-tuning
f(·) on dataset D̃. In this paper, we modify interactions
by negating them: g̃′k(·) = −cg′k(·), where −c negates
the interaction attribution with a specified magnitude c.

How can modifying a local interaction affect interactions
outside its local vicinity? This would suggest that the
manifold hypothesis is true for f(·)’s representations of
these interactions (Figure 2). The manifold hypothesis states that similar data lie near a low-
dimensional manifold in a high-dimensional space (Turk & Pentland, 1991; Lee et al., 2003; Cayton,
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2005). Studies have suggested that the hypothesis applies to the data representations learned by neu-
ral networks (Rifai et al., 2011; Basri & Jacobs, 2016). The hypothesis is frequently used to visualize
how deep networks represent data clusters (Maaten & Hinton, 2008; LeCun et al., 2015), and it has
been applied to representations of interactions (Reed et al., 2014), but not for neural networks.

Part of our objective is to generalize our explanation as much as possible. In the case of language-
related tasks, we additionally generalize based on our meaning of a local interaction and the distance
metric we use, d. In this paper, local interactions for language tasks do not have word interactions
fixed to specific positions; instead, these interactions are only defined by the words themselves (the
interaction values) and their positional order. For example, the (“not”, “bad”) interaction would
match in the sentences: “this is not bad” and “this does not seem that bad”. For comparing texts
and measuring vicinity sizes, we use edit distance (Levenshtein, 1966), which allows us to compare
sentences with different word counts.2 Although we define distance metrics for each domain (§5.1),
we found that our results were not very sensitive to the exact choice of valid distance metric.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP
We evaluate the effectiveness of Mahé first on synthetic data and then on four real-world datasets.
To evaluate context-dependent explanations of Mahé, we first evaluate the accuracy of Mahé at
local interaction detection and modeling on the outputs of complex base models trained on syn-
thetic ground truth interactions. We compare Mahé to Shap-Tree (Lundberg et al., 2018), ACD-
MLP (Singh et al., 2018), and ACD-LSTM (Murdoch et al., 2018; Singh et al., 2018), which are local
interaction modeling baselines for the respective models they explain: XGBoost (Chen & Guestrin,
2016), multilayer perceptrons (MLP), and long short-term memory networks (LSTM) (Hochreiter
& Schmidhuber, 1997). Synthetic datasets have p = 10 features (Table 2).

Table 1: Avg. feature count (p) in test
samples used to evaluate Mahé’s expla-
nations of target models. †Superpixels
are used to reduce the dimensionality
of images (§4.1). ††For Transformer, p
and the dataset (Merity et al., 2016) are
based on experimental design (§5.3).

models dataset average p

DNA-CNN MYC-DNA 36
Sentiment-LSTM SST 15.9± 7.0
ResNet152† ImageNet ‘14 30.2± 1.4
Transformer†† WikiText-103 11.8± 2.3

In all other experiments, we study Mahé’s explanations
of state-of-the-art level models trained on real-world
datasets. The state-of-the-art models are: 1) DNA-CNN,
a 2-layer 1D convolutional neural network (CNN) trained
on MYC-DNA binding data 3 (Mordelet et al., 2013;
Yang et al., 2013; Alipanahi et al., 2015; Zeng et al.,
2016; Wang et al., 2018), 2) Sentiment-LSTM, a 2-layer
bi-directional LSTM trained on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013; Tai et al., 2015), 3)
ResNet152, an image classifier pretrained on ImageNet
‘14 (Russakovsky et al., 2015; He et al., 2016), and 4)
Transformer, a machine translation model pretrained on
WMT-14 En→ Fr (Vaswani et al., 2017; Ott et al., 2018).
Avg. p for our context-dependent evaluations, similar to our context-free tests, are shown in Table 1.

The following hyperparameters are used in our experiments. We use n = 1k local-vicinity samples
inD for synthetic experiments and n = 5k samples for experiments explaining models of real-world
datasets, with 80%-10%-10% train-validation-test splits to train and evaluate Mahé. The distance
metrics for vicinity size are: `2 distance for synthetic experiments, cosine distance for DNA-CNN
and ResNet152, and edit distance for Sentiment-LSTM and Transformer. We use on-off superpixel
and word approaches to binary feature representation for explaining ResNet152 and Sentiment-
LSTM respectively (Ribeiro et al., 2016; Lundberg & Lee, 2017), and the other experiments for
real-world datasets use perturbation distributions that randomly perturbs features to belong to the
same categories of original features, as in (Ribeiro et al., 2018).The superpixel segmenter we use is
quick-shift (Vedaldi & Soatto, 2008; Ribeiro et al., 2016).

For the hyperparameters of the neural networks in Mahé, we use MLPs with 50-30-10 first-to-
last hidden layer sizes to perform interaction detection in the NID framework (Tsang et al., 2018).
These MLPs are trained with `1 regularization λ1 = 5e−4. The learning rate used is always 5e−3
except for Transformer experiments, whose learning rate of 5e−4 helped with interaction detection
under highly unbalanced output classes. The MLP-based interaction models in the GAM (Eq. 3)

2Unfortunately, for image-related tasks, we could not generalize our definition of local interactions despite
the translation invariance of deep convnets.

3The motif and flanking regions of DNA sequences in the training set are shuffled to simulate unalignment.
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Figure 3: Results of synthetic experiments with Mahé and different baselines explaining base mod-
els XGBoost (tree), MLP, LSTM trained on F1−4 (Table 2) at σ = 0.6 (max= 3.2) are shown. (a)
shows the average local fit in MSE of Mahé and baselines on the base models’ representations of
respective interactions. (b) shows the average R-precision of interaction rankings from each base-
line. *Shap-Tree cannot detect or fit to a three-way interaction. †We assume interaction order is
unknown, and ACD-MLP and ACD-LSTM require exhaustive search of all possible interactions.

always have architectures of 30-10. They are trained with `2 regularization of λ2 = 1e−5 and
learning rate of 1e−3. Because learning GAMs can be slow, we make a linear approximation of
the univariate functions in Eq. 3, such that gi(xi) = xi. This approximation also allows us to make
direct comparisons between Mahé and linear LIME, since xi is exactly the linear part (Eq. 1). All
neural networks train with early stopping, and Level L+1 is decided where validation performance
does not improve more than 10% with a patience of 2 levels. c ranges from 3 to 4 in our experiments.

5.2 CONTEXT-DEPENDENT EXPLANATIONS

5.2.1 SYNTHETIC EXPERIMENTS Table 2: Data generating functions
with interactions

F1(x) = 10x1x2 +
∑10

i=3 xi

F2(x) = x1x2 +
∑10

i=3 xi

F3(x) = exp(|x1 + x2|) +
∑10

i=3 xi

F4(x) = 10x1x2x3 +
∑10

i=4 xi

In order to evaluate Mahé’s context-dependent explanations,
we first compare them to state-of-the-methods for local inter-
action interpretation. A standard way to evaluate the accu-
racy of interaction detection and modeling methods has been
to experiment on synthetic data because ground truth inter-
actions are generally unknown in real-world data (Hooker,
2004; Sorokina et al., 2008; Lou et al., 2013; Tsang et al.,
2018). Similar to Hooker (2007), we evaluate interactions in a subset region of a synthetic function
domain. We generate synthetic data using functions F1 − F4 (Table 2) with continuous features
uniformly distributed between −1 to 1, train complex base models (as specified in §5.1) on this
data, and run different local interaction interpretation methods on 10 trials of 20 data instances at
randomly sampled locations on the synthetic function domain. Between trials, base models with dif-
ferent random initializations are trained to evaluate the stability of each interpretation method. We
evaluate how well each method fits to interactions by first assuming the true interacting variables
are known, then computing the Mean Squared Error (MSE) between the predicted interaction attri-
bution of each interpretation method and the ground truth at 1000 uniformly drawn locations within
the local vicinity of a data instance, averaged over all randomly sampled data instances and trials
(Figure 3a). We also evaluate the interaction detection performance of each method by comparing
the average R-precision (Manning et al., 2008) of their interaction rankings across the same sampled
data instances (Figure 3b). R-precision is the percentage of the top-R items in a ranking that are
correct out of R, the number of correct items. Since F1 − F4 only ever have 1 ground truth interac-
tion, R is always 1. Compared to Shap-Tree, ACD-MLP, and ACD-LSTM, the Mahé framework is
the only one capable of detection and fitting, and it is the only model-agnostic approach.

5.2.2 EVALUATING ON REAL-WORLD DATA

In this section, we demonstrate our approaches to evaluating Mahé’s context-dependent explana-
tions on real-world data. We first evaluate the prediction performance of Mahé on the test set of
D as interactions are added in Eq. 3, i.e. K increases. For a given value of σ, we run Mahé 10
times on each of 40 randomly selected data instances from the test sets associated with DNA-CNN,
Sentiment-LSTM, and ResNet152. For Transformer, performance is examined on a specific gram-
mar (cet) translation, to be detailed in §5.3. The local vicinity samples and model initializations in
Mahé are randomized in every trial. We select the σ that gives the worst performance for Mahé
at K = L in each base model, out of σ = 0.4σ′, 0.6σ′, 0.8σ′, and 1.0σ′, where σ′ is the average
pairwise distance between data instances in respective test sets. Results are shown in Table 3 for K
starting from 0, which is linear LIME, and increasing to the last hierarchical level L.
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Table 3: Average prediction performance (lower is better; 1-AUC for Transformer, MSE otherwise)
with (K > 0) and without (K = 0) interactions for random data instances in the test sets of
respective base models. Only results with detected interactions are shown. For each model, at
least 80% of all tested data instances possessed interactions, yielding ≥ 320 instances for each
performance statistic. Including interactions results in significant performance improvements.

K DNA-CNN Sentiment-LSTM ResNet152 Transformer

linear LIME 0 9.8e−3± 8.8e−4 10.1e−2± 7.0e−3 0.25± 0.068 0.25± 0.071
Mahé 1 8e−3± 1.3e−3 5.6e−2± 8.6e−3 0.22± 0.063 0.06± 0.016
Mahé L 6e−3± 1.2e−3 2.4e−2± 7.2e−3 0.16± 0.053 0.06± 0.015

(a) Explanation A of negative prediction (b) Explanation B of negative prediction

Figure 4: Example of explanations that Mechanical Turk users choose from for a sentiment analysis
task. (a) is linear LIME, (b) is Mahé. LIME explanations are shown as positive and negative
contributions of each feature (word) to the prediction, and Mahé explanations are shown similarly
with one of the contributions belonging to a single interaction or group of words.

An alternative approach to evaluating Mahé is to determine out of LIME and Mahé explanations,
could human evaluators prefer Mahé explanations? We recruit a total of 60 Amazon Mechanical
Turk users to participate in comparing explanations of Sentiment-LSTM predictions. While the
presented LIME explanations are standard, we adjust Mahé to only show the K = 1 interaction
and merge its attribution with subsumed features’ attributions to make the difference between LIME
and Mahé subtle (Figure 4). We present evaluators with explanations for randomly selected test
sentences under the main condition that these sentences must have at least one detected interaction,
which is the case for > 95% of sentences. In total, there are explanations for 40 sentences, each of
which is examined by 5 evaluators, and a majority vote of their preference is taken. Each evaluator
is only allowed to pick between explanations for a maximum of 4 sentences. Please see Appendix B
for additional conditions used to select sentences for evaluators and more examples like Figure 4.
The result of this experiment is that the majority of preferred explanations (65%, p = 0.029) is with
interactions, supporting their inclusion in hierarchical explanations.

5.2.3 HIERARCHICAL EXPLANATIONS

Examples of context-dependent hierarchical explanations for ResNet152, Sentiment-LSTM, and
Transformer are shown in Figure 6, Table 6, and Appendix E respectively after page 9. For the
image explanations in Figure 6, superpixels belonging to the same entity often interact to support its
prediction. One interesting exception is (Figure 6 (d)) because water is not detected as an important
interaction with buffalo in the prediction of water buffalo. This could be due to various reasons.
For example, water may not be a discriminatory feature because there are a mix of training images
of water buffalo in ImageNet with and without water. The same is true for related classes like
bison. Explanations may also appear unintuitive when a model misbehaves. Therefore, quantitative
validations, such as the predictive performance of adding interactions in each hierarchical level (e.g.
R2 scores in Figure 6), can be critical for trusting explanations.

5.3 CONTEXT-FREE EXPLANATIONS

In this section, we show examples of context-free explanations of interactions found by Mahé.
We first study the context-free interactions learned by Sentiment-LSTM. To have enough sentences
for this evaluation, we use data from IMDB movie reviews (Maas et al., 2011) in addition to the
test set of SST. Based on our results (Figure 5), we observe that the polarities of certain local
interactions are almost always the same, where the words of matching interactions can be sepa-
rated by any number of words in-between. To ensure that this global behavior is not a coinci-
dence, we modify local interaction behavior in Sentiment-LSTM to check for a global change in
this behavior (§4.2). As a result, when the model’s local interaction attribution at a single data
instance is negated, the attribution is almost always the opposite sign for the rest of the sentences.
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Table 4: cet interactions before and af-
ter modifying Transformer. Ns is num-
ber of samples, and %cet is % of Ns

samples + or − contributing to cet.

Before
modifying

After
modifying

Interaction Ns %cet + Ns %cet −
(this, event) 38 1.0 39 1.0
(this, article) 33 1.0 34 1.0
(this, incident) 31 1.0 29 0.93
(this, album) 24 1.0 40 1.0
(this, arrangement) 22 1.0 36 1.0
(that, afternoon) 22 1.0 27 1.0
(this, location) 20 1.0 22 0.95
(this, effect) 19 1.0 20 0.95

Table 5: Examples of En.-Fr. translations before and after
modifying Transformer. Interacting elements are bolded.
BLEU change is the % change in test BLEU score from
modifying the bolded interaction in Transformer.

Sample English-French Translations BLEU
change

English This event took place on 10 August 2008.
Fr. before Cet événement a eu lieu le 10 Mars 2008.
Fr. after Cette rencontre a eu lieu le 10 Mars 2008. (−3.7%)

English This incident made it into the music video.
Fr. before Cet incident a été intégré dans le vidéo musical.
Fr. after C’est pas mal du tout ca! (−3.4%)

English The initial language of this article was French.
Fr. before La langue initiale de cet article était le Français.
Fr. after La langue originale du présent article était le Français. (−2.8%)

0 1
Consistency of Attribution Polarity (+/-)

(not, but)

(not, bad)

(too, bad)

(only, worse)

(not, just)

(if, you, liked)

(not, nice)

(if, you)

98.6% (+)

98.1% (+)

96.0% (+)

95.7% (+)

95.7% (+)

95.5% (-)

95.3% (-)

91.5% (-)

92.9% (-)

97.5% (-)

94.4% (-)

94.3% (-)

96.7% (-)

97.3% (+)

92.7% (+)

100.0% (+)

Before model modification
After model modification

(+) positive sentiment
(-) negative sentiment

Figure 5: Interaction polarity con-
sistency in Sentiment-LSTM be-
fore and after model modification.
(mean and std. errors shown)

A notable insight about Sentiment-LSTM is that it appears
to represent (too, bad) and (only, worse) as globally posi-
tive sentiments, and Mahé’s modification in large part rectifies
this misbehavior (Figure 5). The modifications to Sentiment-
LSTM only cause an average reduction of 1.5% test accuracy,
indicating that the original learned representation stays largely
intact. Results for σ = 16 are shown with the average pair-
wise edit distance between sentences being σ′ = 24.8. Words
in detected interactions are separated by 1.3 words on average.

Next, we study the possibility of identifying context-free in-
teractions in Transformer on a known form of interaction
in English-to-French translations: translations into a special
French word for “this” or “that”, cet, which only appears when
the noun it modifies begins with a vowel. Some examples of
cet interactions are (this, event), (this, article), and (this, inci-
dent), whose nouns have the same starting vowels in French.
For our explanation task, the presence of cet in a translation is
used as a binary prediction variable for local interaction extrac-
tion. To minimize the sources of cet, we limit original sentence
lengths to 15 words, and we perform translations on WikiText-103 (Merity et al., 2016) to evaluate
on enough sentences. The results of context-free experiments on cet interactions of adjacent En-
glish words are shown in Table 4. The interactions always have positive polarities towards cet, and
after modifying Transformer at a single data instance for a given interaction, its polarity almost al-
ways become negative, just like the context-free interactions in Sentiment-LSTM. Examples of new
translations from the modified Transformer are shown in the “after” rows in Table 5, where cet now
disappears from the translations. The test BLEU score of Transformer only decreases by an average
percent difference of−2.7% from modification, which is done through differentiating the max value
of cet output neurons over all translated words. Results for σ = 6, σ′ = 10.5 are shown.

Experiments on DNA-CNN and ResNet152 show similar results at fixed interaction positions (§4.2).
For DNA-CNN, out of the 94 times a 6-way interaction of the CACGTG motif (Sharon et al., 2008)
was detected in the test set, every time yielded a positive attribution polarity towards DNA-protein
affinity, and the same was true after modifying the model in the opposite polarity (cosine distance
σ = 0.35, σ′ = 0.408). For ResNet152, context-free interactions are also found (cosine distance
σ = 0.4, σ′ = 0.663). However, because superpixels are used, the interactions found may contain
artifacts caused by superpixel segmenters, yielding less intuitive interactions (see Appendix A).

5.4 LIMITATIONS

Although Mahé obtains accurate local interactions on synthetic data using NID, there is no guarantee
that NID finds correct interactions. Mahé faces common issues of model-agnostic perturbation
methods in interpreting high-dimensional feature spaces, choice of perturbation distribution, and
speed (Ribeiro et al., 2016; 2018). Finally, an exhaustive search is used for context-free explanations.

9



Under review as a conference paper at ICLR 2019

6 CONCLUSION

In this work, we proposed Mahé, a model-agnostic framework of providing context-dependent and
context-free explanations of local interactions. Mahé has demonstrated the capability of outper-
forming existing approaches to local interaction interpretation and has shown that local interactions
can be context-free. In future work, we wish to make the process of finding context-free interactions
more efficient, and study to what extent model behavior can be changed by editing its interactions
or univariate effects. Finally, we would like to study the interpretations provided by Mahé more
closely to find new insights into structured data.

(a)
prediction:
stretcher

Original Image

R2 = 0.838

linear LIME (level 1)

R2 = 0.84

Mahé (level 2)

R2 = 0.859

Mahé (level 3)

R2 = 0.869

Mahé (level 4)

-2.183

0

2.183

-0.317

0

0.317

(b)
prediction:
window screen

Original Image

R2 = 0.769

linear LIME (level 1)

R2 = 0.779

Mahé (level 2)

R2 = 0.81

Mahé (level 3)

R2 = 0.825

Mahé (level 4)

-0.76

0

0.76

-0.094

0

0.094

(c)
prediction:
Pomeranian

Original Image

R2 = 0.871

linear LIME (level 1)

R2 = 0.872

Mahé (level 2)

R2 = 0.881

Mahé (level 3)

R2 = 0.901

Mahé (level 4)

-2.259

0

2.259

-0.122

0

0.122

(d)
prediction:
water buffalo

Original Image

R2 = 0.877

linear LIME (level 1)

R2 = 0.882

Mahé (level 2)

R2 = 0.894

Mahé (level 3)

R2 = 0.901

Mahé (level 4)

-4.371

0

4.371

-0.134

0

0.134

Figure 6: Examples of context-dependent explanations in hierarchical format for ResNet152, where
images come from the ImageNet test set. Interaction attributions of {g′i(·)}Ki=1 are show at each
K−1 level,K ≥ 1 (§4.1). Colors in superpixels represent attribution scores and their polarity. Cyan
regions positively contribute to the predicton, and red regions negatively contribute. Boundaries
between overlapping interactions are merged when their attribution polarities match.

Table 6: Examples of context-dependent hierarchical explanations on Sentiment-LSTM. The inter-
action attribution of g′K(·) is shown at each K − 1 level, K ≥ 1 (§4.1) in color. Green means
positively contributing to sentiment, and red the opposite. Visualized attributions of linear LIME
and Mahé are normalized to the max attribution magnitudes (max magn.) shown. Top-5 attributions
by magnitude are shown for LIME.

Method Level Fit (R2) Hierarchical Explanation Max magn.

linear LIME 1 0.621 the film is really not so much bad as bland 0.744

Mahé 2 0.751 not, bad
Mahé 3 0.916 not, bad, bland
Mahé 4 0.926 film, not, bad, bland 0.119

linear LIME 1 0.519 a very average science fiction film 0.708

Mahé 2 0.598 science, fiction
Mahé 3 0.819 a, average
Mahé 4 0.923 a, very, average 0.213

linear LIME 1 0.612 a charming romantic comedy that is by far the 0.612

lightest dogme film and among the most enjoyable

Mahé 2 0.856 charming, enjoyable
Mahé 3 0.923 charming, lightest, enjoyable 0.072

10



Under review as a conference paper at ICLR 2019

REFERENCES

Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting the se-
quence specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology, 33
(8):831, 2015.

Ronen Basri and David Jacobs. Efficient representation of low-dimensional manifolds using deep
networks. arXiv preprint arXiv:1602.04723, 2016.

Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions. Annals of
statistics, 41(3):1111, 2013.

Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego Tech. Rep,
12(1-17):1, 2005.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794.
ACM, 2016.

Trevor J Hastie and Robert J Tibshirani. Generalized additive models, 1990.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Giles Hooker. Discovering additive structure in black box functions. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 575–580.
ACM, 2004.

Giles Hooker. Generalized functional anova diagnostics for high-dimensional functions of depen-
dent variables. Journal of Computational and Graphical Statistics, 16(3):709–732, 2007.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Linwei Hu, Jie Chen, Vijayan N Nair, and Agus Sudjianto. Locally interpretable models and effects
based on supervised partitioning (lime-sup). arXiv preprint arXiv:1806.00663, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, pp. 3, 2017.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International Conference on Machine Learning, pp. 2673–2682, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Kuang-Chih Lee, Jeffrey Ho, Ming-Hsuan Yang, and David Kriegman. Video-based face recognition
using probabilistic appearance manifolds. In Computer vision and pattern recognition, 2003.
proceedings. 2003 ieee computer society conference on, volume 1, pp. I–I. IEEE, 2003.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pp. 707–710, 1966.

Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 623–631. ACM, 2013.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, pp. 4765–4774, 2017.

11



Under review as a conference paper at ICLR 2019

Scott M Lundberg, Gabriel G Erion, and Su-In Lee. Consistent individualized feature attribution for
tree ensembles. arXiv preprint arXiv:1802.03888, 2018.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Fantine Mordelet, John Horton, Alexander J Hartemink, Barbara E Engelhardt, and Raluca Gordân.
Stability selection for regression-based models of transcription factor–dna binding specificity.
Bioinformatics, 29(13):i117–i125, 2013.

W James Murdoch, Peter J Liu, and Bin Yu. Beyond word importance: Contextual decomposition
to extract interactions from lstms. arXiv preprint arXiv:1801.05453, 2018.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

Sanjay Purushotham, Martin Renqiang Min, C-C Jay Kuo, and Rachel Ostroff. Factorized sparse
learning models with interpretable high order feature interactions. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 552–561.
ACM, 2014.

Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of
variation with manifold interaction. In International Conference on Machine Learning, pp. 1431–
1439, 2014.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144. ACM, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In AAAI Conference on Artificial Intelligence, 2018.

Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller. The manifold
tangent classifier. In Advances in Neural Information Processing Systems, pp. 2294–2302, 2011.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Eilon Sharon, Shai Lubliner, and Eran Segal. A feature-based approach to modeling protein–dna
interactions. PLoS computational biology, 4(8):e1000154, 2008.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. arXiv preprint arXiv:1704.02685, 2017.

Chandan Singh, W James Murdoch, and Bin Yu. Hierarchical interpretations for neural network
predictions. arXiv preprint arXiv:1806.05337, 2018.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015


Under review as a conference paper at ICLR 2019

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Daria Sorokina, Rich Caruana, Mirek Riedewald, and Daniel Fink. Detecting statistical interactions
with additive groves of trees. In Proceedings of the 25th international conference on Machine
learning, pp. 1000–1007. ACM, 2008.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pp. 3319–3328, 2017.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Sergios Theodoridis, Konstantinos Koutroumbas, et al. Pattern recognition. IEEE Transactions on
Neural Networks, 19(2):376, 2008.

Michael Tsang, Dehua Cheng, and Yan Liu. Detecting statistical interactions from neural network
weights. In International Conference on Learning Representations, 2018.

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3
(1):71–86, 1991.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for mode seeking. In European
Conference on Computer Vision, pp. 705–718. Springer, 2008.

Meng Wang, Cheng Tai, Weinan E, and Liping Wei. Define: deep convolutional neural networks
accurately quantify intensities of transcription factor-dna binding and facilitate evaluation of func-
tional non-coding variants. Nucleic acids research, 46(11):e69–e69, 2018.

Lin Yang, Tianyin Zhou, Iris Dror, Anthony Mathelier, Wyeth W Wasserman, Raluca Gordân, and
Remo Rohs. Tfbsshape: a motif database for dna shape features of transcription factor binding
sites. Nucleic acids research, 42(D1):D148–D155, 2013.

Haoyang Zeng, Matthew D Edwards, Ge Liu, and David K Gifford. Convolutional neural network
architectures for predicting dna–protein binding. Bioinformatics, 32(12):i121–i127, 2016.

13



Under review as a conference paper at ICLR 2019

SUPPLEMENTARY MATERIALS

A CONTEXT-FREE EXPLANATIONS IN RESNET152

1.0 / 1.0

prediction: bulbul

0.925 / 0.825

prediction: tow truck, tow car, wrecker

1.0 / 1.0

prediction: fig

0.949 / 0.947

prediction: bustard

Figure 7: Context-free explanations of interactions in ResNet152 for each image, evaluated over
40 tests before and after modification. Each test superimposes the interaction of interest onto a
randomly selected background image from the test set of ImageNet. Corresponding predictions
are shown above each image, and the percentage of consistent interaction polarity before and after
modification are shown below in that order. The red color indicates a negative interaction attribution
polarity before modification. After modification, the polarities become positive.

B FURTHER DETAILS OF MECHANICAL TURK EXPERIMENT

Besides requiring detected interactions, several other conditions were used to choose sentences for
Mechanical Turk evaluators. We ensure that there is a significant attribution difference between
LIME and Mahé by only choosing among sentences that have a polarity difference between Mahé’s
interaction and LIME’s corresponding linear attributions. To reduce ambiguities of uninterpretable
explanations arising from a misbehaving model - an issue also faced by Sundararajan et al. (2017) in
interpretation evaluation - we only show explanations of sentences that the model classified correctly.
We also attempt to limit the effort that evaluators need to analyze explanations by only showing
sentences with 5-12 words with uniform representation of each sentence length.

An example of the interface that evaluators select from is shown in Figure 8. Figure 9 shows ran-
domly selected examples that evaluators analyze. The visualization tool for presenting additive
attribution explanations is graciously provided by the official code repository of LIME 4.

Figure 8: Example of Mechanical Turk interface used by workers to select between explanations
provided by linear LIME and Mahé.

4https://github.com/marcotcr/lime
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(a) linear LIME explanations (b) Mahé explanations at K = 1

Figure 9: Randomly selected comparisons between (a) linear LIME and (b) Mahé explanations of
Sentiment-LSTM used in Mechanical Turk experiments (§5.2.2).

C RUNTIME

Figures 10 and 11 show runtimes of context-dependent and -free explanations using Mahé. All
experiments were conducted on Intel Xeon 2.4-2.6 GHz CPUs and Nvidia 1080 Ti GPUs. Exper-
iments with MLPs were run on CPUs and inference/retraining of DNA-CNN, Sentiment-LSTM,
ResNet152, and Transformer were run on GPUs.
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Figure 10: Average runtime of linear LIME versus Mahé on context-dependent explanations. Run-
times for experiments in Table 3 are shown. “local inference” is the runtime for sampling in the
local vicinity of a data instance and running inference though a black-box model for every sampled
point. “NID” is the runtime for running NID interaction detection. “linear model” is the runtime
for training a linear model (Eq. 1) to get linear attributions with LIME. “interaction model(s)” is
the runtime for sequentially training interaction models (Eq. 3) to get interaction attributions with
Mahé.
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Figure 11: Runtime of Mahé for determining whether an interaction is context-free for a randomly
selected interaction and 40 different contexts, run sequentially. Runtimes for checking interaction
consistency before and after model retraining (fine-tuning) are shown, resulting in tests on 80 con-
texts total. DNA-CNN takes longer here because we needed to relax the cutoff criteria of identifying
the last hierarchical level to find the CACGTG interaction. For context-free experiments, a cutoff pa-
tience (§5.1) for Sentiment-LSTM, ResNet152, and Transformer was not needed in our experiments
and is excluded in this runtime analysis. The patience for DNA-CNN was 2.
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Figure 12: Comparisons of Mahé to baselines for identifying consistent interaction polarity before
modifying models. Results for explaining Sentiment-LSTM are shown on the same interactions
identified in Figure 5. The baselines are GLM and GA2M. GLM is a lasso-regularized generalized
linear model with all pairs of multiplicative interaction terms (Bien et al., 2013), and GA2M is a
tree-based generalized additive model with pairwise non-additive interactions (Lou et al., 2013).
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Figure 13: Comparisons of Mahé to baselines for identifying consistent negated interaction polarity
after using the same baselines to locally modify Sentiment-LSTM on the interactions from Figure 12.
Mahé shows more significant improvements over baselines than before negating interactions.

E HIERARCHICAL EXPLANATIONS OF cet INTERACTIONS IN TRANSFORMER

Table 7: Examples of context-dependent hierarchical explanations on Transformer. The interaction
attribution of g′K(·) is shown at each K − 1 level, K ≥ 1 (§4.1) in color. Green contributes to-
wards cet translations, and red contributes the opposite. Visualized attributions of linear LIME and
Mahé are normalized to the max attribution magnitudes (max magn.) shown. Top-5 attributions by
magnitude are shown for LIME.

Method Level Fit (R2) Hierarchical Explanation Max magn.

linear LIME 1 0.782 this article was last updated on substance in august 2012 0.657
Mahé 2 0.948 this, article 3.707

linear LIME 1 0.696 this effect takes part in making lead slightly less reactive chemically 0.643
Mahé 2 0.96 this, effect 2.459

linear LIME 1 0.734 the population size of this bird has not yet been quantified or estimated 0.605
Mahé 2 0.926 this, bird 1.211

F EXPERIMENTS WITH LARGE NUMBER OF FEATURES

We performed experiments on the accuracy and runtime of the MLP used for interaction detection
(via NID) on datasets with large number of features. We generate synthetic data of n samples
and p features {

(
X(i), y(i)

)
} with randomly generated pairwise interactions of using the following

equation (Purushotham et al., 2014):

y(i) = β>X(i) +X(i)>WX(i),

where X(i) ∈ Rp is the ith instance of the design matrix X ∈ Rp×n, y(i) ∈ R is the ith instance of
the response variable y ∈ Rn×1, W ∈ Rp×p contains the weights of pairwise interactions, β ∈ Rp

contains the weights of main effects, and i = 1, . . . , n. W was generated as a sum of K rank one
matrices, W =

∑K
k=1 aka

>
k . X is normally distributed with mean 0 and variance 1. Both ak and β

are sparse vectors of 2− 3% nonzero density and are normally distributed with mean 0 and variance
1. K was set to be 5.

We found that in low p settings, i.e. p = 100, n only needed to be at least 10p to recover 5-15
pairwise interactions at AUC> 0.9. Increasing p to 1000 still required n > 10p, but performance
stability significantly improved between 10p and 100p for detecting 900-2000 interactions. When
p = 10k, we could not detect interactions at n = 10p and did not study further due to large training
time. In general, increasing n by an order of magnitude at fixed p required 4-9x more runtime. As a
rough estimate, increasing p by an order of magnitude at fixed n required 2-3x more runtime. There
is high variance in the runtime associated with increasing p because of the early stopping used.

Based on our experiments, we recommend limiting p to be under 100, so that model training can
complete in under 40 seconds. Once interaction detection via NID is done, the extracted interaction
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sets tend to be much smaller than p, and φK (Eq. 3) for each interaction is likely to train faster
than the original MLP with p inputs. We note that identifying interactions in high dimensional input
spaces like images and image models is an interesting and challenging research problem and is left
for future work.

G MORE EXAMPLES OF INTERACTIONS WITH CONSISTENT POLARITIES IN
SENTIMENT-LSTM

Table 8: Shown below are more examples of interactions with consistent polarities found by Mahé
in Sentiment-LSTM. Num samples is the number of sentences from which the same interaction is
found. Percent polarity is the percentage of interactions that have the specified attribution polarity.
Avg. separation is the average separation of words in detected interactions.

Interaction num samples percent polarity avg. separation
between words

(not, good) 213 96.7% negative 1.4
(falls, flat) 169 97.6% negative 0.17
(not, funny) 155 97.4% negative 0.65
(not, miss) 133 97.7% positive 0.66
(still, love) 103 98.1% positive 0.19
(bad, worst) 44 95.5% positive 5.5
(never, off) 36 100% positive 1.4
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