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Abstract

Despite perfectly interpolating the training data, deep neural networks (DNNs) can often
generalize fairly well, in part due to the “implicit regularization” induced by the learning al-
gorithm. Nonetheless, various forms of regularization, such as “explicit regularization” (via
weight decay), are often used to avoid overfitting, especially when the data is corrupted.
There are several challenges with explicit regularization, most notably unclear convergence
properties. Inspired by the convergence properties of stochastic mirror descent (SMD) algo-
rithms, we propose a new method for training DNNs with regularization, called regularizer
mirror descent (RMD). In highly overparameterized DNNs, SMD simultaneously interpo-
lates the training data and minimizes a certain potential function of the weights. RMD starts
with a standard cost which is the sum of the training loss and a convex regularizer of the
weights. Reinterpreting this cost as the potential of an “augmented” overparameterized net-
work and applying SMD yields RMD. As a result, RMD inherits the properties of SMD and
provably converges to a point “close” to the minimizer of this cost. RMD is computationally
comparable to stochastic gradient descent (SGD) and weight decay and is parallelizable in
the same manner. Our experimental results on training sets with various levels of corruption
suggest that the generalization performance of RMD is remarkably robust and significantly
better than both SGD and weight decay, which implicitly and explicitly regularize the /5
norm of the weights. RMD can also be used to regularize the weights to a desired weight
vector, which is particularly relevant for continual learning.

1 Introduction

1.1 Motivation

Today’s deep neural networks are typically highly overparameterized and often have a large enough capacity
to easily overfit the training data to zero training error (Zhang et all 2016). Furthermore, it is now widely
recognized that such networks can still generalize well despite (over)fitting (Bartlett et al., {2020} Belkin et al.
2018;|2019; Nakkiran et al., |2021; |Bartlett et al.l |2021)), which is, in part, due to the “implicit regularization”
(Gunasekar et al., [2018a; |Azizan & Hassibil, 2019b; [Neyshabur et al., |2015; [Boffi & Slotine, 2021) property
of the optimization algorithms such as stochastic gradient descent (SGD) or its variants. However, in many
cases, especially when the training data is known to include corrupted samples, it is still highly desirable to
avoid overfitting the training data through some form of regularization (Goodfellow et al.l [2016; Kukackal
et al., |2017). This can be done through, e.g., early stopping, or explicit regularization of the network
parameters via weight decay. However, the main challenge with these approaches is that their convergence
properties are in many cases unknown and they typically do not come with performance guarantees.

1.2 Contributions

The contributions of the paper are as follows.

1) We propose a new method for training DNNs with regularization, called regularizer mirror descent
(RMD), which allows for choosing any desired convex regularizer of the weights. RMD leverages the implicit
regularization properties of the stochastic mirror descent (SMD) algorithm. It does so by reinterpreting the
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explicit cost (the sum of the training loss and convex regularizer) as the potential function of an “augmented”
network. SMD applied to this augmented network and cost results in RMD.

2) Contrary to most existing explicit regularization methods, RMD comes with convergence guarantees,
as a result of the connection to SMD. More specifically, for highly overparameterized models, it provably
converges to a point “close” to the minimizer of the cost.

3) RMD is computationally and memory-wise efficient. It imposes virtually no additional overhead com-
pared to standard SGD, and can run in mini-batches and/or be distributed in the same manner.

4) We evaluate the performance of RMD using a ResNet-18 neural network architecture on the CIFAR-10
dataset with various levels of corruption. The results show that the generalization performance of RMD is
remarkably robust to data corruptions and significantly better than both the standard SGD, which implicitly
regularizes the £5 norm of the weights, as well as weight decay, which explicitly does so. Further, unlike other
explicit regularization methods, e.g., weight decay, the generalization performance of RMD is very consistent
and not sensitive to the regularization parameter.

5) An extension of the convex regularizer can be used to guarantee the closeness of the weights to a desired
weight vector with a desired notion of distance. This makes RMD particularly relevant for continual learning.

Therefore, we believe that RMD provides a very viable alternative to the existing explicit regularization
approaches.

1.3 Related Work

There exist a multitude of regularization techniques that are used in conjunction with the training procedures
of DNNs. See, e.g., (Goodfellow et al.| (2016); Kukacka et al.| (2017) for a survey. While it is impossible to
discuss every work in the literature, the techniques can be broadly divided into the following categories based
on how they are performed: (i) via data augmentation, such as mixup (Zhang et all [2018b), (ii) via the
network architecture, such as dropout (Hinton et al.l [2012), and (iii) via the optimization algorithm, such as
early stopping (Li et al., [2020; [Yao et al.| |2007; |Molinari et all 2021)), among others.

Our focus in this work is on explicit regularization, which is done through adding a regularization term to
the cost. Therefore, the most closely comparable approach is weight decay (Zhang et al.,|2018al), which adds
an fo-norm regularizer to the objective. However, our method is much more general, as it can handle any
desired strictly-convex regularizer.

Another related work is that of Hu et al.| (2019), who proposed two different forms of regularization with
convergence guarantees. Their first regularizer (RDI) is based on distance to initialization. This is a special
case of our formulation (13) when 1(w) = 3||w||?. Their second regularizer (AUX) is based on inserting an
auxiliary variable inside the loss the function, i.e., 3 3" | (f(w,z;) + ab; — y;)?. This is a different kind of
regularizer from the standard augmented form and is thus not directly comparable with our approach.

As mentioned earlier, our algorithm for solving the explicitly-regularized problem leverages the “implicit
regularization” behavior of a family of optimization algorithms called stochastic mirror descent (Azizan
et al.l [2021)). We discuss this further in Section

The rest of the paper is organized as follows. We review some preliminaries about explicit and implicit
regularization in Section [2l We present the main RMD algorithm and its various special cases in Section
In Section[d] we perform an experimental evaluation of RMD and demonstrate its generalization performance.
In Section [5} we show that RMD can be readily used for regularizing the weights to be close to any desired
weight vector, which is particularly important for continual learning. We present the convergence guarantees
of RMD in Section [6] and finally conclude in Section [7]

2 Background

We review some background about stochastic gradient methods and different forms of regularization.
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2.1 Stochastic Gradient Descent

Let L;(w) denote the loss on the data point i for a weight vector w € RP. For a training set consisting
of n data points, the total loss is > ; L;(w), which is typically attempted to be minimized by stochastic
gradient descent (Robbins & Monro|, 1951)) or one of its variants (such as mini-batch, distributed, adaptive,
with momentum, etc.). Denoting the model parameters at the ¢-th time step by w; € RP and the index of
the chosen data point by i, the update rule of SGD can be simply written as

Wt = W1 — T]VLi(wt_l), t Z ]., (1)

where 7 is the so-called learning rate, wy is the initialization, and VL;(-) is the gradient of the loss. When
trained with SGD, typical deep neural networks (which have many more parameters than the number of
data points) often achieve (near) zero training error (Zhang et all 2016), or, in other words, “interpolate”
the training data (Ma et al.| [2018).

2.2 Explicit Regularization

As mentioned earlier, it is often desirable to avoid (over)fitting the training data to zero error, e.g., when
the data has some corrupted labels. In such scenarios, it is beneficial to augment the loss function with a
(convex and differentiable) regularizer ¥ : RP — R, and consider

min A} Li(w) + (w), (2)

where A > 0 is a hyper-parameter that controls the strength of regularization relative to the loss function.
A simple and common choice of regularizer is 1)(w) = %||w||?>. In this case, when SGD is applied to it
is commonly referred to as weight decay. Note that the bigger A is, the more effort in the optimization is
spent on minimizing Y ., L;(w). Since the losses L;(-) are non-negative, the lowest these terms can get is

zero, and thus, for A — oo, the problem would be equivalent to the following:
min Y (w)
w

. (3)
st. Li(w)=0, i=1,...,n.

2.3 Implicit Regularization

Recently, it has been noted in several papers that, even without imposing any explicit regularization in
the objective, i.e., by optimizing only the loss function Y ., L;(w), there is still an implicit regularization
induced by the optimization algorithm used for training (Gunasekar et al., [2018ajb; |Azizan & Hassibi, [2019b;
Lyu & Li, 2019; |Poggio et al., [2020). Namely, when initialized at the origin, SGD with sufficiently small
step size tends to converge to interpolating solutions with minimum /> norm (Engl et al |1996; |Gunasekar,
et alll [20184)), i.e.[l]

min o]l
w
st. Li(w)=0, i=1,...,n.

More generally, it has been shown (Gunasekar et all [2018a; |Azizan et al., [2021]) that SMD, whose update
rule is defined for a differentiable strictly-convex “potential function” #(-) as

Vip(wr) = Vip(wi—1) =V Li(wi-1), (4)

with proper initialization and sufficiently small learning rate tends to converge to the solution 01E|

min  Y(w)

st. Li(w)=0, i=1,...,n.

(5)

1See Section [6] for a more precise statement.
2See Section 6| and Theorem for a more precise statement.
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Note that this is equivalent to the case of explicit regularization with A — oo, i.e., problem .

3 Proposed Method: Regularizer Mirror Descent (RMD)

When it is undesirable to reach zero training error, e.g., due to the presence of corrupted samples in the
data, one cannot rely on the implicit bias of the optimization algorithm to avoid overfitting. That is because
these algorithms would interpolate the corrupted data as well. This suggests using explicit regularization
as in . Unfortunately, standard explicit regularization methods, such as weight decay, which is simply
employing SGD to , do not come with convergence guarantees. Here, we propose a new algorithm, called
Regularizer Mirror Descent (RMD), which, under appropriate conditions, provably regularizes the weights
for any desired differentiable strictly-convex regularizer ¢ (-). In other words, RMD converges to a weight
vector close to the minimizer of .

We are interested in solving the explicitly-regularized optimization problem . Let us define an auxiliary
variable z € R™ with elements z[1],...,z[n]. The optimization problem can be transformed into the
following form:

min )\Z @ + Y(w)
” i=1

st. z[i] =v2L;(w), i=1,...,n.

The objective of this optimization problem is a strictly-convex function

(6)

§ (w,2) = (w) + 1P,

and there are n equality constraints. We can therefore think of an “augmented” network with two sets of
weights, w and z. To enforce the constraints z[i] = \/2L;(w), we can define a “constraint-enforcing” loss

é(z[z] — \/2Li(w)>, where /(-) is a differentiable convex function with a unique root at 0 (e.g., the square
loss £(-) = %) Thus, (EI) can be rewritten as

min  (w, 2)
o (7)

s.t. €<z[i]— 2Li(w)):0, i=1,...,n

Note that (@ is similar to the implicitly-regularized optimization problem , which can be solved via
SMD. To do so, we need to follow and compute the gradients of the potential 1&(, -), as well as the loss
i (z[z] — \/W), with respect to w and z. We omit the details of this straightforward calculation and
simply state the result, which we call the RMD algorithm.

At time ¢, when the i-th training sample is chosen for updating the model, the update rule of RMD can be
written as follows:

Vip(wi) = Vip(wi—1) + mVLz‘(wt—l)a
ali] = zali] - 5,
zlj] = zeali], Vi#d (8)

where ¢;; = nl’ (zt_l[i] - \/2Li(wt_1)), I () is the derivative of the constraint-enforcing loss function,
and the variables are initialized with wg = 0 and zg = 0. Note that because of the strict convexity of
the regularizer 9 (-), its gradient V4 (+) is an invertible function, and the above update rule is well-defined.
Algorithm [I] summarizes the procedure. As will be shown in Section [6] under suitable conditions, RMD
provably solves the optimization problem .

[OM
2

One can choose the constraint-enforcing loss as £(-) = , which implies #/(-) = (-), to simply obtain the

same update rule as in with ¢;; = n (zt_l[i] - 2Li(wt_1)).

W
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Algorithm 1 Regularizer Mirror Descent (RMD)
Require: \, 7, wy

1: Initialization: w <+ wg, z <+ 0
2: repeat
3: Take a data point i
4: el (z[z] - «/2Li(w))

. -1 c )
5w+« VY (Vw(w) + \/WVLZ(U})>
6: 2[i] <= 2[i] =

7: until convergence
8: return w

3.1 Special Case: ¢-norm Potential

An important special case of RMD is when the potential function (-) is chosen to be the ¢, norm, i.e.,
P(w) = %||w||g = % b _1 |w[k]|?, for a real number ¢ > 1. Let the current gradient be denoted by g :=

VL;(wi—1). In this case, the update rule can be written as

wilk] = \ft,i\ﬁ sign (&), Vk

. . Ct,i
ze[t] = ze-1[d] — ;\’ ,
zljl = zalil,  Vi#d (9)
for & ; = |wy—1 k]| sign(w;—1[k]) + i [k], where w;[k] denotes the k-th element of w; (the weight

\/2Li(wt,1)g

vector at time t) and g[k] is the k-th element of the current gradient g. Note that for this choice of potential
function, the update rule is separable, in the sense that the update for the k-th element of the weight
vector requires only the k-th element of the weight and gradient vectors. This allows for efficient parallel
implementation of the algorithm, which is crucial for large-scale tasks.

Even among the family of g-norm RMD algorithms, there can be a wide range of regularization effects for
different values of ¢. Some important examples are as follows:

{1 norm regularization promotes sparsity in the weights. Sparsity is often desirable for reducing the storage
and/or computational load, given the massive size of state-of-the-art DNNs. However, since the ¢;-norm is
neither differentiable nor strictly convex, one may use ¥(w) = —|lw|[{1¢ for some small € > 0 (Azizan &

1+e€
Hassibil, [2019a).

{+ norm regularization promotes bounded and small range of weights. With this choice of potential, the
weights tend to concentrate around a small interval. This is often desirable in various implementations
of neural networks since it provides a small dynamic range for quantization of weights, which reduces the
production cost and computational complexity. However, since {, is, again, not differentiable, one can
choose a large value for ¢ and use (w) = %Hng to achieve the desirable regularization effect of ¢o, norm
(¢ =10 is used in |Azizan et al.| (2021))).

{5 norm still promotes small weights, similar to ¢; norm, but to a lesser extent. The update rule is

wilk] = wea[k] + 2Lc-t(’zvt71>g o
zi] = z1[d] — %7
Zt[]} = Zt—l[j]’ Vj 7& ; (10)



Under review as submission to TMLR

3.2 Special Case: Negative Entropy Potential

One can choose the potential function ¢(-) to be the negative entropy, i.e., ¥(w) = >} _; wlk] log(w[k]). For
this particular choice, the associated Bregman divergence (Bregman, 1967} |Azizan & Hassibi, 2019¢) reduces
to the Kullback—Leibler divergence. Let the current gradient be denoted by g := VL;(w¢—1). The update
rule would be

wilk] = wy_1[k] exp (%(u;_)g[ko vk
2] = 21 [i] — C;
Zt[j] = Zt—l[j]v Vj 7A i? (11)

This update rule requires the weights to be positive.

4 Experimental Results

As mentioned in the introduction, there are many ways to regularize DNNs and improve their generalization
performance, including methods that perform data augmentation, a change to the network architecture, or
early stopping. However, since in this paper we are concerned with the effect of the learning algorithm,
we will focus on comparing RMD with the standard SGD (which induces implicit regularization) and the
standard weight decay (which attempts to explicitly regularize the ¢5 norm of the weights). No doubt the
results can be improved by employing the aforementioned methods with these algorithms, but we leave that
study for the future since it will not allow us to isolate the effect of the algorithm.

As we shall momentarily see, the results indicate that RMD outperforms both alternatives by a significant
margin, thus making it a viable option for explicit regularization.

4.1 Setup

Dataset. To test the performance of different regularization methods in avoiding overfitting, we need a
training set that does not consist entirely of clean data. We, therefore, took the popular CIFAR-10 dataset
(Krizhevsky & Hinton, 2009), which has 10 classes and n = 50,000 training data points, and considered
corrupting different fractions of the data. In the first scenario, we corrupted 25% of the data points, by
assigning them a random label. Since, for each of those images, there is a 9/10 chance of being assigned a
wrong label, roughly 9/10 x 25% = 22.5% of the training data had incorrect labels. In the second scenario,
we randomly flipped 10% of the labels, resulting in roughly 9% incorrect labels. For the sake of comparison,
in the third scenario, we considered the uncorrupted data set itself.

Network Architecture. We used a standard ResNet-18 (He et al.| [2016|) deep neural network, which is
commonly used for the CIFAR-10 dataset. The network has 18 layers, and around 11 million parameters.
Thus, it qualifies as highly overparameterized. We did not make any changes to the network.

Algorithms. We use three different algorithms for optimization/regularization.

1. Standard SGD (implicit regularization): First, we train the network with the standard (mini-batch)
SGD. While there is no explicit regularization, this is still known to induce an implicit regularization,
as discussed in Section 2.3

2. Weight decay (explicit regularization): We next train the network with an /3-norm regularization,
through weight decay. We ran weight decay with a wide range of regularization parameters, \.

3. RMD (explicit regularization): Finally, we train the network with RMD, which is provably regu-
larizing with an /5 norm. For RMD we also ran the algorithm for a wide range of regularization
parameters, A.

In all three cases, we train in mini batches—mini-batch RMD is summarized in Algorithm [2]in the Appendix.
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Figure 1: 25% corruption of the training set.

100.0
— Test
97.5 —— Training

=== 5GD Test
95.0

Accuracy(%)
Accuracy(%)

80

— Test
—— Training
=== SGD Test

75

70
0.001 0.002 0.003 0.004 0.005 0.006
A

(a) RMD (b) Weight Decay

Figure 2: 10% corruption of the training set.

4.2 Results

The training and test accuracies for all three methods are given in Figs. Fig. |1| shows the results when
the training data is corrupted by 25%, Fig. 2] when it is corrupted by 10%, and Fig. [3 when it is uncorrupted.

As expected, because the network is highly overparameterized, in all cases, SGD interpolates the training
data and achieves almost 100% training accuracy.

As seen in Fig. [1] at 25% data corruption SGD achieves 80% test accuracy. For RMD, as A varies from 0.7 to
2.0, the training accuracy increases from 67% to 82% (this increase is expected since RMD should interpolate
the training data as A — oc0). However, the test accuracy remains generally constant around 85%, with a
peak of 87%. This is significantly better than the generalization performance of SGD. For weight decay, as
A increases from 0.001 to 0.004, the training accuracy increases from 70% to 98% (implying that there is no
need to increase A beyond 0.004). The test accuracy, on the other hand, is rather erratic and varies from a
low of 67% to a peak of 80%.

As seen in Fig. [2| at 10% data corruption SGD achieves 87.5% test accuracy. For RMD, as A varies from
0.7 to 2.0, the training accuracy increases from 82% to 92.5%. The test accuracy remains generally constant
around and the peak of 88.5% is only marginally better than SGD. For weight decay, the training accuracy
increases from 86% to 99%, while the test accuracy is erratic and peaks only at 80%.

Finally, for the sake of comparison, we show the results for the uncorrupted training data in Fig. As
expected, since the data is uncorrupted, interpolating the data makes sense and SGD has the best test
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Figure 3: Uncorrupted training set.

accuracy. Both RMD and weight decay approaches have higher test accuracy as A increases, with RMD
having superior performance.

We should also mention that we have run experiments with 40% corruption in the data. Here SGD achieves
70% test accuracy, while RMD achieves a whopping 81.5% test accuracy with only 64% training accuracy.
See the Appendix for more details.

5 Regularization for Continual Learning

It is often desirable to regularize the weights to remain close to a particular weight vector. This is particularly
useful for continual learning, where one seeks to learn a new task while trying not to “forget” the previous
task as much as possible (Lopez-Paz & Ranzato), 2017, Kirkpatrick et al., 2017, [Farajtabar et al. 2020). In
this section, we show that our algorithm can be readily used for such settings by initializing wg to be the
desired weight vector and suitably choosing a notion of closeness.

Augmenting the loss function with a regularization term that promotes closeness to some desired weight
vector w™®, one can pose the optimization problem as

mln )\ZL )+ |lw — wree||2. (12)

More generally, using a Bregman divergence Dy (-, -) corresponding to a differentiable strictly-convex potential
function v : RP — R, one can pose the problem as

mm )\ZL w) + Dy (w, w™®). (13)

Note that Bregman divergence is defined as Dy (w,w™8) = h(w) — ¥(w'®) — Vip(w*e)T (w — w*e®), is
non-negative, and convex in its first argument. Due to strict convexity of 1, we also have Dy (w, w™®) = 0
iff w = w™e. For the choice of ¢)(w) = 3|lw||?, for example, the Bregman divergence reduces to the usual
Euclidean distance Dy (w, wp) = 1 [lw — w™8||?.

Same as in Section [3] we can define an auxiliary variable z € R™, and rewrite the problem as

min A 5” Gl + Dy (w, w™®)
w,z £ 2 PA
1=
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It can be easily shown that the objective of this optimization problem is a Bregman divergence, i.e.,

reg N
D, <[1ﬂ , wO ])7 corresponding to a potential function 1 <[1ﬂ> = (w) + %HZ||2 As will be discussed

in Section |6 this is exactly in a form that an SMD algorithm with the choice of potential function 1,2, initial-
ization wy = w™® and 29 = 0, and a sufficiently small learning rate will solve. In other words, Algorithm [I]
with initialization wg = w8 provably solves the regularized problem .

6 Convergence Guarantees

In this section, we provide convergence guarantees for RMD under certain assumptions, motivated by the
implicit regularization property of stochastic mirror descent, recently established in|Azizan & Hassibi (2019b));
Azizan et al|(2021).

Let us denote the training dataset by {(z;,v;) : i = 1,...,n}, where z; € R? are the inputs, and y; € R
are the labels. The output of the model on data point ¢ is denoted by a function f;(w) := f(x;,w) of the
parameter w € RP. The loss on data point ¢ can then be expressed as L;(w) = £(y; — f;(w)) with £(-) being
convex and having a global minimum at zero (examples include square loss, Huber loss, etc.). Since we are
mainly concerned with highly overparameterized models (the interpolating regime), where p>>n, there are
(infinitely) many parameter vectors w that can perfectly fit the training data points, and we can define

W={welR?l| fi(w)=y;, i=1,...,n}
={weR? | Li(w)=0,i=1,...,n}.

Let w* € W denote the interpolating solution that is closest to the initialization wgy in Bregman divergence:

w* =argmin Dy (w, wy)
v (15)
st.  filw)=y, i=1,...,n.
It has been shown that, for a linear model f(z;, w) = zlw, and for a sufficiently small learning rate n > 0,
the iterates of SMD with potential function v (-), initialized at wq, converge to w* (Azizan & Hassibi,
2019h).

When initialized at wy = argmin,, ¥(w) (which is the origin for all norms, for example), the convergence
point becomes the minimum-norm interpolating solution, i.e.,

w* =argmin Y (w) (16)
st.  filw)=y;, i=1,...,n.

While for nonlinear models, the iterates of SMD do not necessarily converge to w*, it has been shown that for
highly-overparameterized models, under certain conditions, this still holds in an approximate sense (Azizan
et al.l |2021)). In other words, the iterates converge to an interpolating solution ws, € W which is “close” to
w*. More formally, the result from |Azizan et al.| (2021) along with its assumptions can be stated as follows.

Let us define Dy, (w,w') := L;j(w) — Ly(w') — VL;(w')T(w — w’), which is defined in a similar way to a
Bregman divergence for the loss function. The difference though is that, unlike the potential function of
the Bregman divergence, due to the nonlinearity of f;(-), the loss function L;(-) = £(y; — fi(:)) need not be
convex (even when £(-) is). Further, denote the Hessian of f; by H fiE'

Assumption 6.1. Denote the initial point by wg. There exists w € W and a region B = {w' €
R? | Dy(w,w’) < €} containing wy, such that Dy, (w,w’) > 0,i=1,...,n, for all w’ € B.

Assumption 6.2. Consider the region B in Assumption The f;(-) have bounded gradient and Hessian
on the convex hull of B, i.e., |V f;i(w')|| <7, and a < Apin(Hy, (w')) < Amax(Hy, (w')) < B,i=1,...,n, for
all w’" € conv B.

3We refrain from using V2 f; for Hessian, which is typically used for Laplacian (divergence of the gradient).
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Theorem 6.3 (Azizan et al.| (2021)). Consider the set of interpolating solutions W = {w € RP | f(x;,w) =
Yi, 1 =1,...,n}, the closest such solution w* = argmin,, ¢,y Dy (w, wo), and the SMD iterates given in
initialized at wg, where every data point is revisited after some steps. Under Assumptions and[6-3, for
sufficiently small step size, i.e., for any n > 0 for which ¥(-) — nL;(-) is strictly convex on B for all i, the
following holds.

1. The iterates converge to weo € W.
2. Dy(w*, weo) = of€).

In a nutshell, Assumption states that the initial point wq is close to the set of global minima W, which
arguably comes for free in highly overparameterized settings (Allen-Zhu et al.l |2019), while Assumption
states that the first and second derivatives of the model are locally bounded. Motivated by the above result,
we now return to RMD and its corresponding optimization problem.

Let us define a learning problem over parameters [lﬂ € RPH" with f; <[1ﬂ) = +/2L;(w) —z[i], §; = 0, and
Li ({Z]) = 2(@ —fi (rg])) = g(z[i]—\/2Li(w)) for i=0,...,n. Note that in this new problem, we

now have p-+n parameters and n constraints/data points, and since p > n, we have p + n>>n, and we are
still in the highly-overparameterized regime (even more so). Thus, we can also define the set of interpolating

solutions for the new problem as
f<m)yzln} (17)

([ ee
z
Let us define a potential function <[1ﬂ) =Y(w) + %||z||2 and a corresponding SMD

i ([2])=w ([12]) oo ([21]).

} It is straightforward to verify that this update rule is equivalent to that of RMD, i.e.,

Wo

initialized at [ 0

(8)-
On the other hand, from , we have

Ww* =arg min DJ) ({lﬂ , {%ﬂ)
s.t. fi(|:1;)>:Ai, ZZL,’I?,

Plugging D, ([f] , {U(J)o = Dy(w,wp) + 3 2] and f; ({Z]) V/2L;(w)—z[i] into (18), it is easy to see
that it is equivalent to (14]) for wy = w*®, and equivalent to @ for wg = 0. The formal statement of the
theorem follows from a direct application of Theorem [6.3]

(18)

A

Assumption 6.4. Denote the initial point by Yol There exists [w} € W and a region B =

0 z
/ !/ !
{[z},} € R | Dq/; ([2}} , [f,]) <e} containing {ug)}’ such that Dj; <[1ﬂ , [g,}) >0,i=1,...,n, for
all || e
Z/
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Assumption 6.5. Consider the region B in Assumption The ﬁ() have bounded gradient and Hessian

N ) R ) A )

B,i=1,...,n, for all L,} € conv B.

Theorem 6.6. Consider the set of interpolating solutions W defined in , the closest such solution w*
defined in , and the RMD iterates given in initialized at U(;o , where every data point is revisited
after some steps. Under Assumptions and [6., for sufficiently small step size, i.e., for any n > 0 for
which (-) —nL;(-) is strictly convex on B for all i, the following holds.

on the convex hull of B, i.e.,

1. The iterates converge to rﬁoo] eW.

2. Dy (w [f:jD = o(e).

Despite its somewhat complicated look, similar as in Assumption Assumption states the initial
point {ﬂ())o} is close to the (new) (p + n)-dimensional manifold W, which is reasonable because the new

problem is even more overparameterized than the original p-dimensional one. Similar as in Assumption [6.2]
Assumption [6.5] requires the first and second derivatives of the model to be locally bounded.

We should emphasize that while Theorem states that we converge to the manifold W, it does not mean
that it is fitting the training data points or achieving zero training error. That is because W e RPF™ is a
different (much higher-dimensional) manifold than W € R?, and interpolating it would translate to fitting
the constraints defined by the regularized problem.

7 Conclusion and Outlook

We presented Regularizer Mirror Descent (RMD), a novel efficient algorithm for training DNN with any de-
sired strictly-convex regularizer. The starting point for RMD is a standard cost which is the sum of the train-
ing loss and a differentiable strictly-convex regularizer of the network weights. For highly-overparameterized
models, RMD provably converges to a point “close” to the minimizer of this cost. The algorithm can be
readily applied to any DNN and enjoys the same parallelization properties as SGD. We demonstrated that
RMD is remarkably robust to various levels of label corruption in data, and it outperforms both the implicit
regularization induced by SGD and the explicit regularization performed via weight decay, by a wide mar-
gin. We further showed that RMD can be used for continual learning, where regularization with respect to
a previously-learned weight vector is critical.

Given that RMD enables training any network efficiently with a desired regularizer, it opens up several
new avenues for future research. In particular, an extensive experimental study of the effect of different
regularizers on different datasets and different architectures would be instrumental to uncovering the role of
regularization in modern learning problems.
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