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Abstract

The forecast of hurricane trajectories is crucial for the protection of people and
property, but machine learning techniques have been scarce for this so far. We
propose a neural network fusing past trajectory data and reanalysis atmospheric
images (wind and pressure 3D fields). We used a moving frame of reference that
follows the storm center for the 24h tracking forecast. The network is trained to
estimate the longitude and latitude displacement of hurricanes and depressions
from a large database from both hemispheres (more than 3000 storms since 1979,
sampled at a 6 hour frequency). The advantage of the fusion network is demon-
strated and a comparison with current forecast models shows that deep methods
could provide a valuable and complementary prediction.

1 Introduction

Cyclones, hurricanes or typhoons are words designating the same phenomena: rare and complex
events characterized by strong winds surrounding a low pressure area. Their trajectory and intensity
forecasts are crucial for the protection of people and property. However, their evolution depends
on many factors at different scales, altitudes and time, which leads to difficulties in their modelling.
Today, current national forecasts are typically driven by consensus methods able to combine different
dynamical modelsNHC (2018b). Statistical forecasting models, on the other hand, still perform poorly
with respect to dynamical models, even though the database of past hurricanes is constantly growing.
Moreover, a large number of physical variables (pressure, wind fields, etc.) are now available on
gridded earth maps from the reanalysis2, and could be integrated in a statistical or learning method.

However, only few machine learning methods are tackling the tracking forecast problem. One of
them uses a sparse recurrent neural network from only trajectory data (Moradi Kordmahalleh et al.
(2016)) and was tested on 6h- and 12h-forecast on only 4 hurricanes. Another study uses storm
tracks and reanalysis maps as input for a hybrid ConvNet - LSTM network in order to learn the (x,y)
tracking coordinates (Mudigonda et al. (2017)) and showed their 6h-forecast results. The regional
map (for image-like physical inputs) was fixed and of size 160 x 80 deg (longitude/latitude). However,
a fixed region has three major limitations. Firstly, the tracked storm must stay in the region (while
tracks often cross oceans, see Fig. 1a), forcing the selection of a large region, even if it is constrained
by memory issues (Mudigonda et al. (2017)). Moreover, it prevents information transfer between
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(a) Tracking database: more than 3000 tropical/extra-tropical
storm tracks since 1979. Dots = initial position, colors =
maximal strength (Saffir-Simpson scale).

Pressure 
level

(~altitude)

700 hPa -

Longitude

Latitude

25°x 25°

u, v, z225 hPa -

500 hPa - u, v, z

u, v, z

(b) Global atmospheric grids centered on
the storm: wind fields (u and v) and geopo-
tential height (z).

Figure 1: Tracking data and registered reanalysis data.

storms coming from different basins or regions, while ground truth data is scarce. In a recent work
(Giffard-Roisin et al. (2018)), we showed the advantage of using a moving reference CNN model for
forecasting hurricanes tracks 6 hours into the future with respect to the other learning methods (30km
error with respect to more than 60km). However, a 6h-forecast is of no use for catastrophe planning
and it is not possible to compare to current forecasts as the smallest standard is 24 hours.

In this work, we propose to use a moving frame of reference that follows the storm center for a
24h-forecast tracking task. We pose the tracking problem as the estimation of the displacement vector
between current and future locations. Moreover, we propose to use the reanalysis data as cropped
images (25 x 25 degrees) centered on the storm location. That way, the computation is reduced and
we can learn from storms coming from a large number of hurricane basins from both hemispheres.
We include past temporal information by adding the reanalysis maps from previous time steps. We
propose a fusion convolutional neural network taking into account past trajectories and reanalysis
images (wind fields and pressure), and we treat each time step of a storm as a training data point.

2 Tracking Data and Reanalysis Data Processing

Tracking Data from Both Hemispheres. The raw storm track data is composed of more than
3000 extra-tropical and tropical storm tracks since 1979 extracted from the NOAA database IBTrACS
Knapp et al. (2010), see Fig. 1a. The tracks are defined by the 6-hourly center locations (latitude
and longitude). They come from both hemispheres and the number of records per storm varies from
2 to 120 (total: more than 90,000 time steps). A storm’s future displacement (here in 24h) can be
predicted from its historical displacement. We define a displacement as the vector ~d = (δlont, δlatt)
between two successive locations of one storm, t being a multiple of 6 hours. We used as features the
two past displacements of the storm. We added also some “0D-features” from the IBTrACS database:
the current latitude, longitude, and max. sustained windspeed, the Jday predictor (DeMaria et al.
(2005)), and the current distance to land. In total, 9 features per time step are extracted.

Reanalysis Data. The trajectory of a storm depends on large scale atmospheric physical phenomena.
We applied a sparse feature selection technique (automatic relevance determination, from linear
regression) over 10 available reanalysis fields on pressure levels from the ERA-interim database
(Dee et al. (2011)). It highlighted the usefulness of wind fields and geopotential heights (that can be
seen as pressure maps). We extracted them on the storm neighborhood at every time t. Specifically,
we extracted the u-wind, v-wind and z fields on a 25x25 degree grid centered on the current storm
location, at 3 atmospheric pressure levels (700/500/225hPa). The choice of the 3 pressure levels
was inspired by the literature on statistics forecast models (DeMaria et al. (2005)). In order to capture
the dynamics, we extracted the fields measured at t− 6h at the same locations: the data can be seen
as 9 small videos of 2 frames each.
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Figure 2: General architecture: the three types of data are feeding three neural networks trained
separately. The final fused network is re-trained before predicting the 24h-forecast displacement.

3 The Model

General Framework. Even though the long-short-term memory (LSTM) networks are designed
for predicting time-series events, they are difficult to train and simpler CNNs can often outperform
LSTMs (Bai et al. (2018)). Encoding time frames as different channels already proved its efficiency
(de Bezenac et al. (2017)). Because of the different data sources, it is not straightforward to mix all
the data into a neural network (NN). We propose a fusion of three different NN architectures (see
Fig. 3). The first two are convolutional neural networks taking atmospheric fields as input, while the
third is a small network with 0D features as input. Each stream network first learns its parameters
independently for the same task, i.e. predicting the 24h-forecast displacement ~d = (δlon24h, δlat24h).
We then integrate the three networks into a fusion network and retrain it.

Wind CNN, Pressure CNN and Past tracks + meta NN. The two CNNs (Wind and Pressure) are
similar, however the data type differ thus two learning rates were needed, so we separate them into
two networks. The Wind CNN data consists in 12 channels (concatenation of every dimension), the
Pressure CNN in 6 channels. We used a typical CNN architecture alternating Conv layers and max-
pooling layers with fully connected layers at the end (Simonyan and Zisserman (2014)). All hidden
layers are equipped with ReLU and batch normalization. We have evaluated different configurations
of Wind CNN (from one to four Conv layers) on our validation set before selecting 3 Conv layers.
Past tracks + meta NN: we designed a small neural network (two fully connected layers) taking as
input 0D tracking data (see section 2). We use two past displacements (from t− 12h to t− 6h and
from t− 6h to t) because more past tracks did not improve the performance.

Fusing Networks. Once the three individual networks are trained, we concatenate their 3 last
layers and add a layer at the end as the fused output layer. We initialize to 0 the weights of the new
connections in these 3 layers (across streams). We then re-train the fused network by allowing every
weight to be optimized. The number of fused layers (3) was determined empirically.

Algorithmic Details. The storms were randomly separated in 3 sets as follows: train (60%) / valid
(20%) / test (20%). All time instants were treated independently within each set and the input data
was standardized. The loss function was set as the mean square error (MSE) in kilometers between
the forecast and the true storm location at t+ 24h. We added an L2 penalty on the weights of the
model (coef. = 0.01). The training was performed by the Adam optimizer, and each model converged
within 200 epochs. Every evaluation was repeated three times and an average score was computed.
Our implementation uses PyTorch 4.0 on 4 TitanX GPUs with data parallelism (Krizhevsky (2014)).

4 Experimental Evaluation

Fig. 3 shows the 24h-forecast results on the test set (14,256 time steps) in absolute distance error.
We can see the improvement of fusing networks with respect to the Wind CNN, Pressure CNN and
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Figure 3: 24h-forecast results on the test set, in
distance between predicted and real location.

Model
Atlantic
errors (km)

East Pacific
errors (km)

mean std mean std

BCD5 125 90 112 78

Fusion 115 67 94 59

Table 1: 24h-forecast errors mean + standard
deviation, part of the test set (4349 time steps).
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Figure 4: 24-h forecast errors (4 time steps ahead) on Hermine hurricane in 2016. The bars connect
each pair of predicted and ground truth location. The larger the length, the larger the error.

Past tracks + meta NN. We also compared our fusion model CNN with existing forecasting models:
BCD5 is a statistical model which is often used to benchmark other storm track forecasting methods,
and OFCL is the National Hurricane Center official forecast (consensus of dynamical models)NHC
(2018a). We extracted the BCD5 prediction results of years 1989-2016 in the Atlantic and Eastern
Pacific basins. We compare in Table 1 our fusion network with the statistical BCD5 on the test
hurricane instants where both methods provided a forecast (4349 time instants from 258 storms). On
both basins, our fusion network behaves better than the BCD5 model on average. Such comparison
is not possible with the OFCL as this model is modified every year and they only provide forecasts
of the version N of the model for the year N. We don’t know the performance of the recent models
on previous years, and it would be unfair for them to compare with old results. Analyzing the mean
errors per year, our model performs better than the OFCL until year 2010 for the Pacific (2005 for the
Atlantic). During the 2010s, the OFCL improved and its mean errors per year are smaller than ours.

We compared qualitatively the predictions with both OFCL and BCD5 models for recent storms of
the test set, as the Hermine hurricane (Fig. 4). The small bars connect each pair of predicted and
ground truth location (after 24 hours). Even if the official OFCL model has globally smaller forecast
errors, on some time points our model outperforms the OFCL. Moreover, the 3 forecasts have often
different directions. If we don’t expect to perform better than a current official ensemble of dynamical
models, our model can help the current forecast modellers by providing a complementary prediction.

5 Conclusion

We designed a neural network for the storm track 24h-forecasting using a moving frame of reference
able to use a common dataset and a common training for every hurricane of both hemispheres. We
demonstrated the benefit of coupling past displacements and registered reanalysis images. Lastly, we
showed that such a different approach can be beneficial if integrated in a consensus method.
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