
Under review as a conference paper at ICLR 2019

EXPLAINABLE ADVERSARIAL LEARNING: IMPLICIT
GENERATIVE MODELING OF RANDOM NOISE DURING
TRAINING FOR ADVERSARIAL ROBUSTNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Explainable Adversarial Learning, ExL, an approach for training
neural networks that are intrinsically robust to adversarial attacks. We find that
the implicit generative modeling of random noise with the same loss function
used during posterior maximization, improves a model’s understanding of the data
manifold furthering adversarial robustness. We prove our approach’s efficacy and
provide a simplistic visualization tool for understanding adversarial data, using
Principal Component Analysis. Our analysis reveals that adversarial robustness, in
general, manifests in models with higher variance along the high-ranked principal
components. We show that models learnt with our approach perform remarkably
well against a wide-range of attacks. Furthermore, combining ExL with state-of-
the-art adversarial training extends the robustness of a model, even beyond what
it is adversarially trained for, in both white-box and black-box attack scenarios.

1 INTRODUCTION

Despite surpassing human performance on several perception tasks, Machine Learning (ML) models
remain vulnerable to adversarial examples: slightly perturbed inputs that are specifically designed
to fool a model during test time (Biggio et al., 2013; Szegedy et al., 2013; Goodfellow et al., 2014;
Papernot et al., 2016a). Recent works have demonstrated the security danger adversarial attacks
pose across several platforms with ML backend such as computer vision (Szegedy et al., 2013;
Goodfellow et al., 2014; Moosavi Dezfooli et al., 2016; Kurakin et al., 2016; Liu et al., 2016),
malware detectors (Laskov et al., 2014; Xu et al., 2016; Grosse et al., 2016; Hu & Tan, 2017) and
gaming environments (Huang et al., 2017; Behzadan & Munir, 2017). Even worse, adversarial inputs
transfer across models: same inputs are misclassified by different models trained for the same task,
thus enabling simple Black-Box (BB) 1attacks against deployed ML systems (Papernot et al., 2017).

Several works (Krotov & Hopfield, 2017; Papernot et al., 2016b; Cisse et al., 2017) demonstrating
improved adversarial robustness have been shown to fail against stronger attacks (Athalye et al.,
2018). The state-of-the-art approach for BB defense is ensemble adversarial training that augments
the training dataset of the target model with adversarial examples transferred from other pre-trained
models (Tramèr et al., 2017a). Madry et al. (2017) showed that models can even be made robust to
White-Box (WB)1 attacks by closely maximizing the model’s loss with Projected Gradient Descent
(PGD) based adversarial training. Despite this progress, errors still appear for perturbations beyond
what the model is adversarially trained for (Sharma & Chen, 2017).

There have been several hypotheses explaining the susceptibility of ML models to such attacks.
The most common one suggests that the overly linear behavior of deep neural models in a high
dimensional input space causes adversarial examples (Goodfellow et al., 2014; Lou et al., 2016).
Another hypothesis suggests that adversarial examples are off the data manifold (Goodfellow et al.,
2016; Song et al., 2017; Lee et al., 2017). Combining the two, we infer that excessive linearity
causes models to extrapolate their behavior beyond the data manifold yielding pathological results
for slightly perturbed inputs. A question worth asking here is: Can we improve the viability of the
model to generalize better on such out-of-sample data?

1BB (WB): attacker has no (full) knowledge of the target model parameters
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In this paper, we propose Explainable Adversarial Learning (ExL), wherein we introduce multi-
plicative noise into the training inputs and optimize it with Stochastic Gradient Descent (SGD) while
minimizing the overall cost function over the training data. Essentially, the input noise (randomly
initialized at the beginning) is gradually learnt during the training procedure. As a result, the noise
approximately models the input distribution to effectively maximize the likelihood of the class labels
given the inputs. Fig. 1 (a) shows the input noise learnt during different stages of training by a simple
convolutional network (ConvNet2 architecture discussed in Section 3 below), learning handwritten
digits from MNIST dataset (LeCun et al., 1998). We observe that the noise gradually transforms and
finally assumes a shape that highlights the most dominant features in the MNIST training data. For
instance, the MNIST images are centered digits on a black background. Noise, in fact, learnt this
centered characteristic. This suggests that the model not only finds the right prediction but also the
right explanation. Noise inculcates this explainable behavior by discovering some knowledge about
the input/output distribution during training. Fig. 1 (b) shows the noise learnt with ExL on colored
CIFAR10 images (Krizhevsky & Hinton, 2009) (on ResNet18 architecture (He et al., 2016)), which
reveals that noise template (also RGB) learns prominent color blobs on a greyish-black background,
that de-emphasizes background pixels.

Increasing training epochs

Initial Epoch1 Epoch7 Final(a) (b) Initial Final

Figure 1: (a) Noise learnt with ExL on MNIST data- (b) Noise learnt with ExL on CIFAR10 data- with mini-
batch size =64.The template shown is the mean across all 64 noise templates.

A recent theory (Gilmer et al., 2018) suggests that adversarial examples (off manifold misclassified
points) occur in close proximity to randomly chosen inputs on the data manifold that are, in fact,
correctly classified. With ExL, we hypothesize that the model learns to look in the vicinity of the on-
manifold data points and thereby incorporate more out-of-sample data (without using any direct data
augmentation) that, in turn, improves its generalization capability in the off-manifold input space.
We empirically evaluate this hypothesis by visualizing and studying the relationship between the
adversarial and the clean inputs using Principal Component Analysis (PCA). Examining the inter-
mediate layer’s output, we discover that models exhibiting adversarial robustness yield significantly
lower distance between adversarial and clean inputs in the Principal Component (PC) subspace.We
further harness this result to establish that ExL noise modeling, indeed, acquires an improved real-
ization of the input/output distribution characteristics that enables it to generalize better. To further
substantiate our hypothesis, we also show that ExL globally reduces the dimensionality of the space
of adversarial examples (Tramèr et al., 2017b). We evaluate our approach on classification tasks
such as MNIST, CIFAR10 and CIFAR100 and show that models trained with ExL are extensively
more adversarially robust. We also show that combining ExL with ensemble/PGD adversarial train-
ing significantly extends the robustness of a model, even beyond what it is adversarially trained for,
in both BB/WB attack scenarios.

2 EXPLAINABLE LEARNING

2.1 APPROACH

The basic idea of ExL is to inject random noise with the training data, continually minimizing the
overall loss function by learning the parameters, as well as the noise at every step of training. The
noise, N , dimensionality is same as the input, X , that is, for a 32 × 32 × 3 sized image, the noise
is 32× 32× 3. In all our experiments, we use mini-batch SGD optimization. Let’s assume the size
of the training minibatch is m and the number of images in the minibatch is k, then, total training
images are m× k. Now, the total number of noisy templates are equal to the total number of inputs
in each minibatch, k. Since, we want to learn the noise, we use the same k noise templates across all
mini-batches 1, 2, ...,m. This ensures that the noise templates inherit characteristics from the entire
training dataset. Algorithm 1 shows the training procedure. It is evident from Algorithm 1 that noise
learning at every training step follows the overall loss (L, say cross-entropy) minimization that in
turn enforces the maximum likelihood of the posterior.
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Algorithm 1 Explainable Adversarial Learning of a model f with parameters θ, Loss Function L.
Input: Input image X , Target label Y , Noise N , Learning rates η, ηnoise
Output: Learnt noise N and parameters θ.

1: Randomly initialize the parameters θ and Noise N : {N1, ...Nk}.
2: repeat
3: for each minibatch {X [1], ..., X [m]} do
4: Input X= {X1, ..., Xk}
5: New input X= {X1 ×N1, ..., Xk ×Nk}
6: Forward Propagation: Ŷ = f(X; θ)

7: Compute loss function: L(Ŷ , Y )
8: Backward Propagation: θ = θ - η∇θL; N = N - ηnoise∇NL
9: end for

10: until training converges

Since adversarial attacks are created by adding perturbation to the clean input images, we were
initially inclined toward using additive noise (X + N ) instead of multiplicative noise (X × N ) to
perform ExL. However, we found that ExL training with X×N tends to learn improved noise char-
acteristics by the end of training. Fig. 2 (a) shows the performance results for different ExL training
scenarios. While ExL with X + N suffers a drastic ∼ 10% accuracy loss with respect to standard
SGD on clean data, X ×N yields comparable accuracy. Furthermore, we observe that using only
negative gradients (i.e. ∇NL ≤ 0) during backpropagation for ExL yields best accuracy (and closer
to that of standard SGD trained model). Visualizing a sample image with learnt noise after training,
in Fig. 2 (b), shows X + N disturbs the original image severely, while X × N has a faint effect,
corroborating the accuracy results. Since noise is modeled while conducting discriminative training,
the multiplicative/additive nature of noise influences the overall optimization. Thus, we observe that
noise templates learnt with X × N and X + N are very different. We also analyzed the adver-
sarial robustness of the models when subjected to WB attacks created using the Fast Gradient Sign
Method (FGSM) for different perturbation levels (ε) (Fig. 2 (a)). ExL, for both X ×N /X +N sce-
narios, yields improved accuracy than standard SGD. This establishes the effectiveness of the noise
modeling technique during discriminative training towards improving a model’s intrinsic adversarial
resistance. Still, X × N yields slightly better resistance than X + N . Based upon these empirical
studies, we chose to conform to multiplicative noise training in this paper. 2 Note, WB attacks, in
case of ExL, are crafted using the model’s parameters as well as the learnt noise N .

In all our experiments, we initialize the noise N from a random uniform distribution in the range
[0.8, 1]. We select a high range in the beginning of training to limit the corruption induced on the
training data due to the additional noise. During evaluation/testing, we take the mean of the learnt
noise across all the templates ((

∑k
i=1Ni)/k), multiply the averaged noise with each test image and

feed it to the network to obtain the final prediction. Next, we present a general optimization per-
spective considering the maximum likelihood criterion for a classification task to explain adversarial
robustness. It is worth mentioning that while Algorithm 1 describes the backpropagation step sim-
ply by using gradient updates, we can use other techniques like regularization, momentum etc. for
improved optimization.

2.2 ADVERSARIAL ROBUSTNESS FROM LIKELIHOOD PERSPECTIVE

Given a data distribution D with inputs X ∈ Rd and corresponding labels Y , a classifica-
tion/discriminative algorithm models the conditional distribution p(Y |X; θ) by learning the param-
eters θ. Since X inherits only the on-manifold data points, a standard model thereby becomes sus-
ceptible to adversarial attacks. For adversarial robustness, inclusion of the off-manifold data points
while modeling the conditional probability is imperative. An adversarially robust model should,
thus, model p(Y |X,A; θ), where A represents the adversarial inputs. Using Bayes rule, we can
derive the prediction obtained from posterior modeling from a generative standpoint as:

argmax
Y

p(Y |X,A) = argmax
Y

p(A|X,Y )p(X,Y )

p(X,A)
= argmax

Y
p(A|X,Y )p(X|Y )p(Y ) (1)

2Additional studies on other datasets comparingX+N vs. X×N with different gradient update conditions
can be found in Appendix A. See, experimental details and model description for Fig. 2 in Appendix C.1.
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CIFAR10 Accuracy (in %) of ResNet18 target model for clean
test data and test data perturbed with WB-FGSM attacks for
𝜀𝜀=(8/16)/255 for different training scenarios (ExL, SGD).

Figure 2: For multiplicative and additive noise training scenarios- (a) -accuracy comparison of ExL with SGD
(b) -RGB noise template learnt with ExL on CIFAR10 data. In (b), a sample training image of a ‘car’ before
and after training with noise is shown. Note, we used the same hyperparameters (batch-size =64, η, ηnoise

etc.) and same inital noise template across all scenarios during training. Noise shown is the mean across 64
templates.2

The methods employing adversarial training (Tramèr et al., 2017a; Kurakin et al., 2016; Madry
et al., 2017) directly follow the left-hand side of Eqn. 1 wherein the training data is augmented
with adversarial samples (A ∈ A). Such methods showcase adversarial robustness against a par-
ticular form of adversary (e.g. `∞-norm bounded) and hence remain vulnerable to stronger attack
scenarios. In an ideal case, A must encompass all set of adversarial examples (or the entire space
of off-manifold data) for a concrete guarantee of robustness. However, it is infeasible to anticipate
all forms of adversarial attacks during training. From a generative viewpoint (right-hand side of
Eqn. 1), adversarial robustness requires modeling of the adversarial distribution while realizing the
joint input/output distribution characteristics (p(X|Y ), p(Y )). Yet, it remains a difficult engineering
challenge to create rich generative models that can capture these distributions accurately. Some re-
cent works leveraging a generative model for robustness use a PixelCNN model (Song et al., 2017)
to detect adversarial examples, or use Generative Adversarial Networks (GANs) to generate adver-
sarial examples (Samangouei et al., 2018). But, one might come across practical difficulties while
implementing such methods due to the inherent training difficulty.

With Explainable Adversarial Learning, we partially address the above difficulty by modeling the
noise based on the prediction loss of the posterior distribution. First, let us assume that the noise
(N) introduced with ExL spans a subspace of potential adversarial examples (N ⊆ A). Based
on Eqn. 1 the posterior optimization criterion with noise (N) becomes argmaxY p(Y |X,N) =
argmaxY p(N|X,Y )p(X|Y )p(Y ). The noise learning in ExL (Algorithm 1) indicates an implicit
generative modeling behavior, that is constrained towards maximizing p(N|X,Y ) while increasing
the likelihood of the posterior p(Y |X,N). We believe that this partial and implicit generative mod-
eling perspective with posterior maximization, during training, imparts an ExL model more knowl-
edge about the data manifold, rendering it less susceptible toward adversarial attacks (See Appendix
D for further intuition). Next, we empirically demonstrate using PCA that, noise modeling indeed
embraces some off-manifold data points.

2.3 PC SUBSPACE ANALYSIS FOR EXPLAINABILITY & VISUALIZATION

PCA serves as a method to reduce a complex dataset to lower dimensions to reveal sometimes hid-
den, simplified structure that often underlie it. Since the learned representations of a deep learning
model lie in a high dimensional geometry of the data manifold, we opted to reduce the dimension-
ality of the feature space and visualize the relationship between the adversarial and clean inputs in
this reduced PC subspace. Essentially, we find the principal components (or eigen-vectors) of the
activations of an intermediate layer of a trained model and project the learnt features onto the PC
space. To do this, we center the learned features about zero (F), factorize F using Singular Value
Decomposition (SVD), i.e. F = USV T and then transform the feature samples F onto the new
subspace by computing FV = US ≡ FPC . In Fig. 3 (a), we visualize the learnt representations
of the Conv1 layer of a ResNet18 model trained on CIFAR-10 (with standard SGD) along different
2D-projections of the PC subspace in response to adversarial/clean input images. Interestingly, we
see that the model’s perception of both the adversarial and clean inputs along high-rank PCs (say,
PC1- PC10 that account for maximum variance in the data) is alike. As we move toward lower-rank
dimensions, the adversarial and clean image representations dissociate. This implies that adversarial
images place strong emphasis on PCs that account for little variance in the data. While we note a
similar trend with ExL (Fig. 3 (b)), the dissociation occurs at latter PC dimensions compared to Fig.
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3 (a). A noteworthy observation here is that, adversarial examples lie in close vicinity of the clean
inputs for both ExL/SGD scenarios ascertaining former theories of (Gilmer et al., 2018).

To quantify the dissociation of the adversarial and clean projections in the PC subspace, we calcu-

late the cosine distance (DPC = 1
N

∑N
i=1 1 − FPC

cleani
·FPC

advi

‖FPC
cleani‖2‖FPC

advi‖2
) between them along different

PC dimensions. Here, N represents the total number of sample images used to perform PCA and
FPCclean(FPCadv ) denote the transformed learnt representations corresponding to clean (adversarial) in-
put, respectively. The distance between the learnt representations (for the Conv1 layer of ResNet18
model from the above scenario) consistently increases for latter PCs as shown in Fig. 3 (c). Inter-
estingly, the cosine distance between adversarial and clean features measured for a model trained
with ExL noise is significantly lesser than a standard SGD trained model. This indicates that noise
enables the model to look in the vicinity of the original data point and inculcate more adversarial
data into its underlying representation. Note, we consider projection across all former dimensions
(say, PC0, PC1,...PC100) to calculate the distance at a later dimension (say, PC100) i.e., DPC100 is
calculated by taking the dot product between two 100-dimensional vectors: FPCclean,FPCadv .

To further understand the role of ExL noise in a model’s behavior, we analyzed the variance captured
in the Conv1 layer’s activations of the ResNet18 model (in response to clean inputs) by different
PCs, as illustrated Fig. 3 (d). If si = {1, ...,M} are the singular values of the matrix S, the variance
along a particular dimension PCk is defined as: V ark = 100 × (

∑k
i=0 si

2/
∑M
i=0 si

2). V ark
along different PCs provides a good measure of how much a particular dimension explains about
the data. We observe that ExL noise increases the explainability (or variance) along the high rank
PCs, for instance, the net variance obtained from PC0-PC100 with ExL Noise (90%) is more than
that of standard SGD (76%). In fact, we observe a similar increase in variance in the leading PC
dimensions for other intermediate blocks learnt activations of the ResNet18 model [See Appendix
B]. We can infer that the increase in variance along the high-rank PCs is a consequence of inclusion
of more data points during the overall learning process. Conversely, we can also interpret this as ExL
noise embracing more off-manifold adversarial points into the overall data manifold that eventually
determines the model’s behavior. It is worth mentioning that the variance analysis of the model’s
behavior in response to adversarial inputs yields nearly identical results as Fig. 3 (d) [Appendix B].

Interestingly, the authors in (Hendrycks & Gimpel, 2017) conducted PCA whitening of the raw im-
age data for clean and adversarial inputs and demonstrated that adversarial image coefficients for
later PCs have greater variance. Our results from PC subspace analysis corroborates their experi-
ments and further enables us to peek into the model’s behavior for adversarial attacks. Note, for all
the PCA experiments above, we used 700 random images sampled from the CIFAR-10 test data,
i.e. N = 700. In addition, we used the Fast Gradient Sign Method (FGSM) method to create BB
adversaries with a step size of 8/255, from a different source model (ResNet18 trained with SGD).

3 RESULTS

3.1 ATTACK METHODS

Given a test image X , an attack model perturbs the image to yield an adversarial image, Xadv =
X+∆, such that a classifier f misclassifiesXadv . In this work, we consider `∞ bounded adversaries
studied in earlier works (Goodfellow et al., 2014; Tramèr et al., 2017a; Madry et al., 2017), wherein
the perturbation (‖∆‖∞ ≤ ε) is regulated by some parameter ε. Also, we study robustness against
both BB/WB attacks to gauge the effectiveness of our approach. For an exhaustive assessment, we
consider the same attack methods deployed in Tramèr et al. (2017a); Madry et al. (2017):
Fast Gradient Sign Method (FGSM): This single-step attack is a simple way to generate ma-
licious perturbations in the direction of the loss gradient ∇XL(X,Ytrue) as: Xadv = X +
εsign(∇XL(X,Ytrue)).
Random Step FGSM (R-FGSM): (Tramèr et al., 2017a) suggested to prepend single-step attacks
with a small random step to escape the non-smooth vicinity of a data point that might degrade attacks
based on single-step gradient computation. For parameters ε, α (α = ε/2), the attack is defined as:
Xadv = X + εsign(∇XL(X,Ytrue)), where X = X + αsign(N (0d, Id)).
Iterative FGSM (I-FGSM): This method iteratively applies FGSM k times with a step size of
β ≥ ε/k and projects each step perturbation to be bounded by ε. Following (Tramèr et al., 2017a),
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(b)
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(d)

Figure 3: Relationship between the model’s understanding of adversarial and clean inputs in PC subspace
when trained with (a) SGD (b) ExL. (c) Cosine Distance between the model’s response to clean and adversarial
inputs in the PC subspace. (d) Variance of the Conv1 layer of ResNet18 model. (c), (d) compare the SGD/
ExL training scenarios.

we use two-step iterative FGSM attacks.
Projected Gradient Descent (PGD): Similar to I-FGSM, this is a multi-step variant of FGSM:
Xadv

t+1 =
∏

(Xadv
t + αsign(L(X,Ytrue))) . Madry et al. (2017) show that this is a universal

first-order adversary created by initializing the search for an adversary at a random point followed
by several iterations of FGSM. PGD attacks, till date, are one of the strongest BB/ WB adversaries.

3.2 EXPERIMENTS

We evaluated ExL on three datasets: MNIST, CIFAR10 and CIFAR100. For each dataset, we report
the accuracy of the models against BB/WB attacks (crafted from the test data) for 6 training scenar-
ios: a) Standard SGD (without noise), b) ExL Noise, c) Ensemble Adversarial (EnsAdv) Training
(SGDens), d) ExL Noise with EnsAdv Training (ExLens), e) PGD Adversarial (PGDAdv) Train-
ing (SGDPGD), f) ExL Noise with PGDAdv Training (ExLPGD). Note, SGDens and SGDPGD

refer to the standard adversarial training employed in Tramèr et al. (2017a) and Madry et al. (2017),
respectively. Our results compare how the additional noise modeling improves over standard SGD
in adversarial susceptibility. Also, we integrate ExL with state-of-the-art PGD/Ensemble adversar-
ial training techniques to analyze how noise modeling benefits them. In case of EnsAdv training,
we augmented the training dataset of the target model with adversarial examples (generated using
R-FGSM), from an independently trained model, with same architecture as the target model. In
case of PGDAdv training, we augmented the training dataset of the target model with adversarial
examples (generated using PGD) from the same target model. Thus, as we see later, EnsAdv imparts
robustness against BB attacks only, while, PGD makes a model robust to both BB/WB attacks. In
all experiments below, we report the WB/BB accuracy against strong adversaries created with PGD
attack. In additon, for BB, we also report the worst-case error over all small-step attacks FGSM,
I-FGSM, R-FGSM, denoted as Min BB in Table 1, 2.

All networks were trained with mini-batch SGD using a batch size of 64 and momentum of 0.9
(0.5) for CIFAR (MNIST), respectively. For CIFAR10, CIFAR100 we used additional weight decay
regularization, λ = 5e − 4. Note, for noise modeling, we simply used the negative loss gradients
(∇NL ≤ 0) without additional optimization terms. In general, ExL requires slightly more epochs of
training to converge to similar accuracy as standard SGD, a result of the additional input noise mod-
eling. Also, ExL models, if not tuned with proper learning rate, have a tendency to overfit. Hence,
the learning rate for noise (ηnoise) was kept 1-2 orders of magnitude lesser than the overall network
learning rate (η) throughout the training process. All networks were implemented in PyTorch.3

MNIST: For MNIST, we consider a simple network with 2 Convolutional (C) layers with 32, 64
filters, each followed by 2×2 Max-pooling (M), and finally a Fully-Connected (FC) layer of size
1024, as the target model (ConvNet1: 32C-M-64C-M-1024FC). We trained 6 ConvNet1 models
independently corresponding to the different scenarios. The EnsAdv (ExLens, SGDens) models

3Appendix C provides a detailed table of different hyperparameters used to train the source and target models
in each scenario corresponding to all experiments of Table 1, 2 . Appendix C shows different visualization of
noise learnt (N ) in each scenario of Table 1, 2 . Note, the code for noise modeling and corresponding attack
scenarios will be available in the url: [link omitted for anonymity].
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were trained with BB adversaries created from a separate SGD-trained ConvNet1 model using R-
FGSM with ε = 0.1. PGDAdv (ExLPGD, SGDPGD) models were trained with WB adversaries
created from the same target model using PGD with ε = 0.3, step-size = 0.01 over 40 steps.

Table 1 (Columns 3 - 5) illustrates our results for BB attacks under different perturbations (ε)4.
ExL noise considerably improves the robustness of a model toward BB attacks. An interesting
observation here is that for ε = 0.1 (that was the perturbation size for EnsAdv training), both
ExLens/SGDens yield nearly similar accuracy, ∼ 98%. However, for larger perturbation size ε =
0.2, 0.3, the network adversarially trained with ExL noise shows higher prediction capability (∼>
5%) across the PGD attack methods. We observe similar BB accuracy trend with PGDAdv methods
(ExLPGD/SGDPGD). Columns 6-7 in Table 1 show the WB attack results. All techniques except
for the ones with PGDAdv training fail miserably against the strong WB PGD attacks. Models
trained with ExL noise, although yielding low accuracy, still perform better than SGD. ExLPGD
yields better accuracy than SGDPGD even beyond what the network is adversarially trained for
(ε > 0.3). Note, for PGD attack in Table 1, we used a step-size of 0.01 over 40/100 steps to
create adversaries bounded by ε = 0.1/0.2/0.3. We also evaluated the worst-case accuracy over all
the BB attack methods when the source model is trained with ExL noise (not shown). We found
higher accuracies in this case, implying ExL models transfer attacks at lower rates. As a result, in
the remainder of the paper, we conduct BB attacks from models trained without noise modeling to
evaluate the adversarial robustness4.

Table 1: MNIST Accuracy (in %) of ConvNet1 target model for different scenarios. ε = 0.1/0.2/0.3 for
SGD,ExL, SGDens, ExLens; ε = 0.3/0.4 for SGDPGD, ExLPGD . For PGD attack, we report accuracy
for 40-/100-step attacks. Note, SGDPGD, ExLPGD have stronger BB attacks than remaining scenarios4.
Accuracy < 5%, in most places, have been omitted and marked as ‘-’.

Scenario Clean Min BB PGD-40 PGD-100 PGD-40 PGD-100
(———————BlackBox—————) (—–WhiteBox—–)

SGD 99.1 77.9/20.6/4.3 75/9.9/- 74.5/8/- 22.3/-/- -
ExL 99.2 83.6/30.5/9.6 80.5/20.6/- 80/18/- 29.4/-/- -
SGDens 99 98.5/92.6/73.2 98/89.3/71 98.1/88/57 2.1/-/- -
ExLens 99.1 99/94.7/76 98.8/93.4/79 98.7/91.9/66 3.3/-/- -
SGDPGD 97.9 91.8/29 93.6/48.7 92.3/20 90/27 86.5/4.5
ExLPGD 98 93/42.2 94/60.4 92.6/28.7 90.7/55.7 88/20.1

CIFAR: For CIFAR10, we examined our approach on the ResNet18 architecture. We used the
ResNext29(2×64d) architecture (Xie et al., 2017) with bottleneck width 64, cardinality 2 for CI-
FAR100. Similar to MNIST, we trained the target models separately corresponding to each sce-
nario and crafted BB/WB attacks. For EnsAdv training, we used BB adversaries created using
R-FGSM (ε = 8/255) from a separate SGD-trained network different from the BB source/target
model. For PGDAdv training, the target models were trained with WB adversaries created with
PGD with ε = 8/255, step-size=2/255 over 7 steps. Here, for PGD attacks, we use 7/20 steps of
size 2/255 bounded by ε. The results appear in Table 2.

For BB, we observe that ExL (81%/63.2% for CIFAR10/100) significantly boosts the robustness
of a model as compared to SGD (50.3%/44.2% for CIFAR10/100). Note, the improvement here
is quite large in comparison to MNIST (that shows only 5% increase from SGD to ExL). In fact,
the accuracy obtained with ExL alone with BB attack, is almost comparable to that of an EnsAdv
trained model without noise (SGDens). The richness of the data manifold and feature representation
space for larger models and complex datasets allows ExL to model better characteristics in the
noise causing increased robustness. As seen earlier, ExL noise (ExLens, ExLPGD) considerably
improves the accuracy even for perturbations (ε = (16, 32)/255) greater than what the network is
adversarially trained for. The increased susceptibility of SGDens, SGDPGD for larger ε establishes
that its capability is limited by the diversity of adversarial examples shown during training. For
WB attacks as well, ExLPGD show higher resistance. Interestingly, while SGD,SGDens yield
infinitesimal performance (< 5%),ExL,ExLens yield reasonably higher accuracy (> 25%) against

4For fair comparison, BB attacks on SGD,ExL, SGDens, ExLens were crafted from another model
trained with standard SGD on natural examples as in (Tramèr et al., 2017a). While, BB attacks on
SGDPGD, ExLPGD were crafted from a model trained with PGDAdv training (without noise modeling)
on adversarial examples as in (Madry et al., 2017) to cast stronger attacks.
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WB attacks. This further establishes the potential of noise modeling in enabling adversarial security.
It is worth mentioning that BB accuracy of SGDPGD, ExLPGD models in Table 1, 2 are lower than
SGDens, ExLens, since the former is attacked with stronger attacks crafted from models trained
with PGDAdv4. Attacking the former with similar adversaries as latter yields higher accuracy.

Table 2: CIFAR10/ CIFAR100 Accuracy (in %) of ResNet18/ ResNext-29 target model for different sce-
narios. ε = 8

255
/ 16
255

/ 32
255

for ExL, SGD,ExLens, SGDens, ExLPGD, SGDPGD . For PGD attack, we
report accuracy for 7-/20-step attacks. Note, SGDPGD, ExLPGD have stronger BB attacks than remaining
scenarios4. Accuracy < 5%, in most places, have been omitted and marked as ‘-’.

Scenario Clean Min BB PGD-7 PGD-20 PGD-7 PGD-20
(———————BlackBox—————) (———WhiteBox——–)

ResNet18 (CIFAR10)
SGD 88.8 50.3/32/16.2 34/23/17.1 28/11.2/6.2 2.1/-/- -
ExL 87.1 81/76/67 80.1/75.7/66.4 80/74.8/61 39.1/29.2/23 -
SGDens 86.3 81.3/76.6/68.3 80.9/75.1/67.1 80.2/74.4/63 0.8/-/- -
ExLens 86.4 84.4/81.4/72.6 83/80/71.3 82.7/79/71 29/21/16.5 -
SGDPGD 83.2 71.3/58/50 69.9/62/50.1 54.2/50.3/46 58.4/48/42 57.3/42.8/28
ExLPGD 83 73/62/56.8 71/65/53 57.6/53.7/49.8 63/59/57 59.2/45/30.1

ResNext29 (CIFAR100)
SGD 71 44.2/38.4/26.7 42.7/35/25.4 40.5/27/17 - -
ExL 69.4 63.2/58.5/50.1 62.9/54.3/48.4 62.3/53.1/42.5 19/14/10.3 -
SGDens 69.8 64.8/60.9/50 63.6/57.5/45.4 63/56/42 2.5/-/- -
ExLens 67.3 65.1/62.8/57 64.8/61.4/52.2 64.4/58/49 18/14/11 -
SGDPGD 71.6 57.5/48/38.4 56/45/41.3 48/40/38.4 51.5/49.8/46 50.4/43/33
ExLPGD 69 66.3/62/59.9 63/58.7/54.1 52.3/50/40.8 58.1/56/53 53/48/37.9

PC Distance & Variance Analysis : Next, we measured the variance and cosine distance cap-
tured by the Conv1 layer of the ResNet18 model corresponding to different scenarios (Table 2).
Fig. 4 (a) shows that variance across the leading PCs decreases as ExLPGD > SGDPGD >
ExLens > ExL > SGDens > SGD. Inclusion of adversarial data points with adversarial training
or noise modeling informs a model more, leading to improved explainability. We note that ExLens
and SGDPGD yield nearly similar variance ratio, although SGDPGD gives better accuracy than
ExLens for similar BB and WB attacks. Since we are analyzing only the Conv1 layer, we get this
result. In Fig. 4 (a), we also plot the cosine distance between the adversarial (created from FGSM
with specified ε) and clean inputs in the PC subspace. The distance across different scenarios along
latter PCs increases as: ExLPGD < SGDPGD < ExLens < ExL < SGDens < SGD. A
noteworthy observation here is, PC distance follows the same order as decreasing variance and jus-
tifies the accuracy results in Table 2. The decreasing distance with ExL compared to SGD further
signifies improved realization of the on-/off-manifold data. Also, the fact that ExLPGD, ExLens
have lower distance for varying ε establishes that integrating noise modeling with adversarial train-
ing compounds adversarial robustness. Interestingly, for both variance and PC distance, ExL has
a better characteristic than SGDens. This proves that noise modeling enables implicit inclusion
of adversarial data without direct data augmentation, as opposed to EnsAdv training (or SGDens)
where the dataset is explicitly augmented. This also explains the comparable BB accuracy between
ExL, SGDens in Table 2.

Adversarial Subspace Dimensionality : To further corroborate that ExL noise implicitly embraces
adversarial points, we evaluated the adversarial subspace dimension using the Gradient-Aligned Ad-
versarial Subspace (GAAS) method of (Tramèr et al., 2017b). We construct k orthogonal vectors
r1, .., rk ∈ {−1, 1} from a regular Hadamard matrix of order k ∈ {22, 23, .., 27}. We then multiply
each ri component-wise with the gradient, sign(∇XL(X,Ytrue)). Hence, estimating the dimen-
sionality reduces to finding a set of orthogonal perturbations, ri with ‖ri‖∞ = ε in the vicinity of
a data point that causes misclassification. For each scenario of Table 2 (CIFAR10), we select 350
random test points, x, and plot the probability that we find at least k orthogonal vectors ri such that
x + ri is misclassified. Fig. 4 (b), (c) shows the results with varying ε for BB, WB instances. We
find that the size of the space of adversarial samples is much lower for a model trained with ExL
noise than that of standard SGD. For ε = 8/255, we find over 128/64 directions for ∼ 25%/15%
of the points in case of SGD/ExL. With EnsAdv training, the number of adversarial directions for
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ϵ =8/255 ϵ =32/255

(b) (c)

ϵ =8/255 ϵ =32/255(a)

Figure 4: (a) [Left] Variance (in response to clean inputs) across different scenarios for the first 700 PC di-
mensions. [Middle, Right] Cosine distance across 700 PCs between clean and adversarial representations
for varying ε. Adversarial subspace dimensionality for varying ε for- (b) -BB adversaries crafted from a
model trained with natural examples (c) -WB adversaries crafted for models trained with PGDAdv training.
SGDens, SGDPGD exhibit improved variance (and lower distance) than SGD, suggesting PC variance/
distance as a good indicator of adversarial robustness. PCA was conducted with sample of 700 test images.

SGDens/ExLens reduces to 64 that misclassifies ∼ 17/15% of the points. With PGDAdv train-
ing, the adversarial dimension significantly reduces in case of ExLPGD for both BB/WB. As we
increase the perturbation size (ε = 32/255), we observe increasingly reduced number of misclas-
sified points as well as adversarial dimensions for models trained with noise modeling. The WB
adversarial plot, in Fig. 4 (c), clearly shows the reduced space obtained with noise modeling with
PGDAdv training (ExLPGD) against plain PGDAdv (SGDPGD) for ε = (8, 32)/255.

Loss Surface Smoothening: By now, it is clear that while ExL alone can defend against BB at-
tacks (as compared to SGD) reasonably well, it still remains vulnerable to WB attacks. For WB
defense and to further improve BB defense, we need to combine ExL noise modeling with adversar-
ial training. To further investigate this, we plotted the loss surface of MNIST models on examples
x = x+ε1·gBB+ε2·gWB in Fig. 5, where gBB is the signed gradient, sign(∇XL(X,Ytrue)source),
obtained from the source model (crafting the BB attacks) and gWB is the gradient obtained from the
target model itself (crafting WB attacks), sign(∇XL(X,Ytrue)target). We see that the loss surface
in case of SGD is highly curved with steep slopes in the vicinity of the data point in both BB and
WB direction. The EnsAdv training, SGDens, smoothens out the slope in the BB direction sub-
stantially, justifying their robustness against BB attacks. Models trained with noise modeling, ExL
(even without any data augmentation), yield a softer loss surface. This is why ExL models transfer
BB attacks at lower rates. The surface in the WB direction along ε2 withExL,ExLens still exhibits
a sharper curvature (although slightly softer than SGDens) validating the lower accuracies against
WB attacks (compared to BB attacks). PGDAdv, on the other hand, smoothens out the loss surface
substantially in both directions owing to the explicit inclusion of WB adversaries during training.
Note, ExLPGD yields a slightly softer surface than SGDPGD (not shown). The smoothening ef-
fect of noise modeling further justifies the boosted robustness of ExL models for larger perturbations
(outside ε-ball used during adversarial training). It is worth mentioning that we get similar PCA/
Adversarial dimensionality/ loss surface results across all datasets.

SGD SGDens ExL ExLens

Data Point, x

ExLPGD

Figure 5: Loss surface of models corresponding to MNIST (Table1).

4 DISCUSSION

We proposed Explainable Adversarial Learning, ExL, as a reliable method for improving adversarial
robustness. Specifically, our key findings are:
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1) We show that noise modeling at the input during discriminative training improves a model’s
ability to generalize better for out-of-sample adversarial data (without explicit data augmentation).
2) Our PCA variance and cosine distance analysis provides a significant perspective to visualize
and quantify a model’s response to adversarial/clean data.

A crucial question one can ask is, How to break ExL defense? The recent work (Athalye et al.,
2018) shows that many defense methods cause ‘gradient masking’ that eventually fail. We reiterate
that, ExL alone does not give a strong BB/WB defense. However, the smoothening effect of noise
modeling on the loss (Fig. 5) suggests that noise modeling decreases the magnitude of the gradient
masking effect. ExL does not change the classification model that makes it easy to be scaled to larger
datasets while integrating with other adversarial defense techniques. Coupled with other defense,
ExL performs remarkably (even for larger ε values). We combine ExL with EnsAdv & PGDAdv,
which do not cause obfuscated gradients and hence can withstand strong attacks, however, upto a
certain point. For WB perturbations much greater than the training ε value, ExL+PGDAdv also
breaks. In fact, for adaptive BB adversaries Tramèr et al. (2017a) or adversaries that query the
model to yield full prediction confidence (not just the label), ExL+EnsAdv will be vulnerable. Note,
advantage with ExL is, being independent of the attack/defense method, ExL can be potentially
combined with stronger attacks developed in future, to create stronger defenses.

While variance and principal subspace analysis help us understand a model’s behavior, we can-
not fully describe the structure of the manifold learnt by the linear subspace view. However, PCA
does provide a basic intuition about the generalization capability of complex image models. In
fact, our PC results establish the superiority of adversarial training methods (SGDens;SGDPGD:
Tramèr et al. (2017a); Madry et al. (2017) and can be used as a valid metric to gauge adversar-
ial susceptibility in future proposals. Finally, as our likelihood theory (Eqn.1) indicates, better
noise modeling techniques with improved gradient penalties can further improve robustness and
requires further investigation. Also, performing noise modeling at intermediate layers to improve
variance/explainability, and hence robustness, are other future work directions.
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A APPENDIX A: JUSTIFICATION OF X +N VS X ×N AND USE OF ∇LN ≤ 0
FOR NOISE MODELING

Figure A1: For MNIST dataset, we show the noise template learnt when we use multiplicative/additive noise
(N ) for Explainable Learning. The final noise-integrated image (for a sample digit ‘9’) that is fed to the network
before and after training is also shown. Additive noise disrupts the image drastically. Multiplicative noise, on
the other hand, enhances the relevant pixels while eliminating the background. Accuracy corrsponding to each
scenario is also shown and compared against standard SGD training scenario (without any noise). Here, we
train a simple convolutional architecture (ConvNet: 10C-M-20C-M-320FC) of 2 Convolutional (C) layers with
10, 20 filters, each followed by 2×2 Max-pooling (M) and a Fully-Connected (FC) layer of size 320. We
use mini-batch SGD with momentum of 0.5, learning rate (η=0.1) decayed by 0.1 every 15 epochs and batch-
size 64 to learn the network parameters. We trained 3 ConvNet models independently corresponding to each
scenario for 30 epochs. For the ExL scenarios, we conduct noise modelling with only negative loss gradients
(∇LN ≤ 0) with noise learning rate, ηnoise = 0.001, throughout the training process. Note, the noise image
shown is the average across all 64 noise templates.

Figure A2: Here, we showcase the noise learnt by a simple convolutional network (ConvNet: 10C-M-20C-M-
320FC), learning the CIFAR10 data with ExL (multiplicative noise) under different gradient update conditions.
As with MNIST (Fig. A1), we observe that the noise learnt enhances the region of interest while deemphasizing
the background pixels. Note, the noise in this case has RGB components as a result of which we see some
prominent color blobs in the noise template after training. The performance table shows that using only negative
gradients (i.e. ∇LN ≤ 0) during backpropagation for noise modelling yields minimal loss in accuracy as
compared to a standard SGD trained model. We use mini-batch SGD with momentum of 0.9, weight decay
5e-4, learning rate (η=0.01) decayed by 0.2 every 10 epochs and batch-size 64 to learn the network parameters.
We trained 4 ConvNet models independently corresponding to each scenario for 30 epochs. For the ExL
scenarios, we conduct noise modelling by backpropagating the corresponding gradient with noise learning rate
(ηnoise = 0.001) throughout the training process. Note, the noise image shown is the average across all 64
noise templates.
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B APPENDIX B: PC VARIANCE FOR SGD AND ExL SCENARIOS IN
RESPONSE TO ADVERSARIAL AND CLEAN INPUTS ACROSS DIFFERENT
LAYERS OF RESNET18

Figure A3: Here, we show the variance captured in the leading Principal Component (PC) dimensions for the
inital convolutional layer’s (Conv1) and intermediate blocks learnt activations of a ResNet-18 model trained
on CIFAR10 data. We compare the variance of the learnt representations (in response to clean inputs) for each
block across two scenarios: SGD (without noise) and ExL (with noise). Note, we capture the variance of the
final block’s activations before average pooling. That is, the activations ofBlock4 have dimension 512×4×4.
We observe that ExL noise increases the explainability (or variance) along the high rank PCs. Also, as we go
deeper into the network, the absolute difference of the variance values between SGD/ExL decreases. This
is expected as the contribution of input noise on the overall representations decreases as we go deeper into the
network. Moreover, there is a generic-to-specific transition in the hierarchy of learnt features of a deep neural
network. Thus, the linear PC subspace analysis to quantify a model’s knowledge of the data manifold is more
applicable in the earlier layers, since they learn more general input-related characteristics. Nonetheless, we see
that ExL model yields widened explainability than SGD for each intermediate layer except the final Block4
that feeds into the output layer. We use mini-batch SGD with momentum of 0.9, weight decay 5e-4, learning
rate (η=0.1) decayed by 0.1 every 30 epochs and batch-size 64 to learn the network parameters. We trained 2
ResNet-18 models independently corresponding to each scenario for 60 epochs. For noise modelling, we use
ηnoise = 0.001 decayed by 0.1 every 30 epochs. Note, we used a sample set of 700 test images to conduct the
PCA.

Figure A4: Here, we show the variance captured in the leading Principal Component (PC) dimensions for the
Conv1 and Block1 learnt activations in response to both clean and adversarial inputs for ResNet-18 models
correponding to the scenarios discussed in Fig. A3. The model’s variance for both clean and adversarial inputs
are exactly same in case of ExL/SGD for Conv1 layers. For Block1, the adversarial input variance is
slighlty lower in case of SGD than that of clean input. With ExL, the variance is still the same for Block1.
This indicates that PC variance statistics cannot differentiate between a model’s knowledge of on-/off- manifold
data. It only tells us whether a model’s underlying representation has acquired more knowledge about the data
manifold. To analyze a model’s understanding of adversarial data, we need to look into the relationship between
the clean and adversarial projection onto the PC subspace and measure the cosine distance. Note, we used the
Fast Gradient Sign Method (FGSM) method Goodfellow et al. (2014) to create BB adversaries with a step
size of 8/255, from another independently trained ResNet-18 model (source) with standard SGD. The source
attack model has the same hyperparameters as the SGD model in Fig. A3 and is trained for 40 epochs.
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C APPENDIX C: EXPERIMENTAL DETAILS AND MODEL DESCRIPTION
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Figure A5: Here, we show the noise templates learnt with noise modeling corresponding to different training
scenarios of Table 1, 2 in main paper: ExL (only noise modeling), ExL PGD (noise modeling with PGDAdv
training ExLPGD), ExL ens (noise modeling with EnsAdv training ExLens) for MNIST and CIFAR10 data.
A sample image (X × N ) before and after training with different scenarios is shown. The fact that every
training technique yields different noise template shows that noise influences the overall optimization. Column
1 shows the noise template and correponding image (X×N ) before training, Coulmns 2-4 show the templates
after training. Note, noise shown is the mean across 64 templates.

The Pytorch implementation of ResNet-18 architecture for CIFAR10 and ResNext-29 architecture
for CIFAR100 were taken from (Github). For CIFAR10/CIFAR100, we use mini-batch SGD with
momentum of 0.9, weight decay 5e-4 and batch size 64 for training the weight parameters of the
models. A detailed description of the learning rate and epochs for ResNet18 model (corresponding
to Table 2 in main paper) is shown in Table A1. Similarly, Table A2 shows the parameters for
ResNext-29 model. The hyperparmeters corresponding to each scenario (of Table A1, A2) are
shown in Rows1-6 under Target type. The hyperparameters for the source model used to attack
the target models for BB scenarios is shown in Row 7/8 under Source type. We use BB attacks
from the SGD trained source model to attack SGD,ExL,ExLens, PGDens. We use BB attacks
from a model trained with PGD adversarial training (ε = 8/255, step-size=2/255 over 7 steps) to
craft strong BB attacks on SGDPGD, ExLPGD. The model used to generate black box adversaries
to augment the training dataset of the SGDens, ExLens target models is shown in Row 9 under
EnsAdv type.

How to conduct Ensemble Adversarial Training? Furthermore, in all our experiments, for En-
sAdv training (SGDens), we use a slightly different approach than Kurakin et al. (2016). Instead of
using a weighted loss function that controls the relative weight of adversarial/clean examples in the
overall loss computation, we use a different learning rate ηadv/η (ηadv < η) when training with ad-
versarial/clean inputs, respectively, to learn the network parameters. Accordingly, while performing
adversarial training with explainable learning (ExLens), the noise modeling learning rate in addi-
tion to overall learning rate, ηadv/η, for adversarial/clean inputs is also different, ηnoiseadv/ηnoise
(ηnoiseadv < ηnoise).

How to conduct PGD Adversarial Training? For PGD adversarial training (SGDPGD), we used
the techniques suggested in (Kannan et al., 2018). Kannan et al. (2018) propose that training on a
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mixture of clean and adversarial examples (generated using PGD attack), instead of literally solving
the min-max problem described by (Madry et al., 2017) yields better performance. In fact, this helps
maintain good accuracy on both clean and adversarial examples. Like EnsAdv training, here as well,
we use a different learning rate ηadv/η (ηadv < η) when training with adversarial/clean inputs, re-
spectively, to learn the network parameters. Accordingly, while performing PGD adversarial training
with explainable learning (ExLPGD), the noise modeling learning rate in addition to overall learn-
ing rate, ηadv/η, for adversarial/clean inputs is also different, ηnoiseadv/ηnoise (ηnoiseadv < ηnoise)

Note, the adversarial inputs for EnsAdv training of a target model are created using BB adversaries
generated by R-FGSM from a source (shown in Row 9 of Table A1, A2), while PGDAdv training
uses WB adversaries created with PGD attack from the same target model. We also show the test
accuracy (on clean data) for each model in Table A1,A2 for reference. Note, the learning rate in
each case decays by a factor of 0.1 every 20/30 epochs (Column 5 in Table A1, A2).

Table A1: Hyperparameter Table for training ResNet18 models on CIFAR10 data

Model Type Training
Method

Epochs η/ηadv η, ηadv
decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv
decay/step-

size

Test
Accuracy in

(%)

Target

SGD 120 0.1/– 0.1/30 – – 88.8
ExL 120 0.1/– 0.1/30 0.001/– 0.1/30 87.1

SGDens 80 0.1/0.05 0.1/30 – – 86.3
ExLens 120 0.1/0.05 0.1/30 0.001/0.0005 0.1/30 86.4
SGDPGD 122 0.1/0.1 0.1/20 – – 83.2
ExLPGD 122 0.1/0.1 0.1/20 0.001/0.0005 0.1/20 83

Source SGD 300 0.1/– 0.1/100 – – 89
PGDAdv 122 0.1/0.1 0.1/20 – – 83

EnsAdv SGD 31 0.1/– 0.1/30 – – 81

Table A2: Hyperparameter Table for training ResNext29 models on CIFAR100 data

Model Type Training
Method

Epochs η/ηadv η, ηadv
decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv
decay/step-

size

Test
Accuracy in

(%)

Target

SGD 100 0.1/– 0.1/40 – – 71
ExL 58 0.1/– 0.1/20 0.001/– 0.1/20 69.4

SGDens 42 0.1/0.05 0.1/20 – – 69.8
ExLens 48 0.1/0.05 0.1/20 0.001/0.0005 0.1/20 67.3
SGDPGD 52 0.1/0.05 0.1/20 – – 71.6
ExLPGD 52 0.1/0.05 0.1/20 0.001/0.0005 0.1/20 69

Source SGD 34 0.1/– 0.1/10 – – 67.2
PGDAdv 48 0.1/0.05 0.1/20 – – 68.4

EnsAdv SGD 45 0.1/– 0.1/20 – – 71.3

For MNIST, we use 2 different architectures as source/ target models. ConvNet1: 32C-M-64C-
M-1024FC is the model used as target. ConvNet2: 10C-M-20C-M-320FC is the model used as
source. Here, we use mini-batch SGD with momentum of 0.5, batch size 64, for training the weight
parameters. Table A3 shows the hyperparameters used to train the models in Table 1 of main paper.
The notations here are similar to that of Table A1. Note, the source model trained with PGDAdv
training to craft BB attacks on ExLPGD, SGDPGD was trained with ε = 0.3, step-size=0.01 over
40 steps.

C.1 MODEL DESCRIPTION FOR FIG. 2 IN MAIN PAPER

We use mini-batch SGD with momentum of 0.9, weight decay 5e-4 and batch size 64 for training
the weight parameters of the models in Table A4.
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Table A3: Hyperparameter Table for training ConvNet1/ConvNet2 models on MNIST data

Model Type Training
Method

Epochs η/ηadv η, ηadv
decay/step-

size

ηnoise/ηnoiseadv ηnoise, ηnoiseadv
decay/step-

size

Test
Accuracy in

(%)

Target
ConvNet1

SGD 100 0.01/– 0.1/50 – – 99.1
ExL 150 0.01/– 0.1/50 0.001/– 0.1/50 99.2

SGDens 64 0.01/0.005 0.1/30 – – 99
ExLens 32 0.01/0.005 0.1/30 0.001/3.3e-5 0.1/30 99.1
SGDPGD 142 0.01/0.01 0.1/30 – – 97.9
ExLPGD 162 0.01/0.01 0.1/30 1e-4/1e-5 0.1/30 98

Source
(ConvNet2)

SGD 15 0.01/– –/– – – 98.6
PGDAdv 128 0.01/0.01 0.1/30 – – 97

EnsAdv
ConvNet1

SGD 15 0.01/– –/– – – 98.8

Table A4: Hyperparameter Table for training ResNet18 models on CIFAR10 data for different types of
noise modeling (X +N,X ×N ) with all/ only negative gradient∇LN

Noise
Modeling

Type

Gradient
∇LN

Epochs η η
decay/step-

size

ηnoise ηnoise
decay/step-

size

Test
Accuracy in

(%)

X +N Negative 120 0.1 0.1/30 0.001 0.1/30 78.1
X +N All 120 0.1 0.1/30 0.001 0.1/30 77.1
X ×N Negative 120 0.1 0.1/30 0.001 0.1/30 87.1
X ×N All 120 0.1 0.1/30 0.001 0.1/30 85.1

SGD - 120 0.1 0.1/30 - - 88.9

D APPENDIX D: IMPLICIT GENERATIVE MODELING OF NOISE ACQUIRES
ADVERSARIAL KNOWLEDGE

Intuitively, we can justify adversarial robustness inherited with noise modeling in two ways: First, by
integrating noise during training, we allow a model to explore multiple directions within the vicinity
of the data point (thereby incorporating more off-manifold data) and hence inculcate that knowledge
in its underlying behavior. Second, we note that noise learnt with ExL inherits the input data charac-
teristics (i.e. N ⊂ X) and that the noise-modeling direction (∇NL) is aligned with the loss gradient,
∇XL (that is also used to calculate the adversarial inputs, Xadv = X+εsign(∇XL)). This ensures
that the exploration direction coincides with certain adversarial directions improving the model’s
generalization capability in such spaces. Note, for fully guaranteed adversarial robustness as per
Eqn. 1 in main paper, the joint input/output distribution (p(X|Y ), p(Y )) has to be realized in addi-
tion to the noise modeling and N should span the entire space of adversarial/off-manifold data.
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