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ABSTRACT

Recognizing the relationship between two texts is an important aspect of natu-
ral language understanding (NLU), and a variety of neural network models have
been proposed for solving NLU tasks. Unfortunately, recent work showed that
the datasets these models are trained on often contain biases that allow models
to achieve non-trivial performance without possibly learning the relationship be-
tween the two texts. We propose a framework for building robust models by us-
ing adversarial learning to encourage models to learn latent, bias-free representa-
tions. We test our approach in a Natural Language Inference (NLI) scenario, and
show that our adversarially-trained models learn robust representations that ignore
known dataset-specific biases. Our experiments demonstrate that our models are
more robust to new NLI datasets.

1 INTRODUCTION

Recognizing the relationship between two texts is a significant aspect of general natural language
understanding (NLU) (Allen, 1995). Natural Language Inference (NLI) is often used to gauge a
model’s ability to understand such a relationship between two texts (Cooper et al., 1996; Dagan
et al., 2006). In NLI, a model is tasked with determining whether a hypothesis (the animal moved)
would likely be inferred from a premise (a black cat ran). The development of new large-scale
datasets has led to a flurry of various neural network architectures for solving NLI. However, recent
work has found that many NLI datasets contain biases that enable hypothesis-only models – models
that are given access to the hypothesis alone – to perform surprisingly well without possibly learning
the relationship between two texts. For instance, annotation artifacts and statistical irregularities in
the popular Stanford Natural Language Inference dataset (SNLI) (Bowman et al., 2015) allowed
hypothesis-only models to perform at double the majority class baseline, and at least 5 other recent
NLI datasets contain similar biases (Gururangan et al., 2018; Poliak et al., 2018c; Tsuchiya, 2018).
We will use the terms “artifacts” and “biases” interchangeably.

The existence of annotation artifacts in large-scale NLI datasets is detrimental for making progress
in deep learning research for NLU. How can we trust the performance of top models if it is possible
to infer the relationship without even looking at the premise? Solutions to this concern are so
far unsatisfactory: constructing new datasets (Sharma et al., 2018) is costly and may still result
in other artifacts; filtering “easy” examples and defining a harder subset is useful for evaluation
purposes (Gururangan et al., 2018), but difficult to do on a large scale that will enable training; and
compiling adversarial examples (Glockner et al., 2018) is informative but again limited by scale or
diversity. Furthermore, these solutions do not address a lingering question: can we develop models
that will generalize well despite many NLI datasets containing specific hypothesis-only biases?

Inspired by domain-adversarial training of neural networks (Ganin & Lempitsky, 2015; Ganin et al.,
2016), we propose two architectures (Figure 1) that enable a model to perform well on other NLI
datasets regardless of what annotation artifacts exist in the training corpus’s hypotheses. While
learning to classify the relationship between two texts, we simultaneously use adversarial learning
to discourage our model from using dataset-specific biases.In this way, the resulting representations
contain fewer biases, and the model is encouraged to learn the relationship between the two texts.
Our experiments demonstrate that our architectures generate sentence representations that are more
robust to annotation artifacts, and also transfer better: when trained on one dataset and evaluated
on another, they perform better than a non-adversarial model in 9 out of 12 target datasets. The
methodology can also be extended to other NLU tasks, and we outline the necessary changes to our
architectures in the conclusion. To our knowledge, this is the first study that explores methods to
ignore hypothesis-only biases when training NLI models.
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2 RELATED WORK

2.1 BIASES AND ARTIFACTS IN NLU DATASETS

Annotation artifacts or biases were found in multiple NLU datasets and tasks. Early work on NLI,
also known as recognizing textual entailment (RTE), found biases that allowed models to perform
relatively well by focusing on syntactic clues alone (Snow et al., 2006; Vanderwende & Dolan,
2006). More recently, Gururangan et al. (2018) found such artifacts in SNLI and its multi-genre
extension, MNLI (Williams et al., 2018). Tsuchiya (2018) observed similar findings in SNLI and
SICK, a sentence similarity dataset, and Poliak et al. (2018c) reported similar results on six datasets,
including those previous three. Some of the biased annotations that were found include the use
of negation words (“not”, “nothing”) for cases of contradiction or approximate words (“some”,
“various”) for entailment. Poliak et al. (2018c) discussed how faulty dataset-construction methods
may be responsible for these biases.

Other NLU datasets also exhibit biases. In a story cloze completion setup, Schwartz et al. (2017b)
obtained a high performance by only considering the candidate endings, without even looking at the
story context. In the ROC stories dataset (Mostafazadeh et al., 2016), stylistic features such as length
or the use of certain words are predictive of the correct ending (Schwartz et al., 2017a; Cai et al.,
2017). A similar phenomenon was observed in reading comprehension, where systems performed
non-trivially well by only using the final sentence in the passage, or by ignoring the passage alto-
gether (Kaushik & Lipton, 2018). Finally, multiple studies found non-trivial performance in visual
question answering by using only the question, without any access to the image, due to biases in the
question text (Zhang et al., 2016; Kafle & Kanan, 2016; Goyal et al., 2017; Kafle & Kanan, 2017;
Agrawal et al., 2017).

2.2 IMPROVING MODEL ROBUSTNESS

Neural networks are notoriously sensitive to adversarial examples, primarily in the machine vision
field (Szegedy et al., 2014; Goodfellow et al., 2015), but also in NLP tasks like machine transla-
tion (Ebrahimi et al., 2018; Belinkov & Bisk, 2018; Heigold et al., 2018) and reading comprehen-
sion (Jia & Liang, 2017; Ribeiro et al., 2018; Mudrakarta et al., 2018). A common approach to
improving robustness is to train the model on data including adversarial examples (Szegedy et al.,
2014; Goodfellow et al., 2015). However, this method may not generalize well to new types of
adversarial examples (Xiaoyong Yuan, 2017; Tramr et al., 2018; Belinkov & Bisk, 2018).

Domain-adversarial neural networks aim to increase robustness to domain change, by learning to
be oblivious to the domain (Ganin et al., 2016). This approach requires knowledge of the domain
at training time, which makes transfer learning more difficult. Our method relies on a similar idea,
but we learn to ignore latent annotation artifacts. Hence, we do not require direct supervision in the
form of a domain label.

Others have attempted to remove biases from learned representations. Bolukbasi et al. (2016) suc-
cessful removed gender biases from word embeddings. Li et al. (2018) removed sensitive informa-
tion like sex and age from text representations, and obtained improved representations especially
in out-of-domain scenarios. However, other work suggests that removing such attributes from text
representations may be difficult (Elazar & Goldberg, 2018). In contrast to this line of work, our final
goal is not the removal of such attributes per se; instead, we strive for more robust representations
that better transfer to other datasets, similar to Li et al. (2018). Very recent work has focused on
applying adversarial learning to NLI. Minervini & Riedel (2018) generate adversarial examples that
do not conform to logical rules and then regularize models based on those examples. Similarly,
Kang et al. (2018) incorporate external linguistic resources and use a GAN-style framework to ad-
versarially train robust NLI models. Unlike these works, we do not use external resources and we
are interested in removing specific biases that allow hypothesis-only models to perform well.

3 METHODOLOGY

Let (P,H) denote a premise-hypothesis pair, and let f : S → v denote an encoder that maps a
sentence S to a vector representation v, and g : v → y a classifier that maps a vector representation
v to an output label y. Our baseline NLI architecture (Figure 1a) contains the following components:
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(a) Baseline NLI architecture (b) Double classifier architecture (c) Single classifier architecture

Figure 1: Illustration of (a) the baseline NLI architecture, and two proposed adversarial architec-
tures: (b) a double-classifier adds an adversarial hypothesis-only classifier, (c) a single-classifier
is trained adversarially with a random premise, and otherwise in the normal manner. Upward and
downward arrows correspond to forward and backward propagation. Green or red arrows respec-
tively mean that the gradient sign is kept as is or reversed. Gray arrow indicates that the gradient is
blocked and not back-propagated.

• A premise encoder fP that maps the premise P to a vector representation p.

• A hypothesis encoder fH that maps the hypothesis H to a vector representation h.

• A classifier gNLI that maps a premise-hypothesis vector representation to an output y.

In this model, the premise and hypothesis are each encoded with separate encoders, fP and fH , into
p and h respectively.1 Then their representations are combined into [p;h]2 and fed to a classifier
gNLI, which predicts an output y. If fP is not used, a model should no longer be able to successfully
perform NLI. However, models without fP achieve non-trivial results, indicating the existence of
biases in datasets’ hypotheses (Gururangan et al., 2018; Poliak et al., 2018c; Tsuchiya, 2018).

To overcome such biases that may limit the ability to transfer models across NLI datasets, we design
two kinds of models for robust NLI, a single-classifier model and a double-classifier model. Both
models aim to encourage the hypothesis representations to be free of biases via adversarial learning.

3.1 DOUBLE-CLASSIFIER MODEL

The double-classifier model, illustrated in Figure 1b, is similar to our baseline model but includes an
adversarial classifier gHypoth that maps the hypothesis representation h to an output y. The crucial
aspect of this model is the interaction between the NLI classifier, gNLI, and the hypothesis classifier,
gHypoth. The NLI classifier is trained to minimize the following objective:

LNLI = L(gNLI([fP (P ); fH(H)], y) (1)

where L(ỹ, y) is the cross-entropy loss. In the forward step, we feed the premise and hypothesis to
their respective encoders, fP and fH , and forward their joint representation [p;h] to the classifier. In
the backward step, gradients are back-propagated from the classifier into the premise and hypothesis
encoders, fP and fH , in the normal fashion.

In contrast, the hypothesis classifier gHypoth is adversary with respect to the input. It is also trained to
minimize the cross-entropy loss, but its forward/backward propagation is different. In the forward
step, we feed the hypothesis into its encoder fH and forward its representation h to the classifier.
In the backward step, we first back-propagate gradients through the classifier, as before. However,

1This is common to many NLI models (Rocktäschel et al., 2016; Mou et al., 2016; Cheng et al., 2016; Nie &
Bansal, 2017; Chen et al., 2017), although some share information between the encoders via attention (Parikh
et al., 2016; Duan et al., 2018). Extending our approach to this scenario would require some caution.

2For simplicity, we assume here that the two are concatenated. In the experiments we consider a more
sophisticated method to represent sentence pairs.
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before back-propagating to the encoder, we reverse the gradients (Ganin & Lempitsky, 2015). This
simple step aims to discourage the model from learning patterns that may be useful for classification
when considering only the hypothesis. The adversary minimizes the following objective:

LAdv = L(gHypoth(GRLλ(fH(H)), y) (2)

where GRLλ is a gradient reversal layer. To control the interplay between gNLI and gHypoth we
set two hyper-parameters: λLoss controls the importance of the adversarial loss function, and λEnc
controls the weight of the adversarial update by multiplying the gradients after reversing them. This
is implemented by the scaled gradient reversal layer, GRLλ. The final loss function is defined by:

L = LNLI + λEncLAdv (3)

Limitation and a cryptographic perspective The double-classifier model is conceptually simple.
However, it has a potential limitation because of the separate adversarial classifier. In theory, it is
possible that the adversary and the hypothesis encoder will co-adapt during training, such that the
hypothesis representation still contains biased information but the adversary cannot utilize it. Thus
we may be fooled to think that the biases were removed, while in fact they are encoded in a way
that is accessible to the normal classifier but not to the adversary. A similar situation arises in
neural cryptography (Abadi & Andersen, 2016), where an encryptor Alice and a decryptor Bob
communicate while an adversary Eve tries to eavesdrop on their communication. Alice and Bob are
analogous to the hypothesis encoder fH and the normal classifier gNLI, while Eve is analogous to
the adversary gHypoth. Secret communication is analogous to solving NLI without using biases.

In their asymmetric encryption experiments, Abadi & Andersen observed seemingly secret com-
munication, which on closer look the adversary was able to eavesdrop on. Here, if the adversarial
classifier does not perform well, we might be tricked into thinking that the encoded representation
does not contain any biases, while in fact they are still hidden in the representation. Our next archi-
tecture aims to prevent such a situation from possibly happening by folding the NLI and adversarial
classifiers into a single network.

3.2 SINGLE-CLASSIFIER MODEL

The single-classifier model also includes the premise and hypothesis encoders, fP and fH . However,
it only has one classifier, g, which acts as both a normal NLI classifier and an adversarial hypothesis
classifier. Having only one classifier aims at reducing the risk that a separate adversary would give
a false impression of success, learning to not use hidden biases in the hypothesis representations.
Since g must also do well on NLI with normal training, it is less likely to ignore hidden biases.

To achieve this, we consider two modes of operation. In the normal mode, we get a premise-
hypothesis pair from the training data, feed them through their encoders, forward to the classifier,
and back-propagate in the normal fashion. In the adversarial mode, we get a premise-hypothesis
from the training data and replace the premise with a random one. In the forward step, we feed the
new pair to the encoders and classifier as before, predicting the entailment decision corresponding
to the original premise-hypothesis pair. In the backward step, we first back-propagate through the
classifier as usual. Then, we block the premise encoder and only back-propagate to the hypothesis
encoder. In this case, we reverse the gradients going into the hypothesis encoder, as in the double-
classifier. This procedure is shown in Figure 1c. The adversarial loss function is defined as:

LRandAdv = L(gNLI([GRL0(fP (Pi)); GRLλ(fH(Hi))], y) (4)

Here GRL0 implements gradient blocking on the premise encoder by using the identity function in
the forward step and a zero gradient during the backward step. At the same time, GRLλ reverses the
gradient going into the hypothesis encoder and scales it by λEnc, as before.

The single-classifier model has the advantage of a simpler architecture, avoiding the need to train two
different classifiers, which may result in failed adversarial learning as described before. However,
it has a more complicated training regime, in choosing random examples. In practice, we set a
hyper-parameter λRand ∈ [0, 1] that controls what fraction of the examples are random. The final
loss function combines the two operation modes with a random variable z ∼ Bernoulli(λRand):

L = (1− z)LNLI + zLRandAdv (5)
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Table 1: Accuracies of the non-adversarial baseline and double/single classifiers models, trained on
SNLI and evaluated on target datasets. ∆ = differences between baseline and adversarial models.

Target Dataset Baseline Double ∆ Single ∆

SCITAIL 58.14 57.67 -0.47 51.08 -7.06
ADD-ONE-RTE 66.15 66.15 0 83.46 17.31
JOCI 41.5 41.74 0.24 39.63 -1.87
MPE 57.65 58.1 0.45 52.35 -5.3
DPR 49.86 50.96 1.1 49.41 -0.45
MNLI matched 45.86 47.24 1.38 43.76 -2.1
FN+ 50.87 52.48 1.61 57.03 6.16
MNLI mismatched 47.57 49.24 1.67 43.66 -3.91
SICK 25.64 27.44 1.8 56.75 31.11
GLUE 38.5 40.49 1.99 43.21 4.71
SPR 52.48 58.99 6.51 65.43 12.94

SNLI hard 68.02 66.27 -1.75 55.6 -12.42

4 EXPERIMENTAL SETUP

Data To determine how well our proposed architectures enable a model to perform well on NLI
datasets despite the high presence of the annotation artifacts in the training corpus, we use a total
of 11 NLI datasets – the 10 datasets that Poliak et al. (2018c) investigated in their hypothesis-only
study plus GLUE’s diagnostic test set that was carefully constructed to not contain hypothesis-
biases (Wang et al., 2018). The most popular recent NLI datasets are arguably the Stanford Natural
Language Inference (SNLI) (Bowman et al., 2015) dataset and its successor, the Multi-genre Natural
Language Inference (MNLI) (Williams et al., 2018) dataset. These datasets are human elicited: they
were created by having human generate a corresponding hypothesis for a given premise and NLI
label. Since SNLI is known to contain significant annotation artifacts/biases (Gururangan et al.,
2018; Poliak et al., 2018c), we will demonstrate the robustness of our methods by training our
adversarial models on SNLI, and evaluating on all other datasets. We also evaluate on SNLI-hard, a
subset of the test set that is thought to contain fewer biases (Gururangan et al., 2018).

The second category of NLI datasets we consider are human-judged datasets that used automatic
methods to pair context and hypothesis sentences and then relied on humans to label the pairs:
Scitail (Khot et al., 2018), ADD-ONE-RTE (Pavlick & Callison-Burch, 2016), Johns Hopkins Ordi-
nal Commonsense Inference (JOCI) (Zhang et al., 2017), Multiple Premise Entailment (MPE) (Lai
et al., 2017), and Sentences Involving Compositional Knowledge (SICK) (Marelli et al., 2014). We
also consider datasets that are automatically recast from existing NLU datasets into NLI. We use the
three datasets recast by White et al. (2017) to evaluate a number of semantic phenomena: FrameNet+
(FN+) (Pavlick et al., 2015), Definite Pronoun Resolution (DPR) (Rahman & Ng, 2012), Semantic
Proto-Roles (SPR) (Reisinger et al., 2015).

As many of these target datasets have different label spaces than SNLI, we define a mapping from our
models’ predictions to each target dataset’s labels. These mappings are available in Appendix A.1.

Implementation Details We adopt InferSent’s method (Conneau et al., 2017) for learning
sentence representations from NLI data as our basic NLI architecture. In InferSent, each sen-
tence is encoded by a bidirectional long short-term memory (LSTM) network whose hidden states
are max-pooled. The premise and hypothesis representations are combined via a method introduced
by Mou et al. (2016) and passed to a one hidden layer neural network.3 We chose this model because
it works well and its architecture is representative of many NLI models. However, our methodology
can be applied to other models as well. We follow the InferSent training regime, using SGD
with an initial learning rate of 0.1. See Appendix B.1 for hyper-parameter settings and more details.

5 RESULTS

Table 1 reports the results of our proposed architectures compared to the non-adversarial baseline
model. In each case, we tune the hyper-parameters on each target dataset’s development set and

3Specifically, representations are concatenated, subtracted, and multiplied element-wise.
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evaluate on the corresponding test set.4 The double-classifier model outperforms the baseline in 9
of the 12 target datasets (∆ > 0), though most of the improvements are small. The single-classifier
only outperforms the baseline in 5 datasets, 4 of which are cases where the double-classifier also
outperformed the baseline. These gains are much larger than the gains of the double-classifier. The
fact that the two architectures agree to a large extent on which datasets benefit from adversarial
training is a validation of our basic approach. As our results improve on the target datasets, we note
that the double classifier models’ performance on SNLI does not drastically decrease, even when
the improvement on the target dataset is large (for example, the SPR case). For these models, the
performance on SNLI drops by just an average of 1.11 (0.65 STDV). For the single-classifier, there
is a large decrease on SNLI for many of the adversarial models as the models drop by an average
of 11.19 (12.71 STDV). For these models, when we see large improvement on a target dataset, we
often see a large drop on SNLI. For example, on ADD-ONE-RTE, the single classifier outperforms
the baseline by roughly 17% but performs almost 50% lower than the baseline on SNLI.5

A priori, we expect the adversarial models to benefit most when there are either no biases or biases
that differ from ones in the training data. Indeed, both our adversarial architectures obtain improved
results on the GLUE diagnostic test set, which was designed to be bias-free. We do not see improve-
ments on the SNLI hard subset (Gururangan et al., 2018), indicating that it may still have biases not
identified by the authors, a possibility they also acknowledge.

To estimate the amount of bias that differ in the datasets, we compare the hypothesis-only results
from Poliak et al. (2018c) with a hypothesis-only model trained on SNLI and tested on the target
datasets. Since the results drop significantly below the majority class baseline (MAJ) on all but
one dataset (Figure 4, Appendix C.2), we believe that these target NLI datasets contain different
biases than those in SNLI. The largest difference is on SPR where the hypothesis-only model trained
on SNLI performs over 50% worse than when trained on SPR. On MNLI, this hypothesis-only
model performs 10% above MAJ, compared to the roughly 20% when trained on MNLI, suggesting
that MNLI contains similar biases as SNLI. This may explain why our adversarial models only
slightly outperform our baseline on MNLI. The hypothesis-only model of Poliak et al. (2018c) did
not outperform MAJ on DPR, ADD-ONE-RTE, SICK, and MPE. We observe improvements with
adversarially trained models that are tested on all these datasets, to varying degrees (from 0.45 on
MPE to 31.11 on SICK). On the other hand, we also see improvements on datasets with biases (high
performance of hypothesis-only model), most noticeably on SPR. The only exception seems to be
SCITAIL, where we do not improve although it has different biases than SNLI. However, when we
strengthen the adversary (in the analysis below), the double-classifier outperforms the baseline. Our
results demonstrates that our approach is robust to many datasets with different types of biases.

Fine-tuning on target datasets Our main goal is to determine whether adversarial learning can
allow a model to perform well across multiple datasets by ignoring dataset-specific artifacts. In turn,
we did not update the models’ parameters on other datasets. However, what if we are given different
amounts of training data for a new NLI dataset? Is our adversarial approach still helpful? To answer
these questions, we updated four existing models, on increasing sizes of training data from different
target datasets (namely, MNLI and SICK). The four models are (1) our baseline model trained on
SNLI, (2) an adversarial double classifier trained on SNLI, (3) an adversarial single classifier trained
on SNLI, and (4) our baseline model trained on the target dataset (MNLI/SICK). Both MNLI and
SICK have the same label spaces as SNLI, allowing us to hold that variable constant. We use SICK
because our adversarial models achieved good gains on it (Table 1). We also use MNLI, even though
we saw small gains there, because MNLI’s training set is large, allowing us to consider a wide range
of different training set sizes.6

Figure 2 shows the results on the dev sets. In MNLI, there is little to no gain from adversarial
pre-training compared to non-adversarial pre-training. This is expected, as we saw relatively small
gains with the adversarial models, and can be explained by SNLI and MNLI having similar biases.
In SICK, adversarial pre-training is better in most data regimes. The single-classifier is especially
helpful, as it is the first to beat the model without pre-training (after using 25% of the training data).7

4For MNLI, since the test sets are not available, we tune on the matched dev set and evaluate on the mis-
matched dev set, or vice versa. For GLUE, we tune on MNLI matched.

5See Table 4 in Appendix C for the corresponding results on SNLI for each of the results listed in Table 1.
6We discuss necessary implementation details for these experiments in Appendix B.2
7Note that SICK is a small dataset (10K training examples), which explains why the model without pre-

training does not benefit from more data, as it just achieves the majority class performance.
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(a) MNLI (b) SICK
Figure 2: Effect of pre-training with adversarially trained models.

Table 2: Results with a stronger adversary in the double-classifier vs. a non-adversarial baseline.

Dataset Baseline Double ∆ Dataset Baseline Double ∆

SNLI hard 68.02 63.81 -4.21 SCITAIL 58.14 60.82 2.68
JOCI 41.5 39.29 -2.21 ADD-ONE 66.15 68.99 2.84
SNLI 84.22 82.4 -1.82 GLUE 38.5 41.58 3.08
DPR 49.86 49.41 -0.45 FN+ 50.87 56.31 5.44
MNLI matched 45.86 46.12 0.26 SPR 52.48 58.68 6.2
MNLI mismatched 47.57 48.19 0.62 SICK 25.64 36.59 10.95
MPE 57.65 58.6 0.95

6 ANALYSIS

Stronger adversary Does a stronger adversary improve the quality of the transferred represen-
tations? Intuitively, we expect more adversarial training to hurt performance on the original data,
where biases are useful, but improve on target data, which may have different or no biases. To test
this, we trained adversarial models with larger hyper-parameter values on the adversary (see details
in Appendix B.1). While there are other ways to make adversaries stronger, such as increasing the
number or size of hidden layers (Elazar & Goldberg, 2018), we are especially interested in the effect
of these hyper-parameters as they control the trade-off between normal and adversarial training.

Table 2 shows the results of double-classifier models with a stronger adversary. As expected, per-
formance on SNLI test sets decreases more, but many of the other datasets benefit from a stronger
adversary (compared with Table 1). As for the single-classifier model, we found large drops in
quality even in our basic configurations (Appendix C.3), so we do not increase its strength further.

Hidden biases in the representation Recall our motivation for the single-classifier model: we
were concerned that the learned hypothesis representations may seem to be bias-free (low adversarial
performance), while in fact there are still biases hidden in them. In the cryptographic analogy, it
might appear that Alice and Bob communicate secretly (akin to solving NLI without biases), while
in fact their communication can be decrypted (has biases). Indeed, Abadi & Andersen (2016) found
that, “upon resetting and retraining Eve, the retrained adversary was able to decrypt messages nearly
as well as Bob was”. We perform an analogous experiment here: given a trained adversarial model,
we freeze the hypothesis encoder fH and retrain a new, hypothesis-only classifier. We evaluate its
quality to determine whether the (frozen) hypothesis representations have hidden biases.

Figure 3 shows the results on SNLI’s dev set. A few trends can be noticed. First, we confirm that,
in the double-classifier case (Figure 3a), the adversary is indeed trained to perform poorly on the
task (orange line), while the normal NLI classifier (blue line) performs much better. However, as
suspected, retraining a classifier on frozen hypothesis representations (green line) leads to improved
performance. In fact, the retrained classifier performs close to the fully trained hypothesis-only base-
line from (Poliak et al., 2018c), indicating that the hypothesis representation still contains biases.

Interestingly, we found that even a frozen random encoder captures biases in the hypothesis, as a
classifier trained on it performs fairly well (63.26%), and far above the majority baseline (34.28%).
One reason might be that just the word embeddings (which are pre-trained) contain significant in-
formation that propagates even through a random encoder. Others have also found that random en-
codings contain non-trivial information (Conneau et al., 2018; Zhang & Bowman, 2018). Relatedly,
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(a) Double-classifier (b) Single-classifier
Figure 3: Results when retraining a classifier on a frozen hypothesis encoder compared to the ad-
versarial NLI training.

Table 3: Indicator words and the % decrease in the correlation of double (D) and single (S) models
with the “contradiction” label compared to the non-adversarial baseline.

Word D(1,1) S(0.4,1) S(1,1) Word D(1,1) S(0.4,1) S(1,1)

sleeping 15.63 53.13 -81.25 driving -8.33 50 -66.67
Nobody 14.29 42.86 14.29 alone 0 83.33 0
cat 7.14 57.14 -85.71 asleep -18.75 50 12.5
no 0 52.94 -52.94 empty -16.67 83.33 -16.67
eats 37.5 87.5 -25 naked 0 83.33 -33.33

Elazar & Goldberg found that adversarially trained text classification models still have demographic
attributes in their hidden representations despite efforts to remove them.

Indicator words Certain words in SNLI are more correlated with specific entailment labels than
others, especially with negation words (“not”, “nobody”, “no”) correlated with contradiction (Guru-
rangan et al., 2018; Poliak et al., 2018c). Here we investigate whether our adversarial models make
predictions that are less impacted by such biases. For each of the most biased contradiction words in
SNLI, we computed the probability that an adversarial model (or the baseline model) predicts an ex-
ample as contradiction, given that the hypothesis has the word. Table 3 shows the top 5 examples in
the training set (Appendix C.4 has more examples). The single-classifier with λRand = 0.4, λEnc = 1
predicts contradiction much less frequently than the baseline on examples with these words. This
configuration was the strongest adversarial model that still performed reasonably well on SNLI (Ap-
pendix C.3). With these hyper-parameters, the single-classifier appears to remove some of the biases
learned by the baseline. We also provide two other adversarial configurations that do not show such
an effect, to illustrate that this behavior highly depends on the adversarial hyper-parameters.

7 CONCLUSION AND FUTURE WORK

Biases in annotations are a major source of concern for the quality of NLI datasets and systems. In
this paper, we presented a solution for combating annotation biases based on adversarial learning.
We designed two architectures that discourage the hypothesis encoder from learning the biases, and
instead obtain a more unbiased representation. We empirically evaluated our approach in a transfer
learning scenario, where we found our models to perform better than a non-adversarial baseline on
a range of datasets. We also investigated what biases remain in the latent representations.

The methodology developed in this work can be extended to deal with biases in other NLU tasks,
where one is concerned with finding the relationship between two objects. For example, in Reading
Comprehension, a question is being asked about a passage; in story cloze completion, an ending is
judged with respect to a context; and in Visual Question Answering, a question is asked about an
image. In all these cases, the second element (question, ending, and question, respectively) may
contain biases. Our adversarial architectures naturally apply to any model that relies on encoding
this biased element, and may help remove such biases from the latent representation. We hope to
encourage such investigation in the broader research community.
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A DATA DETAILS

A.1 MAPPING LABELS

Each premise-hypothesis pair in SNLI is labeled as either ENTAILMENT, NEUTRAL, or CONTRA-
DICTION. MNLI, SICK, JOCI, and MPE use the same label space. Since examples in SciTail are
labeled as ENTAILMENT or NEUTRAL, when evaluating on SciTail, we convert the model’s CON-
TRADICTION to NEUTRAL. ADD-ONE-RTE and the recast datasets also model NLI as a binary
prediction task. However, their label sets are ENTAILED and NOT-ENTAILED. In these cases, when
the models predict ENTAILMENT, we convert the example to ENTAILED, and when the models pre-
dict NEUTRAL or CONTRADICTION, we map the label to NOT-ENTAILED.

B TRAINING DETAILS

B.1 ADVERSARIAL TRAINING DETAILS

We tune the adversarial hyper-parameters λLoss, λEnc, λRand by sweeping in the range
{0.05, 0.1, 0.2, 0.4, 0.8, 1.0}. For the stronger adversary experiments (Table 2) we consider the
range {1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}. In each dataset, we choose the best-performing model
on the development set and report its quality on the test set.

We follow the InferSent training regime, using SGD with an initial learning rate of 0.1. See
Conneau et al. (2017) for details.

B.2 UPDATING TRAINING

One drawback of using MNLI is that gold labels for the test set are not publicly available. We
remove 10K examples from the training set and treat them as our development set. Here, we use the
MNLI matched development set as our test set since we assume that the new dataset, that we would
like our robust NLI models to generalize well on, contains consistent domains and genres.

C ADDITIONAL RESULTS

C.1 PERFORMANCE ON SNLI WITH ADVERSARIAL TRAINING

Table 4 shows the results of transferring representations to new datsets. These results complement
Table 1. In each dataset, we tune the adversarial hyper-parameters on the dev set and report test set
accuracies. We also give the performance on the SNLI test set.

Table 4: Results of transferring representations to new datasets. Scores are accuracies on the corre-
sponding dataset. Left block: test results on target datasets. Right block: test results on SNLI with
the models that performed best on each target dataset. ∆ are differences from the non-adversarial
baseline. In all cases the models are trained on SNLI.

On Target Dataset On SNLI
Target Dataset Double ∆ Single ∆ Double ∆ Single ∆

SCITAIL 57.67 -0.47 51.08 -7.06 84.04 -0.18 75.16 -9.06
ADD-ONE-RTE 66.15 0 83.46 17.31 81.93 -2.29 34.59 -49.63
JOCI 41.74 0.24 39.63 -1.87 83.78 -0.44 78.3 -5.92
MPE 58.1 0.45 52.35 -5.3 83.65 -0.57 83.68 -0.54
DPR 50.96 1.1 49.41 -0.45 83.49 -0.73 76.41 -7.81
MNLI matched 47.24 1.38 43.76 -2.1 82.97 -1.25 75.29 -8.93
FN+ 52.48 1.61 57.03 6.16 82.28 -1.94 83.78 -0.44
MNLI mismatched 49.24 1.67 43.66 -3.91 82.97 -1.25 75.29 -8.93
SICK 27.44 1.8 56.75 31.11 83.65 -0.57 75.29 -8.93
GLUE 40.49 1.99 43.21 4.71 82.97 -1.25 75.29 -8.93
SPR 58.99 6.51 65.43 12.94 82.46 -1.76 70.21 -14.01

SNLI 83.56 -0.66 78.3 -5.92
SNLI hard 66.27 -1.75 55.6 -12.42
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C.2 HYPOTHESIS-ONLY BASELINES

Figure 4 shows the results of several baselines in multiple datasets: the majority baseline and the
hypothesis-only baselines trained on either SNLI or each dataset’s training set, and evaluated on each
target dataset’s test set. Notice that the hypothesis-only model trained on SNLI drops in performance
when evaluated on other models. When the hypothesis-only model trained on SNLI is tested on
the target datasets, the model performs below the majority baseline (except for MNLI), indicating
that the biases in SNLI’s hypotheses do not occur in the other datasets’ hypotheses. This is not
surprising since these datasets contain different types of biases owing to noisy generation methods
(FN+) (Poliak et al., 2018a), social and cognitive biases (SNLI & MNLI) (Poliak et al., 2018c), or
even “non-uniform distributions from original dataset that have been recast” (SPR) (Poliak et al.,
2018b).

Figure 4: Majority (Maj) and hypothesis-only baselines, trained on each dataset (Hyp Self) or on
SNLI (Hyp SNLI) baselines. The differences determine whether each dataset has different types of
biases in the hypothesis than the biases in SNLI’s hypotheses.

C.3 HYPER-PARAMETER SWEEPS

Here we provide cross-validation results with different settings of our hyper-parameters. Figure 5a
shows the dev set results with different configurations of the single classifier. Notice that perfor-
mance degrades quickly when we increase the fraction of random premises (large λRand). In contrast,
the results with the double classifier (Figure 5b) are more stable.
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(a) Single classifier (b) Double classifier
Figure 5: Cross-validation results.
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C.4 INDICATOR WORDS

Table 5 shows the top 20 indicator words in SNLI, to complement the discussion in Section 6.

Table 5: Indicator words and how correlated they are with “contradiction” predictions.

Score Percentage difference from baseline
Word Freq Gold Baseline Double (1,1) Single (0.4,1) Single (1,1)

sleeping 108 0.88 0.24 15.63 53.13 -81.25
driving 53 0.81 0.32 -8.33 50 -66.67
Nobody 52 1 0.42 14.29 42.86 14.29
alone 50 0.9 0.32 0 83.33 0
cat 49 0.84 0.31 7.14 57.14 -85.71
asleep 43 0.91 0.39 -18.75 50 12.5
no 31 0.84 0.36 0 52.94 -52.94
empty 28 0.93 0.3 -16.67 83.33 -16.67
eats 24 0.83 0.3 37.5 87.5 -25
naked 20 0.95 0.46 0 83.33 -33.33
sleeps 20 0.95 0.25 0 50 -100
television 17 0.88 0.14 -100 0 -300
moon 14 0.93 0.33 -50 0 0
sleep 12 1 0.18 0 50 -250
tv 12 0.92 0.33 0 25 -100
pizza 12 0.92 0.27 -33.33 33.33 -33.33
nothing 11 1 0.29 0 0 -50
single 11 0.82 0.57 0 75 0
No 9 0.89 0.5 16.67 50 0
anything 8 1 1 50 83.33 83.33
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