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ABSTRACT

The Shapley value is a fundamental game-theoretic framework for allocating a
utility function’s output among participating players, and is commonly interpreted
as the expected marginal contribution under random coalitions. However, when
applied to complex functions such as deep neural networks, this expected marginal
contribution implicitly aggregates higher-order interaction effects, which can ob-
scure the true contribution of features. In this study, we derive a generalized de-
composition of the Shapley value that expresses it as a sum of interaction terms
of arbitrary order, making explicit how higher-order interactions are incorporated
within marginal contributions. We also provide an unbiased estimator for our
representation via permutation sampling, enabling practical computation. We fur-
ther show that when interaction effects vary substantially across contexts, these
embedded higher-order terms can lead to misleading attributions for model in-
terpretation. Our theoretical analysis and empirical evaluations demonstrate that
variance in lower-order interactions reliably signals the presence of hidden higher-
order structure, providing a principled criterion for when such interactions should
be explored. This interaction-based perspective clarifies when the Shapley value
becomes unreliable and offers new guidance for interpreting model behavior.

1 INTRODUCTION

The Shapley value is a fundamental solution concept in cooperative game theory that fairly allocates
the total utility of a game among players (Shapley, 1953). Owing to its strong theoretical foundation,
it has also become the basis of many feature attribution methods in machine learning, where the
model output is treated as the utility of a cooperative game and contributions are distributed among
input features. This game-theoretic perspective has established the Shapley value as one of the
most influential tools in explainable AI (XAI) (Lundberg & Lee, 2017a; Sundararajan et al., 2017;
Ghorbani & Zou, 2020; Lundberg et al., 2020; Wang et al., 2021; Rozemberczki et al., 2022).

The standard Shapley value is interpreted as the expected marginal contribution of each player
under random coalitions. Yet each marginal contribution is inherently shaped by interaction effects
between the target player and other coalitions (VanderWeele, 2015; Egami & Imai, 2019; Grabisch
& Roubens, 1999; Chang et al., 2025). Consequently, simple expectation often fails in complex
functions such as Deep Neural Networks (DNNs), where high-order interactions are pervasive and
ignoring these interactions can cause the algorithm to overlook critical cooperative structures and
even yield misleading interpretations.

In this work, we formalize this perspective by proving that the Shapley value can be expressed
as a decomposition of the characteristic function into interaction terms of arbitrary order, where
each term is evenly distributed among the players involved. This representation reveals the inter-
nal structure of Shapley’s expectation-based formulation: lower-order effects implicitly subsume all
higher-order interactions, explaining why context-sensitive effects may be obscured in standard at-
tributions. Our theoretical results generalize the classical dividend decomposition (Harsanyi, 1982;
Dehez, 2017) and make explicit how higher-order dividends are embedded within the Shapley value.
We further show that permutation-based sampling yields an unbiased estimator of the k-th order rep-
resentation of the Shapley value, enabling practical computation (Castro et al., 2009).

Within this k-th order representation, our analysis clarifies when the Shapley value becomes unreli-
able: when interaction terms fluctuate substantially across coalitions, their expectation can mask in-
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dispensable higher-order structure and yield near-zero attributions for meaningful features. Through
theoretical case studies and empirical evaluations on DNNs, we show that large variance in low-
order interactions reliably signals such hidden higher-order structure. This motivates a variance-
based strategy for prioritizing coalitions in higher-order exploration, which is particularly valuable
in high-dimensional deep learning settings where interaction patterns are sparse and exhaustive eval-
uation is infeasible.

In summary, our work revisits the Shapley value by making its embedded interaction structure ex-
plicit and by identifying when its expectation-based formulation fails to capture true feature impor-
tance. Our decomposition reveals how higher-order interactions are implicitly aggregated within
marginal contributions, providing a principled explanation for these failures. To extend these in-
sights, we introduce the High-Variance Effect (HIVE) framework, which uses variance as a criterion
for guiding higher-order exploration while pruning uninformative coalitions. This variance-guided
strategy yields a scalable approach for uncovering meaningful higher-order interactions and offers
new directions for interpreting how modern deep neural networks organize interaction structure.

2 SHAPLEY VALUE

Notation. For convenience, we follow the simplified notations in Grabisch & Roubens (1999);
Fujimoto et al. (2006). For singletons, we omit braces and write v(i), T ∪ i, T \ i instead of
v({i}), T ∪ {i}, T \ {i}. Similarly, for multiple elements, we use ij, ijk instead of {i, j}, {i, j, k}
when it is clear. The cardinalities of subsets S, T,R · · · are typically denoted by the corresponding
lowercase letters s, t, r, · · · .

Shapley value. In cooperative game theory, a cooperative game consists of a set of players
N = {1, . . . , n} and a characteristic function v : 2N → R (also called utility function) that maps
each coalition S ⊆ N to the utility v(S). The player i’s marginal contribution (also called effect)
measures the added value when player i joins an existing coalition S, ∆iv(S) := v(S ∪ i)− v(S).
It can be extended to the group marginal contribution, v(S ∪R)− v(S).

The Shapley value is one of the solution concepts to fairly allocate the utility to individual players
with specific axioms in a cooperative game. The solution assigns to each player a payoff equal to
the expectation of ∆vi(S) over all coalitions S ⊆ N \ i (Shapley, 1953; Monderer & Samet, 2002):

ϕi(v) =
∑

S⊆N\i

1

n

(
n− 1

s

)−1 [
v(S ∪ {i})− v(S)

]
. (1)

The Shapley value can also be represented as the expectation over all permutations of players, which
provides a more efficient approximation in practice (Castro et al., 2009). Let Π(N) be the set of all
permutations of N . For π ∈ Π(N), the set πi denotes the set of players that precede i in π. Then,
the Shapley value is the same as follows:

ϕi(v) =
1

n!

∑
π∈Π(N)

[
v(πi ∪ i)− v(πi)

]
. (2)

Harsanyi dividend. In a different perspective, instead of marginal contributions, the Shapley value
can be decomposed into dividends of all possible coalitions (Harsanyi, 1982; Dehez, 2017). The
dividend αR(N, v) is defined as follows:

αR(N, v) =
∑
T⊆R

(−1)r−tv(T ). (3)

It measures the pure effect of coalition R that cannot be explained by its subcoalitions. αR(N, v) is
often simplified as αR when the context of N, v is clear. This definition provides unique represen-
tations of the characteristic function and the Shapley value in the following forms:

v(S) =
∑
R⊆S

αR, ϕi(v) =
∑

R⊆N,i∈R

1

r
αR. (4)
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3 INTERACTION IN SHAPLEY VALUE

The classical formulation of the Shapley value attributes payoffs to players by averaging their in-
dividual effects across coalitions. However, in modern applications, particularly when applied to
complex functions like DNNs, it becomes crucial to understand the interactions among players
(i.e., model features) beyond the individual level. Recent studies have found that such interactions
sparsely capture meaningful semantic concepts (Deng et al., 2021; Li & Zhang, 2023; Ren et al.,
2023; Zhou et al., 2024; Kang et al., 2025), which suggests that analyzing interactions provides a
more faithful explanation of complex models than focusing solely on individual features. In this sec-
tion, we (a) demonstrate how higher-order interaction effects are implicitly embedded in lower-order
interactions, (b) show efficient estimation of interactions via permutation sampling, and (c) provide
an interpretation of the Shapley value with explicit reformulation with respect to arbitrary-order
interaction terms.

3.1 INTERACTION EFFECTS

In the two-player case, the interaction effect between i and j with a given player set T ⊆ N \ ij
indicates the discrepancy in the effect of one variable when the other is present.

∆ijv(T ) = ∆j

[
∆iv(T )

]
= ∆iv(T ∪ j)−∆iv(T )

= v(T ∪ ij)− v(T ∪ i)− v(T ∪ j) + v(T ).
(5)

A positive interaction indicates synergistic effects from cooperation, while a negative value implies
redundancy or conflicts between players (Fujimoto et al., 2006; Fumagalli et al., 2024; Chang et al.,
2025). The definition can be extended to any subset by recursively computing the discrepancy.

Definition 1 (interaction). The interaction of coalition R ⊆ N for a given coalition T is:

∆Rv(T ) = ∆i[∆R\iv(T )], ∀i ∈ R

=
∑
S⊆R

(−1)r−sv(S ∪ T ). (6)

In particular, we call the k-th order interaction for the case |R| = k. This term follows the causal
interaction in causality literature that evaluates the interaction effects among variables by interven-
tion on target variables (VanderWeele, 2015; Egami & Imai, 2019; Janzing et al., 2020), i.e., the
additional effect of the coalition beyond the sum of all lower-order interactions. With convention
∆∅v(T ) := v(T ), it satisfies the following equation:

∆Rv(T ) = v(R ∪ T )−
∑
S⊂R

∆Sv(T ). (7)

Note that the term ‘interaction’ in this study indicates causal interaction to understand implicit in-
teraction effects behind the Shapley value, not interaction index in game theory literature, which
provides a generalized allocation framework for a subset of players. This interaction equation
also follows the structure of discrete derivative, which computes the function change by inclusion-
exclusion (Fujimoto et al., 2006). The Harsanyi dividend in Equation (3) is the special case of
interaction when T = ∅ (Dehez, 2017). That is, αR = ∆Rv(∅).

3.2 INTERACTION DECOMPOSITION

In this section, we introduce a new formulation of the Shapley value using k-th order interaction
terms. We first explain how higher order interactions are implicitly embedded in the marginal con-
tribution. Consider the marginal contribution ∆iv(S) and a random permutation π ∈ Π(S). Let [π]t
be the subset of players up to the t-th player in the ordering π, where [π]0 := ∅ and [π]s := S. πR

denotes the set of players in π that precede all players in R. By definition, ∆iv(S) − ∆iv(∅) can
be decomposed into a consecutive summation of 2nd-order interactions according to the permuta-
tion. Each 2nd-order interaction can be decomposed into a summation of 3rd order interactions. By
recursively applying this decomposition for all permutations, we obtain the following lemma.
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players:

Figure 1: An illustration of k-th order Interaction Decomposition in Shapley value for k = 3. For
a given coalition R and context T , each interaction term involving R is divided evenly among the
constituents of R.

Lemma 1 (k-th order interaction in ∆iv(S)). For a permutation π ∈ Π(S), for any t ∈ [0, s−k+1],

∆iv(S) =

k−2∑
r=0

∑
R⊆S\[π]t
|R|=r

∆i∪Rv([π]t) +
∑

R⊆S\[π]t
|R|=k−1

∆i∪Rv(π
R). (8)

Proof. See Appendix.

Lemma 1 shows that a marginal contribution ∆iv(S) can be expressed as a consecutive sum of
interaction terms between i and subsets of S. Since both the characteristic function v and the Shapley
value ϕi(v) are defined in terms of marginal contributions, they too admit representations in terms
of interactions. By substituting each marginal contribution with its k-th order interaction expansion
from Lemma 1, we obtain k-th order interaction decompositions of the set function v and the Shapley
value.
Theorem 1 (k-th order interaction representation of a set function). Given a set function v : 2N →
R and a subset S ⊆ N , v(S) can be expressed with k-th order interaction terms:

v(S) =

k−1∑
r=0

∑
R⊆S
|R|=r

∆Rv(∅) +
∑
R⊆S
|R|=k

∑
T⊆S\R

k

s

(
s− 1

t

)−1

∆Rv(T ) (9)

Theorem 2 (k-th order decomposition of Shapley value). The Shapley value can be represented in
k-th order interactions:

ϕi(v) =

k−2∑
r=0

1

r + 1

∑
R⊆N\i
|R|=r

∆i∪Rv(∅) +
n−k∑
t=0

1

n

(
n− 1

t

)−1 ∑
R⊆N\i
|R|=k−1

∑
T⊆N\(i∪R)

|T |=t

∆i∪Rv(T ). (10)

Proof. See Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theorem 2 explicitly shows how higher-order interaction terms contribute to the Shapley value. An
interesting observation can be made for S = N in Theorem 1. Here, the weight of ∆Rv(T ) equals
the product of the interaction weight from Theorem 2 and the number of players involved. This
equivalence shows that computing the Shapley value is equivalent to decomposing the characteris-
tic function into interactions up to an arbitrary order and evenly distributing each interaction term
among the participating players. In other words, the Shapley value can be viewed as a fair allocation
of decomposed interaction effects. This interpretation is illustrated in Figure 1.

3.3 INTERACTION ESTIMATION VIA PERMUTATION SAMPLING

To efficiently estimate higher-order interaction terms in Theorem 2, we introduce an unbiased esti-
mator based on permutation sampling, following the approach of Castro et al. (2009). Let πt denote
the t-th player in a permutation π, and [π]t the subset of players up to position the t-th player. We
define ∆iπt+1

v([π]t) = 0 whenever i ∈ [π]t+1 so that the term is well-defined for any player i and
permutation π. This leads to a simplified estimator that applies uniformly across sampled interac-
tions. Formally, for any k ∈ [2, n], the following unbiased estimation holds:

Theorem 3 (estimation via permutation sampling). The Shapley value with k-th order interactions
can be estimated through permutation sampling:

ϕi(v) =
∑

R⊆N\i
|R|∈[0,k−2]

1

r + 1
∆i∪Rv(∅) +

1

k − 1

n−k∑
t=0

Eπ∈Π(N)

[ ∑
R⊆N\[π]t+1

|R|=k−2

∆iπt+1∪Rv([π]t)
]

(11)

Proof. See Appendix.

This permutation-based approach enables efficient estimation of interaction terms in practice. Un-
like set-based sampling, which may produce sparse or imbalanced coverage, permutation sampling
assigns equal weight to each interaction and achieves better sample efficiency. Our formulation gen-
eralizes the 2nd-order interaction estimation result introduced in Corollary 1 of Chang et al. (2025).
We provide an empirical analysis of our permutation-based estimation on Appendix F.

3.4 INTERPRETATION AND LIMITATIONS OF INTERACTIONS IN SHAPLEY VALUE

Summarization of higher-order interactions. The special case when k = n in Theorem 1 and
2 recovers the classical dividend-based representation of the Shapley value in Equation (4). Our
results therefore generalize this interpretation by decomposing the Shapley value up to a desired
order. The second term in Theorem 2 is the expected k-th order interaction involving the player i.
These expectation terms implicitly encode higher-order Harsanyi dividends. For any coalition R, the
interaction effects satisfy the classical identity (Grabisch & Roubens, 1999; Fujimoto et al., 2006)

∆Rv(T ) =
∑
S⊆T

αR∪S . (12)

Thus, the expected interaction in Theorem 2 becomes a weighted summarization of all higher-order
dividends over supersets of i ∪R.

Theorem 4 (dividends in k-th order interaction representation). The Harsanyi dividend of L ⊆ N
is embedded in the k-th order interaction representation of Shapley value as follows:

ϕi(v) =

k−2∑
r=0

1

r + 1

∑
R⊆N\i
|R|=r

αi∪R +
∑

R⊆N\i
|R|=k−1

∑
L⊆N

(i∪R)⊆L

1

k

(
l

l − k

)−1

αL. (13)

Proof. See Appendix.

It reveals how Shapley’s marginal contribution implicitly summarizes higher-order dividends. Aver-
aging ∆Rv(T ) at order k provides a practical alternative to computing the full Harsanyi expansion,

5
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which becomes infeasible at scale, while still reflecting the combined influence of higher-order inter-
action structure. The original Shapley value corresponds to evaluating this summarization at k = 1,
thereby subsuming all higher-order effects into the expectation of first-order marginal contributions.

Problems with expectation-based evaluation. The limitation of this summarization is that it may
suppress or distort critical interactions. When ∆iv(T ) does not heavily rely on the context T , the
expectation is a reliable measure of the feature attribution since there is no substantial interaction
effect between i and features in T . However, when ∆iv(T ) is highly context-sensitive, which is
common in complex non-additive or non-convex architectures like DNNs, the expectation collapses
heterogeneous interaction effects into a single aggregate value. This can obscure the true role of the
feature and lead to misleading attributions.

This issue becomes especially problematic in the presence of negative or redundant interactions (Ku-
mar et al., 2021; Chang et al., 2025). Even in non-convex models, a relevant feature may appear
irrelevant because positive contributions can be canceled out by negative interactions induced by
redundancy. This cancellation can occur not only at the second order but also at higher orders: a
positive pairwise interaction can flip sign when additional features participate due to higher-order
negative interactions. Thus, when ∆Rv(T ) varies substantially across contexts, the expectation
ET [∆Rv(T )] becomes an unreliable summary of the coalition’s true influence. In such scenar-
ios, exploring higher-order structure is essential. Rather than relying solely on expectation-based
summarization, one must examine how the interaction behaves across different contexts and how
different supersets activate distinctive Harsanyi dividends.

3.5 RELATION TO PRIOR WORK

A substantial line of work extends the Shapley value to quantify feature interactions, beginning
with the Shapley Interaction Index (SII) (Grabisch & Roubens, 1999). Because SII does not sat-
isfy efficiency, later methods such as STI (Sundararajan et al., 2020) and Faith-Shap (Tsai et al.,
2023) incorporate this axiom, and n-Shapley (Bordt & von Luxburg, 2023) further unifies these for-
mulations. All these indices reduce to the Shapley value at singleton levels and recover Harsanyi
dividends at full cardinality, but differ in how they allocate higher-order effects.

Our work takes a different perspective. Rather than defining a new interaction index, we analyze
how Shapley’s expectation over marginal contributions is influenced by the intrinsic higher-order
structure of non-additive and non-convex models. By decomposing each marginal contribution into
a consecutive sum of interaction effects (Lemma 1), our formulation satisfies efficiency and reveals
how Shapley-based explanations implicitly accumulate higher-order dividends. In this process, our
max-order interaction term also naturally accumulates all higher-order dividends since we iteratively
decompose marginal contributions from low order to high order. Thus, the second term in Theorem 2
corresponds to the aggregation of STI uniformly allocated to each feature in i ∪R.

Despite these connections, our work highlights that expectation-based evaluations can suppress crit-
ical interactions when discrete derivatives change sign across contexts, which is a phenomenon also
noted by Shapley residuals (Kumar et al., 2021) and negative interactions in non-convex models
(Chang et al., 2025). These sign cancellations can yield misleadingly small or even zero attribu-
tions, not because of the choice of interaction index, but due to the intrinsic structure of marginal
contributions themselves.

Our formulation makes this issue explicit by showing exactly how higher-order discrete derivatives
are embedded within the marginal contributions. Section 4 illustrates this through simple operator
examples, and Section 5 demonstrates that the same phenomenon appears in deep neural networks.
These observations motivate the need for principled guidance to identify higher-order coalitions
exhibiting context-sensitive, non-negligible interactions. This need is particularly pronounced in
modern deep models, where meaningful higher-order interactions are extremely sparse. Recent
works such as SPEX and ProxySPEX (Kang et al., 2025; Butler et al., 2025) further support this
view by showing that impactful interactions in large language models often arise along only a small
number of coalitional pathways.

Finally, although computing high-order discrete derivatives remains expensive, our formulation lies
within the Cardinal Interaction Index (CII) class, making it compatible with efficient estimators
such as SHAP-IQ and SVARM-IQ (Fumagalli et al., 2023; Muschalik et al., 2024; Kolpaczki et al.,

6
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2024). Combining our guided-exploration strategy with these estimators offers a promising path
toward scalable higher-order interaction analysis.

4 CASE STUDY

As discussed in Section 3.4, interaction effects are implicitly embedded in the marginal contribu-
tion by expectation when computing the Shapley value. This expectation structure may lead to
unexpected allocation in complex functions where indispensable high-order interactions exist. We
demonstrate this concept with two example functions that are frequently used in DNNs: max func-
tions and attention.

Max function. The max function selects the largest value among its inputs and is widely used in
various DNNs, e.g., max pooling.

v(x1, · · · , x5) = 4x1 +max(7x2, 8x3, 9x4, 10x5)

We set each variable xi as binary (0 or 1) to represent the participation of player i. We then examine
the necessity of analyzing k-th order interactions ∆Rv(T ), with a particular focus on x1 and x5. We
can easily find that the marginal contribution of x1 (∆1v(T )) is always 4 regardless of the coalition
T . Thus, the Shapley value of x1 (4) adequately summarizes its contribution. However, the marginal
contribution of x5 significantly differs depending on the coalition it joins. For instance, the marginal
contribution of x5 becomes 10, 3 and 1 when T is ∅, {1} and {1, 3, 4}, respectively. Due to such
large variations, the expectation reflected in x5’s Shapley value (3.58) does not well capture x5’s
coalition-specific effects, highlighting the need to account for higher-order interactions.

Attention module. The attention module is a widely used component in modern DNNs (Vaswani
et al., 2017; Dosovitskiy et al., 2020; Ho et al., 2020). For this example, we simplify its computation
structure. Specifically, we define

z = [3x1, 5x2, 9x3, 10x4]
T

v(x1, · · · , x5) = softmax(x1, x2, x3, x4)
T z

where softmax(x1, x2, x3, x4)i = exi/
∑4

j=1 e
xj indicates the attention weight of player i, and z

represents the corresponding value vectors (Vaswani et al., 2017). Similar to x5 in the max function
example, x1 exhibits substantially different effects depending on the presence of x2, x3, and x4.
For instance, x1 contributes 1.43 in isolation (T = ∅), but makes negative contributions (−0.41
and −0.38) when T = {3, 4} and T = {2, 3, 4}. Furthermore, 2nd and higher-order interactions
fluctuate across coalitions, e.g., ∆12v(∅) = −0.88, ∆12v(3, 4) = −0.04, and ∆123v(4) = 0.2. The
presence of other strongly contributing features (x2, x3 and x4) in the attention module can induce
complex high-order interactions, where negative interactions reduce the positive contributions of x1

when it joins certain coalitions. For more detailed interaction values, please refer to Appendix C.

5 INTERACTION ANALYSIS

Experimental Setup. We conduct interaction analyses by performing experiments across practical
real datasets with DNNs. We use VGG (Yan et al., 2015) and ViT (Dosovitskiy et al., 2020) models
for image classification on ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) datasets. All
images are divided into 64 equal-sized segments, which are used as features for Shapley interac-
tion calculations. We perform additional experiments for natural language processing using BERT
(Devlin et al., 2019) for sentiment classification on IMDB (Maas et al., 2011) dataset and report the
results in the appendix.

5.1 INTERACTION ANALYSIS OF DEEP NEURAL NETWORKS

In this section, we demonstrate the identification of important higher-order interactions and their
interpretation. Figure 2 presents two sample cases from the ViT model. We select two coalitions R1

and R2 with |R| = 4 from each input image. The coalition R1 corresponds to regions relevant to the
model’s prediction, while R2 corresponds to relatively less relevant regions. For each coalition, we
sample 4th-order interaction effects from 50 random permutations, and compare the true marginal
effect v(R ∪ T )− v(T ) with the expectation and variance of sampled interactions ∆Rv(T ).

7
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𝑅!

𝑅"

motorcycle

𝑅!

𝑅"

interaction distribution4th-order coalition

𝑣 𝑅 ∪ 𝑇 − 𝑣(𝑇) E![Δ"𝑣 𝑇 ] Var![Δ"𝑣 𝑇 ]
𝑅# + 2.498 - 0.499 + 0.358
𝑅$ - 0.359 + 0.022 + 0.016

dog interaction distribution4th-order coalition

𝑣 𝑅 ∪ 𝑇 − 𝑣(𝑇) E![Δ"𝑣 𝑇 ] Var![Δ"𝑣 𝑇 ]
𝑅# + 6.492 + 0.256 + 0.555
𝑅$ + 2.639 - 0.108 + 0.162

Figure 2: The distribution of interaction effects. Marginal change caused by removing (v(R ∪
T )− v(T ) can vary significantly from the expected marginal effect ET [∆Rv(T )] if the variance of
interactions VarT [∆Rv(T )] is large.

In both examples, R1 exhibits a larger marginal effect than R2, which is consistent with its stronger
relevance to the model’s prediction. However, the expected interaction of R1 is often similar to, or
even smaller than, that of R2, even taking negative values. This phenomenon may be attributed to the
redundancy effects among features (Fujimoto et al., 2006; Chang et al., 2025). Moreover, R1 shows
consistently higher variance of interactions compared to R2. As discussed in Section 3.2, ∆Rv(T ),
the marginal effect of coalition R. subsumes higher-order interactions between R and subsets of
T . When the interactions vary substantially across T , it indicates the presence of critical higher-
order interactions that influences model prediction. This discrepancy highlights the importance of
accounting for higher-order interactions to obtain a more complete picture of model behavior, since
expected effects may ignore critical synergistic coalitions.

5.2 VARIANCE AS INDICATOR OF HIGHER-ORDER INTERACTIONS

feature 𝑖Δ!𝑣 𝑇

va
ria

nc
e

mean

Var"[Δ!𝑣 𝑇 ] max interaction avg interaction
𝑖# 0.579 0.437 0.077
𝑖$ 0.118 0.187 0.043

𝒊𝟏

𝒊𝟐

feature 𝑖 interaction: |Δ!%𝑣 𝑇\𝑗 |Δ!𝑣 𝑇

va
ria

nc
e

mean

Var"[Δ!𝑣 𝑇 ] max interaction avg interaction
𝑖# 0.747 0.582 0.124
𝑖$ 0.081 0.137 0.049

𝒊𝟏

𝒊𝟐

interaction: |Δ!%𝑣 𝑇\𝑗 |

Figure 3: The relationship between marginal effect variance and interaction. Higher variance (i1) is
associated with greater interaction magnitude, and lower variance (i2) with lower interactions.

Searching for significant higher-order interactions in high-dimensional inputs is computationally
prohibitive due to the combinatorial number of possible coalitions. This intractability motivates
the need for a guideline for identifying coalitions worth investigating. We find empirically that the
variance of sampled contributions acts as a simple yet effective criterion. Low variance suggests
that a feature does not exhibit unique interactions with other coalitions and thus does not require
higher-order analysis, whereas large variance indicates the presence of critical interactions.

In Figure 3, we demonstrate this insight using examples from the ViT model. We plot the variance
and expectation of ∆iv(T ) for all i ∈ N . We then select features according to their variance and
examine their pairwise interactions with the other features (averaged over permutations). The results
show that i1 (high variance) exhibits substantially stronger interactions—both in terms of maximum
and average values—than i2 (low variance). These findings suggest that features with large variance
of sampled contributions are promising candidates for targeted higher-order interaction analysis.
Consistent with this interpretation, i1 in each image corresponds to one of the main components of
the object driving the model’s decision (dog and motorcycle).
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6 APPLICATIONS

Our analyses in Section 5 show that the variance of (interaction) effects provides a reliable structural
signal of higher-order interactions. Motivated by this observation, we introduce the High-Variance
Effect (HIVE) framework, a principled strategy for discovering meaningful higher-order interac-
tion coalitions while avoiding unnecessary exploration. The HIVE framework begins by apply-
ing variance-based filtering to individual features to identify those whose effects fluctuate strongly
across contexts. As shown in our analysis, such high-variance features are closely tied to the model’s
decision and form natural anchors for exploring higher-order interactions. Building on this, we it-
eratively extend the same variance-based criterion to larger coalitions: at each step, we compute
the variance of (interaction) effects for candidate subsets, partition them into high-variance and
low-variance groups, and expand only the supersets derived from the high-variance group. This
procedure progressively focuses the search on coalitions that are most likely to carry substantial
higher-order contributions, while pruning low-variance candidates that are unlikely to exhibit mean-
ingful interactions.

In this section, we present two sets of applications. First, we evaluate whether the features identified
by HIVE align with the image regions that are truly relevant to the model’s decision. Second, we ap-
ply the HIVE framework iteratively to uncover higher-order synergistic coalitions. For image-based
tasks, we use SLIC superpixels (Achanta et al., 2012) as feature segments. Additional quantitative
analyses supporting our variance-based exploration are provided in Appendix D. Experiments on
language models follow the similar procedure and are reported in Appendix E.

HIVE Shapley value KernelSHAP IG
25% 2.327 2.929 2.347 5.818
50% 1.194 1.544 1.261 3.612
75% 0.315 0.678 0.554 1.661

KL-divergence

HIVE KernelSHAP IGShapley value

bi
gh

or
n 

sh
ee

p
tig

er

ho
ck

ey
 

co
rn

et

HIVE KernelSHAP IGShapley value

(a)

(b) (c)

bighorn sheep tiger hockey cornet
2nd-order interaction

Figure 4: Regions with high variance of marginal contributions. (a) Generally, regions with higher
variances are associated with segments including the main object of the class, providing a more com-
plete understanding of important segments. (b) Inserting back top K% of segments in terms of in-
teraction term variance causes the greatest decrease in KL-divergence from the original predictions.
(c) Higher variance features have fatter-tailed distributions, i.e., many more critical interactions.

In Figure 4 (a), we compare the individual features selected by the HIVE filtering procedure with
the highly attributed features identified by other attribution methods: Shapley value, KernelSHAP,
and Integrated Gradients (IG), all of which follow the standard Shapley axioms (Shapley, 1953;
Lundberg & Lee, 2017b; Sundararajan et al., 2017). Although variance measures the instability of
contributions rather than their absolute magnitude, the highlighted regions captured by HIVE are
more object-centric and thus more informative for interpretation. This aligns with the common ob-
servation that deep models for image classification rely on groups of features to represent evidential
patterns. We also verify that this information can help reconstruct the model’s original decision. In
Figure 4 (b), we report the KL-divergence between the original logit output and the output obtained
by inserting the top 25%, 50%, and 75% of segments to a blank image across 100 random sam-
ples. Variance-based selection effectively approximates the model’s decision, achieving much lower
average KL-divergence at all three levels compared to the other baselines.

The histograms in Figure 4 (c) show the distribution of 2nd-order interactions for top and bottom
25% segments in terms of variance for each example in Figure 4 (a). The top 25% has much fatter
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tail, indicating that there are far more significant interaction terms compared to the bottom 25%.
In other words, if a coalition exhibits low variance in its interactions, it likely has no substantial
synergy with other features; if the variance is high, the coalition becomes a promising candidate for
further exploration.

2nd-ordersingle

+ 5.601+ 5.726+ 4.793

+ 7.167 + 6.131 + 7.648 + 4.491

+ 6.305 + 8.221 + 7.131

- 1.034+ 8.761 + 8.036 - 0.495

basketball

3rd-order 4th-order

electric guitar
(misclassified)

2nd-ordersingle

3rd-order 2nd-order (negative)

Figure 5: Examples of iterative search of critical high-order coalitions. In both the correctly clas-
sified (left) and misclassified (right) examples, critical higher-order coalitions generally include the
main object of the prediction (the ball and the player in the correct classification, the guitar in the
misclassification).

We apply the HIVE framework iteratively to identify higher-order synergistic coalitions, as shown in
Figure 5. Given a collection R of candidate sets of order k, we compute the variance for each R ∈ R
vis permutation sampling, and determine a high-variance group and a low-variance group. We then
construct the candidate family for order (k + 1) by expanding only the subsets in the high-variance
group, while excluding those in the low-variance group from further consideration.

In Figure 5, we present one correctly classified (left) and misclassified (right) examples of discov-
ered coalitions R with their expected marginal contributions ET [v(R ∪ T )− v(T )] annotated at the
corners of each image. Our method effectively identifies such high-order coalitions despite their
sparsity. In the misclassified example, the model predicts ‘electric guitar’ instead of the true la-
bel ‘library’. The detected higher-order coalitions are concentrated around the guitar, revealing the
model’s reliance on misleading evidence. Some coalitions also appear on the shirt, but their neg-
ative contributions indicate that these regions counteract the model decision instead. These results
demonstrate that variance-guided exploration can effectively uncover critical higher-order coalitions
and provide actionable insights into the model’s decision-making.

7 CONCLUSION

We revisited the Shapley value by making its underlying interaction effects explicit, showing that
it can be understood as decomposing the characteristic function into higher-order interaction terms
and distributing each term equally among the players. This perspective extends the conventional
interpretation of Shapley values as expected marginal contributions and clarifies how higher-order
interactions are implicitly aggregated within them. Because this aggregation operates through expec-
tation, it can suppress or distort meaningful higher-order interaction effects when those interactions
fluctuate strongly across contexts. It leads to a structural limitation that has remained largely implicit
in prior Shapley-based interpretations. Through theoretical case studies and empirical evaluations
on deep neural networks, we demonstrated that the variance of low-order interaction effects reliably
signals the presence of context-sensitive higher-order structure, providing a principled criterion for
determining when such interactions should be explored. Building on this insight, our High-Variance
Effect (HIVE) framework utilizes variance as a guidance signal to explore meaningful higher-order
coalitions while pruning uninformative ones. We expect that this interaction-based perspective will
advance the understanding of Shapley values and underscore the importance of explicitly analyzing
higher-order interactions to obtain faithful and informative explanations of complex models.
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APPENDIX

A PROOF

Notation. We summarize the notations used in this paper. For convenience, we follow the simplified
notations in Grabisch & Roubens (1999); Fujimoto et al. (2006). For singletons, we omit braces and
write v(i), T ∪ i, T \ i instead of v({i}), T ∪ {i}, T \ {i}. Similarly, for multiple elements, we
use ij, ijk instead of {i, j}, {i, j, k} when it is clear. The cardinalities of subsets S, T,R · · · are
typically denoted by the corresponding lowercase letters s, t, r, · · · . Moreover, [π]t is the subset of
players up to the t-th player in a random permutation π, where [π]0 := ∅ and [π]s := S. πR denotes
the set of players in π that precede all players in R.

Lemma 1. (k-th order interaction in ∆iv(S)) For a permutation π ∈ Π(S), for any t ∈ [0, s− k+
1],

∆iv(S) =

k−2∑
r=0

∑
R⊆S\[π]t
|R|=r

∆i∪Rv([π]t) +
∑

R⊆S\[π]t
|R|=k−1

∆i∪Rv(π
R). (14)

Proof. We prove the theorem by mathematical induction on k. For k = 2, the statement holds as
follows:

∆iv(S) = ∆iv([π]s)

= ∆iv([π]s−1) + {∆iv([π]s)−∆iv([π]s−1)}
= ∆iv([π]s−1) + ∆i∪πs

v([π]s−1)

= · · ·

= ∆iv([π]t) +

s∑
l=t

∆i∪πl
v([π]l−1)

= ∆iv([π]t) +
∑

j∈S\[π]t

∆i∪jv(π
j)

(15)

Assuming the statement holds for an integer k = a ≥ 2, we now show that it holds for k = a + 1.
For k = a, the second term becomes

∑
R⊆S\[π]t
|R|=a−1

∆i∪Rv(π
R) =

∑
R⊆S\[π]t
|R|=a−1

∆i∪Rv([π]t) +
∑

p∈πR\[π]t

∆i∪R∪pv(π
p)


=

∑
R⊆S\[π]t
|R|=a−1

∆i∪Rv([π]t) +
∑

R′⊆S\[π]t
|R′|=a

∆i∪R′v(πR′
) (R′ = R ∪ p)

(16)

Combining Equation (16) with the first term proves the statement for k = a+ 1.

∆iv(S) =

a−1∑
r=0

∑
R⊆S\[π]t
|R|=r

∆i∪Rv([π]t) +
∑

R⊆S\[π]t
|R|=a

∆i∪Rv(π
R). (17)

Theorem 1. (k-th order interaction representation of a set function) A set function v : 2N → R
can be expressed with k-th order interaction terms:

v(N) =

k−1∑
r=0

∑
R⊆N
|R|=r

∆Rv(∅) +
∑
R⊆N
|R|=k

∑
T⊆N\R

k

n

(
n− 1

t

)−1

∆Rv(T ) (18)
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Proof. For any permutation π ∈ Π(N), the following equation holds:

v(N) =

n−1∑
t=0

∆πt+1
v([π]t). (19)

Apply Lemma 1 to the expectation of these forms with random permutations. Then, v(N) is repre-
sented as the weighted sum of ∆Rv(∅) with |R| ∈ [1, k−1] and ∆Rv(T ) with |R| = k, T ⊆ N \R.

For |R| ∈ [1, k − 1], ∆Rv(∅) appears in all permutations. So the weight is 1.

For |R| = k, count the number of appearance of ∆Rv(T ).
1

n!
· t! · k · (n− t− 1)!

=
k

n

(
n− 1

t

)−1 (20)

Using Theorem 2 and the efficiency property of the Shapley value, the same result can be easily
obtained.

Theorem 2. (k-th order interaction representation) The Shapley value can be represented in terms
of k-th order interactions:

ϕi(v) =

k−2∑
r=0

1

r + 1

∑
R⊆N\i
|R|=r

∆i∪Rv(∅) +
n−k∑
t=0

1

n

(
n− 1

t

)−1 ∑
R⊆N\i
|R|=k−1

∑
T⊆N\(i∪R)

|T |=t

∆i∪Rv(T ). (21)

Proof. Note that the Shapley value is represented as follows:
1

n!

∑
π∈Π(N)

∆iv(π
i). (22)

Apply this representation for the second term in Lemma 1. Check the weight of ∆i∪Rv(T ) for a
given R, T , by counting the number of appearance in all permutations. p denotes the index of i in
the given permutation.

1

n!
· t! ·

n∑
p=k+t

(
p− t− 2

k − 2

)
· (k − 1)! · (n− k − t)!

=
t!

n!
·
(
n− t− 1

k − 1

)
· (k − 1)! · (n− k − t)!

=
1

n

(
n− 1

t

)−1

(23)

Theorem 3. (permutation sampling) The Shapley value with k-th order interaction can be estimated
through permutation sampling:

ϕi(v) =
∑

R⊆N\i
|R|∈[0,k−2]

1

r + 1
∆i∪Rv(∅) +

1

k − 1

n−k∑
t=0

Eπ∈Π(N)

[ ∑
R⊆N\[π]t+1

|R|=k−2

∆iπt+1∪Rv([π]t)
]

(24)

Proof. Check the coefficient of ∆i∪Rv(T ) by calculating the expectation part.
1

n!
· t! · (k − 1) · (n− t− 1)!

= (k − 1) · 1
n

(
n− 1

t

)−1 (25)

Then, the second term is the same as the second term in Theorem 2.
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Theorem 4. (dividends in k-th order interaction representation) The Harsanyi dividend of L ⊆ N
is embedded in the k-th order interaction representation of Shapley value as follows:

ϕi(v) =

k−2∑
r=0

1

r + 1

∑
R⊆N\i
|R|=r

αi∪R +
∑

R⊆N\i
|R|=k−1

∑
L⊆N

(i∪R)⊆L

1

k

(
l

l − k

)−1

αL. (26)

Proof. Let l′ := l− k. αL appears in ∆i∪Rv(T ) when T includes L \ (i∪R). Therefore, for given
R,L, count the number of permutations where L \ (i∪R) ⊆ πR in ∆iv(π

i) as done in the proof of
Theorem 2. t denotes the size of πR.

l′!

n!
·
n−k∑
t=l′

(
t

l′

) n∑
p=k+t

(
p− t− 2

k − 2

)
· (k − 1)! · (n− k − l′)!

l′!

n!
· (k − 1)! · (n− k − l′)! ·

n−k∑
t=l′

(
t

l′

)(
n− t− 1

k − 1

) (27)

Using Vandermonde’s identity, we obtain

l′!

n!
· (k − 1)! · (n− k − l′)! ·

(
n

l′ + k

)
=

1

k

(
l′ + k

l′

)−1

=
1

k

(
l

l − k

)−1

(28)

B OTHER RELATED WORK

Game-theoretical model interpretation. Modern model interpretation methods aim to explain
complex models by quantifying the contribution of each input feature to the model’s output (Ribeiro
et al., 2016; Lundberg & Lee, 2017b; Sundararajan et al., 2017). A variety of feature attribution tech-
niques have been proposed, including gradient-based and perturbation-based approaches (Binder
et al., 2016; Zhou et al., 2016; Smilkov et al., 2017; Selvaraju et al., 2017; Montavon et al., 2017;
Shrikumar et al., 2017; Nam et al., 2020; Kapishnikov et al., 2021). Although effective in practice,
these methods are largely heuristic and lack rigorous theoretical guarantees. In contrast, game-
theoretical techniques approach model prediction as a cooperative game, where features act as play-
ers contributing to the overall payoff (Rozemberczki et al., 2022). Among these methods, Shapley
value–based attributions are axiomatically grounded: they uniquely and fairly distribute the model
prediction among input features by satisfying four axioms—efficiency, symmetry, dummy, and ad-
ditivity (Sundararajan & Najmi, 2020).

Interactions. Feature interaction refers to the additional contribution that arises when a set of play-
ers act together beyond their individual effects (Grabisch & Roubens, 1999). This notion can be
formalized through the Harsanyi dividend, which decomposes any cooperative game into context-
free coalition contributions (Harsanyi, 1982; Fujimoto et al., 2006). Since each dividend represents
the pure interaction of a coalition, the Shapley value can be seen as the sum of all interaction terms
involving a given player (Grabisch & Roubens, 1999; Dehez, 2017). This insight is especially im-
portant for highly nonlinear models, where interactions can dominate the predictions and must be
explicitly treated to obtain faithful and robust explanations (Singhvi et al., 2024). However, because
the Shapley value provides only an additive allocation, it conflates main effects with interaction ef-
fects rather than disentangling them. Chang et al. (2025) partially address this gap by reformulating
the Shapley value as a weighted sum of 2nd-order interactions via permutation sampling.
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C INTERACTIONS IN CASE STUDY EXAMPLES

We describe the interaction values for the case study examples in Section 4. Tables 1 and 2 report the
detailed marginal contribution and interaction values of x5 in the max function and x1 in the attention
module example. The results show that the marginal contributions of x5 and x1 vary drastically
depending on T . In particular, the contribution decreases—and even becomes negative—when other
players are present. Similar variations are observed in higher-order interactions, where the signs of
2nd-, 3rd-, and 4th-order terms fluctuate substantially across coalitions. These results indicate that
variables participating with other strongly contributing features in the max function and attention
module can exhibit complex interaction structures, including frequent negative interactions. In such
cases, the expectation-based computation of Shapley values may obscure the positive contributions
of certain players in specific coalitions, highlighting the need to explicitly analyze higher-order
interactions to capture their detailed effects.

Table 1: Marginal contribution and interaction values ∆Rv(T ) for the max function example, fo-
cusing on player x5. Columns correspond to the context coalitions T and rows to R.

R\T ∅ {2} {3} {4} {2, 3} {3, 4} {2, 4} {2, 3, 4}
{5} 10.0 3.0 2.0 1.0 2.0 1.0 1.0 1.0
{5, 2} -7.0 - 0.0 0.0 - 0.0 - -
{5, 3} -8.0 -1.0 - 0.0 - - 0.0 -
{5, 4} -9.0 -2.0 -1.0 - -1.0 - - -
{5, 2, 3} 7.0 - - 0.0 - - - -
{5, 2, 4} 7.0 - 0.0 - - - - -
{5, 3, 4} 8.0 1.0 - - - - - -
{5, 2, 3, 4} -7.0 - - - - - - -

Table 2: Marginal contribution and interaction values ∆Rv(T ) for the attention module example,
focusing on player x1. Columns correspond to the context coalitions T and rows to R.

R\T ∅ {2} {3} {4} {2, 3} {3, 4} {2, 4} {2, 3, 4}
{1} 1.4261 0.5474 0.1080 -0.0018 -0.0697 -0.4128 -0.1383 -0.3761
{1, 2} -0.8787 - -0.1778 -0.1365 - 0.0366 - -
{1, 3} -1.3181 -0.6171 - -0.4110 - - -0.2378 -
{1, 4} -1.4279 -0.6857 -0.5208 - -0.3064 - - -
{1, 2, 3} 0.7009 - - 0.1732 - - - -
{1, 2, 4} 0.7422 - 0.2144 - - - - -
{1, 3, 4} 0.9071 0.3793 - - - - - -
{1, 2, 3, 4} -0.5278 - - - - - - -
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D JUSTIFICATION OF THE VARIANCE-BASED EXPANSION STRATEGY

2nd-order coalition 3rd-order coalition

race car

High-Variance Patches

bow tie

banjo

Figure 6: Comparison between supersets derived from high-variance vs. low-variance feature
groups. High-variance supersets consistently yield stronger and more context-dependent interaction
terms, validating variance as an effective criterion for guiding higher-order coalition exploration.

To justify the use of variance as a criterion for guiding the exploration of higher-order coalitions, we
conduct a quantitative analysis using a VGG-based ImageNet classifier with 15 SLIC segments per
image. For each first-order feature, we sample ∆iv(T ) across sampled permutations and compute
its variance. As shown in Figure D, high-variance features spatially align with the regions most
responsible for the model’s prediction, indicating that variance captures semantically meaningful
and influential feature behavior.

We then evaluate whether high-variance features indeed serve as better building blocks for con-
structing higher-order coalitions. Specifically, we construct two groups: high-variance (top 30%)
and low-variance (bottom 30%). From these groups, we construct two families of supersets at inter-
action order 2: (1) Low-V supersets, which include at least one low-variance feature but exclude all
high-variance features; (2) High-V supersets, which include at least one high-variance feature but
exclude all low-variance features. The same grouping procedure is applied to second-order feature
coalitions to construct candidate third-order coalitions.

For each coalition R in these families, we measure the interaction magnitude ET [|∆Rv(T )|], the
variance VarT [|∆Rv(T )|], and the expected marginal contribution (ET [v(R ∪ T ) − v(T )]). The
expected marginal contribution indicates how strongly the coalition impacts the network’s inference.

In Figure D, our results show a clear pattern. Low-V supersets consistently exhibit small interac-
tion magnitude and low interaction variance, indicating that they do not meaningfully participate in
higher-order effects. Consequently, extending such coalitions provides little benefit and would only
increase computational overhead. This demonstrates that variance serves as an effective pruning
criterion, substantially reducing the number of evaluations for higher-order interactions.

Their low expected marginal contributions further confirm that these coalitions have minimal direct
influence on the model’s inference. Consequently, extending such coalitions provides little benefit
and would only increase computational overhead. This demonstrates that variance serves as an
effective pruning mechanism, substantially reducing the number of higher-order coalitions that must
be explored.
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Conversely, High-V supersets display substantially larger interaction magnitudes, higher interaction
variance, and notably larger marginal contributions. These characteristics indicate the presence
of non-negligible and context-dependent higher-order structure. Such supersets are precisely the
coalitions whose interactions cannot be reliably summarized via expectations and therefore should
be prioritized for higher-order evaluation. Moreover, the large marginal contributions imply that
these coalitions directly influence the model’s decision-making process, validating that our variance-
guided expansion strategy not only avoids unnecessary exploration but also directs computation
toward the most inference-critical feature combinations.

Marginal 
Contribution Variance SII BII STI FaithShap

+ 3.845 0.916 + 0.034 + 0.177 - 0.105 + 0.103
+ 1.216 0.113 + 0.015 - 0.006 - 0.019 + 0.012

race car

High-V
Low-V

2nd-order coalition 3rd-order coalition
Marginal 

Contribution Variance SII BII STI FaithShap

+ 4.975 0.216 + 0.082 + 0.016 + 0.176 + 0.035
+ 1.454 0.041 + 0.004 + 0.004 + 0.013 + 0.004

Marginal 
Contribution Variance SII BII STI FaithShap

+ 7.934 2.161 - 0.349 - 0.267 - 0.415 - 0.305
+ 0.768 0.536 - 0.057 - 0.010 - 0.122 - 0.028

Marginal 
Contribution Variance SII BII STI FaithShap

+ 9.394 0.625 + 0.065 - 0.009 + 0.174 + 0.010
+ 2.951 0.231 + 0.043 + 0.002 + 0.104 + 0.008

Marginal 
Contribution Variance SII BII STI FaithShap

+ 7.583 2.562 - 0.217 + 0.260 - 0.326 + 0.010
+ 1.045 0.400 - 0.001 + 0.124 - 0.110 + 0.068

Marginal 
Contribution Variance SII BII STI FaithShap

+ 8.537 1.189 + 0.179 - 0.032 + 0.593 + 0.029
+ 4.252 0.246 + 0.084 + 0.014 + 0.216 + 0.026

banjo

High-V
Low-V

bow tie

High-V
Low-V

Figure 7: Comparison with existing interaction indices. Expectation-based interaction indices (SII,
BII, STI, Faith-Shap) fail to distinguish the two superset families, whereas variance reliably sepa-
rates them by capturing context-sensitive higher-order effects that expectation-based measures over-
look.

To demonstrate that variance provides information beyond existing interaction indices, we compare
several widely used Cardinal Interaction Indices: the Shapley Interaction Index (SII), the Banzhaf
Interaction Index (BII) (Grabisch & Roubens, 1999), the Shapley–Taylor Interaction Index (STI)
(Sundararajan et al., 2020), and Faith-Shap (Tsai et al., 2023). All of these methods evaluate in-
teractions through an expectation (or weighted summation) over discrete derivatives, and therefore
belong to the Cardinal Interaction Index (CII) class.

Our aim is to assess whether these indices can distinguish two families of supersets: those derived
from high-variance coalitions versus those from low-variance coalitions. Figure 7 reports the aver-
age values for each family. All existing indices produce similarly small values for both groups and
therefore fail to separate them, even though the two families differ markedly in their true marginal
contributions and interaction variance.

This limitation stems from the fact that expectation-based indices inherit the sign-cancellation prob-
lem of discrete derivatives in deep neural networks. When positive and negative interactions oscillate
across contexts, their aggregated value collapses toward zero. In contrast, variance does not suf-
fer from this cancellation and provides diagnostic information that reveals which coalitions exhibit
meaningful, context-sensitive higher-order interactions. As a result, variance serves as a far more
reliable criterion for guiding higher-order coalition expansion than existing interaction indices.
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E INTERACTION ANALYSIS IN LANGUAGE MODELS

positive review

‘BEST’

‘not’

Δ!𝑣 𝑇
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mean

2nd-order interaction𝑖

2nd-order: {‘not’, ‘di’}{‘not’, ‘##oint’} {‘this’, ‘not’} {‘does’, ‘not’} {‘not’, ‘##sa’} {‘not’, ‘##pp’}

3rd-order:

token coalitions including ‘not’

{‘not’, ‘di’, ‘##oint’} {‘this’, ‘not’, ‘##oint’} {‘does’, ‘not’, ‘##oint’}{‘does’, ‘not’, ‘di’}

4th-order:
{‘does’, ‘not’, ‘di’, ‘##oint’} {‘not’, ‘di’, ’##pp’, ‘##oint’} {‘this’, ‘does’, ‘not’, ‘##oint’}

+ 0.565 + 0.582 + 0.498

negative review
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‘imperfect’
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2nd-order: {‘starts’, ‘imperfect’} {‘imperfect’, ‘##ions’} {‘although’, ‘imperfect’} {‘suffers’, ‘imperfect’}

3rd-order:

token coalitions including ‘imperfect’

{‘although’, ‘starts’, ‘imperfect’} {‘suffers’, ‘imperfect’, ‘##ions’}{‘starts’, ‘imperfect’, ‘suffers’}

4th-order:
{‘although’, ‘starts’, ‘suffers’, ‘imperfect’} {‘although’, ‘suffers’, ‘imperfect’, ‘##ions’}

+ 2.687 + 2.131

𝑖

Figure 8: Interaction analysis on language model. For each case, a token with high variance of
marginal contributions is shown to actively interact with other tokens. By examining higher-order
coalitions involving this token, we identify meaningful token coalitions that play a decisive role in
the model’s prediction.

We conduct additional experiments in natural language processing to examine interaction effects
in language inference tasks. Specifically, we use a BERT-based sentiment classifier (Devlin et al.,
2019) trained on the IMDB dataset (Maas et al., 2011), which predicts whether a given movie review
is positive or negative. We analyze two representative samples—one positive and one negative
review—by sampling marginal contributions for individual tokens and computing their mean and
variance.

In the positive example, the tokens ‘not’ and ‘BEST’ have similar expected contributions but very
different variances. ‘BEST’ consistently supports the positive prediction by increasing the logit
output regardless of the presence of other tokens. On the other hand, the token ‘not’ by itself
indicates negativity; however, we observe that tokens in ‘this movie does not disappoint’ have a
large magnitude of interaction values with ‘not’. Following the approach in Section 6, we investigate
higher-order coalition structures by focusing on low-order coalitions with high variance. The token
‘not’ frequently forms coalitions with ‘disappoint’, and these coalitions yield substantially larger
marginal contributions than the expected contribution of the single token ‘not’.

In the negative case, tokens without semantic meaning, such as ‘br’, ‘/’, and ‘<’, generally have
the lowest variance of contributions, which implies that they do not interact with any other tokens
to construct sentence context. However, the token ‘imperfect’ has a smaller expected contribution
than ‘br’ and much higher variance. This token commonly interacts with ‘suffer’, forming a coali-
tion that conveys the reviewer’s dissatisfaction. Such coalitions have significantly larger marginal
contributions, thereby driving the negative classification.
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F INTERACTION ESTIMATION ACCURACY

2nd-order 4th-order3rd-order 5th-order

estimation error

# samples# samples # samples # samples

Figure 9: Interaction Estimation Accuracy: Set-based vs. Permutation-based Estimation.

We compare the estimation accuracy of the set-based estimator (Theorem 2) and the permutation-
based estimator (Theorem 3) using a VGG network trained on ImageNet. Each image is partitioned
into 15 segments using SLIC. To compute ground-truth interaction values, we evaluate the exact
interaction terms for selected feature subsets and measure the absolute error between these ground-
truth values and their corresponding estimates. Since most interactions are near zero due to sparsity,
we first identify non-negligible interactions using our variance-based filtering and compute estima-
tion errors only on these informative subsets that are constructed from features with high-variance
effects.

Figure 9 reports the estimation error across the number of sampled sets/permutations, evaluated
over five examples. Each subplot corresponds to a different interaction order. The y-axis shows
the sum of estimation errors over 30 randomly selected subsets (log-scale). The results indicate
that the set-based estimator is substantially more sensitive to the particular sampled context sets,
leading to slower and less stable convergence. In contrast, the permutation-based estimator con-
verges more smoothly and consistently to the ground-truth interaction values. Beyond stability, it
also achieves significantly lower estimation errors for the same number of evaluations, demonstrat-
ing that permutation-based sampling provides a more efficient and reliable strategy for estimating
higher-order interaction terms.
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