

ANALYSIS OF HIGH-ORDER INTERACTIONS IN SHAPLEY VALUE FOR MODEL INTERPRETATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The Shapley value is a fundamental game-theoretic framework for allocating a
 012 utility function’s output among participating players, and is commonly interpreted
 013 as the expected marginal contribution under random coalitions. However, when
 014 applied to complex functions such as deep neural networks, this expected marginal
 015 contribution implicitly aggregates higher-order interaction effects, which can ob-
 016 scure the true contribution of features. In this study, we derive a generalized
 017 decomposition of the Shapley value that expresses it as a sum of interaction terms
 018 of arbitrary order, making explicit how higher-order interactions are incorporated
 019 within marginal contributions. We also provide an unbiased estimator for our
 020 representation via permutation sampling, enabling practical computation. We fur-
 021 ther show that when interaction effects vary substantially across contexts, these
 022 embedded higher-order terms can lead to misleading attributions for model in-
 023 terpretation. Our theoretical analysis and empirical evaluations demonstrate that
 024 variance in lower-order interactions reliably signals the presence of hidden higher-
 025 order structure, providing a principled criterion for when such interactions should
 026 be explored. This interaction-based perspective clarifies when the Shapley value
 027 becomes unreliable and offers new guidance for interpreting model behavior.

1 INTRODUCTION

030 The Shapley value is a fundamental solution concept in cooperative game theory that fairly allocates
 031 the total utility of a game among players (Shapley, 1953). Owing to its strong theoretical foundation,
 032 it has also become the basis of many feature attribution methods in machine learning, where the
 033 model output is treated as the utility of a cooperative game and contributions are distributed among
 034 input features. This game-theoretic perspective has established the Shapley value as one of the
 035 most influential tools in explainable AI (XAI) (Lundberg & Lee, 2017a; Sundararajan et al., 2017;
 036 Ghorbani & Zou, 2020; Lundberg et al., 2020; Wang et al., 2021; Rozemberczki et al., 2022).

037 The standard Shapley value is interpreted as the expected *marginal contribution* of each player
 038 under random coalitions. Yet each marginal contribution is inherently shaped by *interaction effects*
 039 between the target player and other coalitions (VanderWeele, 2015; Egami & Imai, 2019; Grabisch
 040 & Roubens, 1999; Chang et al., 2025). Consequently, simple expectation often fails in complex
 041 functions such as Deep Neural Networks (DNNs), where high-order interactions are pervasive and
 042 ignoring these interactions can cause the algorithm to overlook critical cooperative structures and
 043 even yield misleading interpretations.

044 In this work, we formalize this perspective by proving that the Shapley value can be expressed
 045 as a decomposition of the characteristic function into interaction terms of arbitrary order, where
 046 each term is evenly distributed among the players involved. This representation reveals the inter-
 047 internal structure of Shapley’s expectation-based formulation: lower-order effects implicitly subsume all
 048 higher-order interactions, explaining why context-sensitive effects may be obscured in standard at-
 049 tributions. Our theoretical results generalize the classical dividend decomposition (Harsanyi, 1982;
 050 Dehez, 2017) and make explicit how higher-order dividends are embedded within the Shapley value.
 051 We further show that permutation-based sampling yields an unbiased estimator of the k -th order rep-
 052 resentation of the Shapley value, enabling practical computation (Castro et al., 2009).

053 Within this k -th order representation, our analysis clarifies when the Shapley value becomes unreli-
 able: when interaction terms fluctuate substantially across coalitions, their expectation can mask in-

054 dispensable higher-order structure and yield near-zero attributions for meaningful features. Through
 055 theoretical case studies and empirical evaluations on DNNs, we show that large variance in low-
 056 order interactions reliably signals such hidden higher-order structure. This motivates a variance-
 057 based strategy for prioritizing coalitions in higher-order exploration, which is particularly valuable
 058 in high-dimensional deep learning settings where interaction patterns are sparse and exhaustive eval-
 059 uation is infeasible.

060 In summary, our work revisits the Shapley value by making its embedded interaction structure ex-
 061 plicit and by identifying when its expectation-based formulation fails to capture true feature impor-
 062 tance. Our decomposition reveals how higher-order interactions are implicitly aggregated within
 063 marginal contributions, providing a principled explanation for these failures. To extend these in-
 064 sights, we introduce the High-Variance Effect (HIVE) framework, which uses variance as a criterion
 065 for guiding higher-order exploration while pruning uninformative coalitions. This variance-guided
 066 strategy yields a scalable approach for uncovering meaningful higher-order interactions and offers
 067 new directions for interpreting how modern deep neural networks organize interaction structure.

069 2 SHAPLEY VALUE

070 **Notation.** For convenience, we follow the simplified notations in Grabisch & Roubens (1999);
 071 Fujimoto et al. (2006). For singletons, we omit braces and write $v(i), T \cup i, T \setminus i$ instead of
 072 $v(\{i\}), T \cup \{i\}, T \setminus \{i\}$. Similarly, for multiple elements, we use ij, ijk instead of $\{i, j\}, \{i, j, k\}$
 073 when it is clear. The cardinalities of subsets $S, T, R \dots$ are typically denoted by the corresponding
 074 lowercase letters s, t, r, \dots .

075 **Shapley value.** In cooperative game theory, a *cooperative game* consists of a set of players
 076 $N = \{1, \dots, n\}$ and a characteristic function $v : 2^N \rightarrow \mathbb{R}$ (also called utility function) that maps
 077 each coalition $S \subseteq N$ to the utility $v(S)$. The player i 's *marginal contribution* (also called *effect*)
 078 measures the added value when player i joins an existing coalition S , $\Delta_i v(S) := v(S \cup i) - v(S)$.
 079 It can be extended to the group marginal contribution, $v(S \cup R) - v(S)$.

080 The *Shapley value* is one of the solution concepts to fairly allocate the utility to individual players
 081 with specific axioms in a cooperative game. The solution assigns to each player a payoff equal to
 082 the expectation of $\Delta v_i(S)$ over all coalitions $S \subseteq N \setminus i$ (Shapley, 1953; Monderer & Samet, 2002):

$$083 \phi_i(v) = \sum_{S \subseteq N \setminus i} \frac{1}{n} \binom{n-1}{s}^{-1} [v(S \cup \{i\}) - v(S)]. \quad (1)$$

084 The Shapley value can also be represented as the expectation over all permutations of players, which
 085 provides a more efficient approximation in practice (Castro et al., 2009). Let $\Pi(N)$ be the set of all
 086 permutations of N . For $\pi \in \Pi(N)$, the set π^i denotes the set of players that precede i in π . Then,
 087 the Shapley value is the same as follows:

$$088 \phi_i(v) = \frac{1}{n!} \sum_{\pi \in \Pi(N)} [v(\pi^i \cup i) - v(\pi^i)]. \quad (2)$$

089 **Harsanyi dividend.** In a different perspective, instead of marginal contributions, the Shapley value
 090 can be decomposed into *dividends* of all possible coalitions (Harsanyi, 1982; Dehez, 2017). The
 091 dividend $\alpha_R(N, v)$ is defined as follows:

$$092 \alpha_R(N, v) = \sum_{T \subseteq R} (-1)^{r-t} v(T). \quad (3)$$

093 It measures the pure effect of coalition R that cannot be explained by its subcoalitions. $\alpha_R(N, v)$ is
 094 often simplified as α_R when the context of N, v is clear. This definition provides unique represen-
 095 tations of the characteristic function and the Shapley value in the following forms:

$$096 \alpha_R(N, v) = \sum_{R \subseteq S} \alpha_R, \quad \phi_i(v) = \sum_{R \subseteq N, i \in R} \frac{1}{r} \alpha_R. \quad (4)$$

108

3 INTERACTION IN SHAPLEY VALUE

109

110 The classical formulation of the Shapley value attributes payoffs to players by averaging their in-
111 dividual effects across coalitions. However, in modern applications, particularly when applied to
112 complex functions like DNNs, it becomes crucial to understand the interactions among players
113 (i.e., model features) beyond the individual level. Recent studies have found that such interactions
114 sparsely capture meaningful semantic concepts (Deng et al., 2021; Li & Zhang, 2023; Ren et al.,
115 2023; Zhou et al., 2024; Kang et al., 2025), which suggests that analyzing interactions provides a
116 more faithful explanation of complex models than focusing solely on individual features. In this sec-
117 tion, we (a) demonstrate how higher-order *interaction effects* are implicitly embedded in lower-order
118 interactions, (b) show efficient estimation of interactions via permutation sampling, and (c) provide
119 an interpretation of the Shapley value with explicit reformulation with respect to arbitrary-order
120 interaction terms.

121

3.1 INTERACTION EFFECTS

122

123 In the two-player case, the interaction effect between i and j with a given player set $T \subseteq N \setminus ij$
124 indicates the discrepancy in the effect of one variable when the other is present.

125
$$\begin{aligned} \Delta_{ij}v(T) &= \Delta_j[\Delta_i v(T)] = \Delta_i v(T \cup j) - \Delta_i v(T) \\ &= v(T \cup ij) - v(T \cup i) - v(T \cup j) + v(T). \end{aligned} \tag{5}$$
126

127 A positive interaction indicates synergistic effects from cooperation, while a negative value implies
128 redundancy or conflicts between players (Fujimoto et al., 2006; Fumagalli et al., 2024; Chang et al.,
129 2025). The definition can be extended to any subset by recursively computing the discrepancy.

130 **Definition 1** (interaction). The interaction of coalition $R \subseteq N$ for a given coalition T is:

131
$$\begin{aligned} \Delta_R v(T) &= \Delta_i[\Delta_{R \setminus i} v(T)], \quad \forall i \in R \\ &= \sum_{S \subseteq R} (-1)^{r-s} v(S \cup T). \end{aligned} \tag{6}$$
132

133 In particular, we call the k -th order interaction for the case $|R| = k$. This term follows the causal
134 interaction in causality literature that evaluates the interaction effects among variables by interven-
135 tion on target variables (VanderWeele, 2015; Egami & Imai, 2019; Janzing et al., 2020), i.e., the
136 additional effect of the coalition beyond the sum of all lower-order interactions. With convention
137 $\Delta_\emptyset v(T) := v(T)$, it satisfies the following equation:

138
$$\Delta_R v(T) = v(R \cup T) - \sum_{S \subset R} \Delta_S v(T). \tag{7}$$
139

140 Note that the term ‘interaction’ in this study indicates *causal interaction* to understand implicit in-
141 teraction effects behind the Shapley value, not *interaction index* in game theory literature, which
142 provides a generalized allocation framework for a subset of players. This interaction equation
143 also follows the structure of *discrete derivative*, which computes the function change by inclusion-
144 exclusion (Fujimoto et al., 2006). The Harsanyi dividend in Equation (3) is the special case of
145 interaction when $T = \emptyset$ (Dehez, 2017). That is, $\alpha_R = \Delta_R v(\emptyset)$.

146

3.2 INTERACTION DECOMPOSITION

147

148 In this section, we introduce a new formulation of the Shapley value using k -th order interaction
149 terms. We first explain how higher order interactions are implicitly embedded in the marginal con-
150 tribution. Consider the marginal contribution $\Delta_i v(S)$ and a random permutation $\pi \in \Pi(S)$. Let $[\pi]_t$
151 be the subset of players up to the t -th player in the ordering π , where $[\pi]_0 := \emptyset$ and $[\pi]_s := S$. π^R
152 denotes the set of players in π that precede all players in R . By definition, $\Delta_i v(S) - \Delta_i v(\emptyset)$ can
153 be decomposed into a consecutive summation of 2nd-order interactions according to the permuta-
154 tion. Each 2nd-order interaction can be decomposed into a summation of 3rd order interactions. By
155 recursively applying this decomposition for all permutations, we obtain the following lemma.

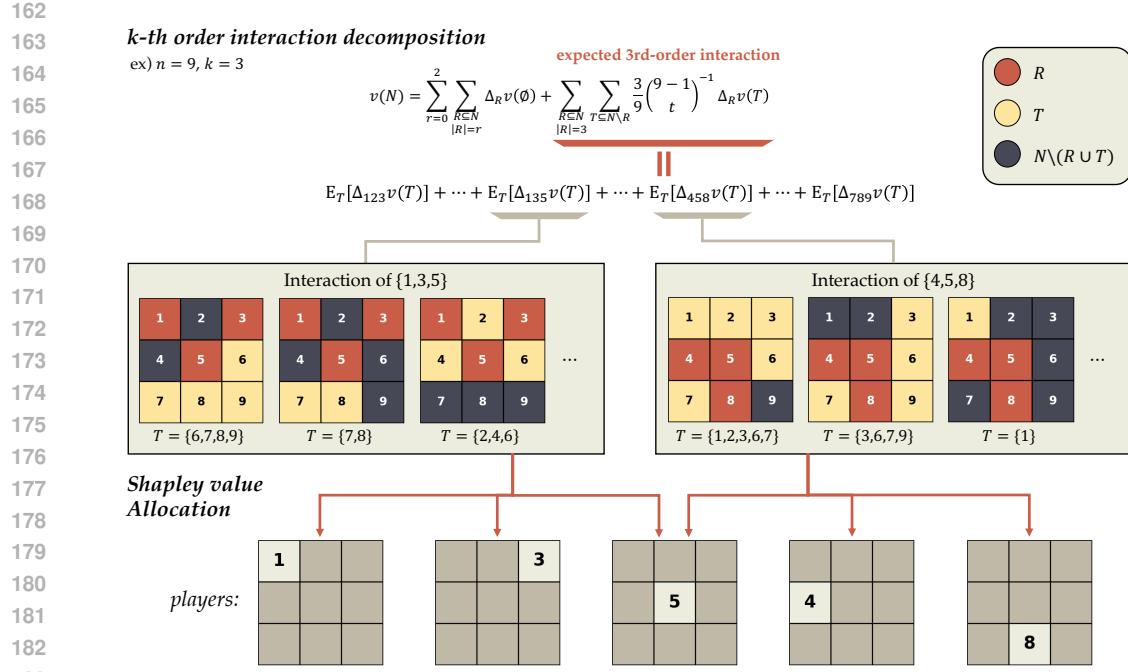


Figure 1: An illustration of k -th order Interaction Decomposition in Shapley value for $k = 3$. For a given coalition R and context T , each interaction term involving R is divided evenly among the constituents of R .

Lemma 1 (k -th order interaction in $\Delta_i v(S)$). *For a permutation $\pi \in \Pi(S)$, for any $t \in [0, s-k+1]$,*

$$\Delta_i v(S) = \sum_{r=0}^{k-2} \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=r}} \Delta_{i \cup R} v([\pi]_t) + \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=k-1}} \Delta_{i \cup R} v(\pi^R). \quad (8)$$

Proof. See Appendix.

Lemma 1 shows that a marginal contribution $\Delta_i v(S)$ can be expressed as a consecutive sum of interaction terms between i and subsets of S . Since both the characteristic function v and the Shapley value $\phi_i(v)$ are defined in terms of marginal contributions, they too admit representations in terms of interactions. By substituting each marginal contribution with its k -th order interaction expansion from Lemma 1, we obtain k -th order interaction decompositions of the set function v and the Shapley value.

Theorem 1 (k -th order interaction representation of a set function). *Given a set function $v : 2^N \rightarrow \mathbb{R}$ and a subset $S \subseteq N$, $v(S)$ can be expressed with k -th order interaction terms:*

$$v(S) = \sum_{r=0}^{k-1} \sum_{\substack{R \subseteq S \\ |R|=r}} \Delta_R v(\emptyset) + \sum_{\substack{R \subseteq S \\ |R|=k}} \sum_{T \subseteq S \setminus R} \frac{k}{s} \binom{s-1}{t}^{-1} \Delta_R v(T) \quad (9)$$

Theorem 2 (k -th order decomposition of Shapley value). *The Shapley value can be represented in k -th order interactions:*

$$\phi_i(v) = \sum_{r=0}^{k-2} \frac{1}{r+1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=r}} \Delta_{i \cup R} v(\emptyset) + \sum_{t=0}^{n-k} \frac{1}{n} \binom{n-1}{t}^{-1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=k-1}} \sum_{\substack{T \subseteq N \setminus (i \cup R) \\ |T|=t}} \Delta_{i \cup R} v(T). \quad (10)$$

Proof. See Appendix.

Theorem 2 explicitly shows how higher-order interaction terms contribute to the Shapley value. An interesting observation can be made for $S = N$ in Theorem 1. Here, the weight of $\Delta_R v(T)$ equals the product of the interaction weight from Theorem 2 and the number of players involved. This equivalence shows that computing the Shapley value is equivalent to decomposing the characteristic function into interactions up to an arbitrary order and evenly distributing each interaction term among the participating players. In other words, the Shapley value can be viewed as a fair allocation of decomposed interaction effects. This interpretation is illustrated in Figure 1.

3.3 INTERACTION ESTIMATION VIA PERMUTATION SAMPLING

To efficiently estimate higher-order interaction terms in Theorem 2, we introduce an unbiased estimator based on permutation sampling, following the approach of Castro et al. (2009). Let π_t denote the t -th player in a permutation π , and $[\pi]_t$ the subset of players up to position the t -th player. We define $\Delta_{i\pi_{t+1}} v([\pi]_t) = 0$ whenever $i \in [\pi]_{t+1}$ so that the term is well-defined for any player i and permutation π . This leads to a simplified estimator that applies uniformly across sampled interactions. Formally, for any $k \in [2, n]$, the following unbiased estimation holds:

Theorem 3 (estimation via permutation sampling). *The Shapley value with k -th order interactions can be estimated through permutation sampling:*

$$\phi_i(v) = \sum_{\substack{R \subseteq N \setminus i \\ |R| \in [0, k-2]}} \frac{1}{r+1} \Delta_{i \cup R} v(\emptyset) + \frac{1}{k-1} \sum_{t=0}^{n-k} \mathbb{E}_{\pi \in \Pi(N)} \left[\sum_{\substack{R \subseteq N \setminus [\pi]_{t+1} \\ |R|=k-2}} \Delta_{i \pi_{t+1} \cup R} v([\pi]_t) \right] \quad (11)$$

Proof. See Appendix. □

This permutation-based approach enables efficient estimation of interaction terms in practice. Unlike set-based sampling, which may produce sparse or imbalanced coverage, permutation sampling assigns equal weight to each interaction and achieves better sample efficiency. Our formulation generalizes the 2nd-order interaction estimation result introduced in Corollary 1 of Chang et al. (2025). We provide an empirical analysis of our permutation-based estimation on Appendix F.

3.4 INTERPRETATION AND LIMITATIONS OF INTERACTIONS IN SHAPLEY VALUE

Summarization of higher-order interactions. The special case when $k = n$ in Theorem 1 and 2 recovers the classical dividend-based representation of the Shapley value in Equation (4). Our results therefore generalize this interpretation by decomposing the Shapley value up to a desired order. The second term in Theorem 2 is the expected k -th order interaction involving the player i . These expectation terms implicitly encode higher-order Harsanyi dividends. For any coalition R , the interaction effects satisfy the classical identity (Grabisch & Roubens, 1999; Fujimoto et al., 2006)

$$\Delta_R v(T) = \sum_{S \subseteq T} \alpha_{R \cup S}. \quad (12)$$

Thus, the expected interaction in Theorem 2 becomes a weighted summarization of all higher-order dividends over supersets of $i \cup R$.

Theorem 4 (dividends in k -th order interaction representation). *The Harsanyi dividend of $L \subseteq N$ is embedded in the k -th order interaction representation of Shapley value as follows:*

$$\phi_i(v) = \sum_{r=0}^{k-2} \frac{1}{r+1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=r}} \alpha_{i \cup R} + \sum_{\substack{R \subseteq N \setminus i \\ |R|=k-1}} \sum_{\substack{L \subseteq N \\ (i \cup R) \subseteq L}} \frac{1}{k} \binom{l}{l-k}^{-1} \alpha_L. \quad (13)$$

Proof. See Appendix. □

It reveals how Shapley's marginal contribution implicitly summarizes higher-order dividends. Averaging $\Delta_R v(T)$ at order k provides a practical alternative to computing the full Harsanyi expansion,

270 which becomes infeasible at scale, while still reflecting the combined influence of higher-order interaction
 271 structure. The original Shapley value corresponds to evaluating this summarization at $k = 1$,
 272 thereby subsuming all higher-order effects into the expectation of first-order marginal contributions.
 273

274 **Problems with expectation-based evaluation.** The limitation of this summarization is that it may
 275 suppress or distort critical interactions. When $\Delta_i v(T)$ does not heavily rely on the context T , the
 276 expectation is a reliable measure of the feature attribution since there is no substantial interaction
 277 effect between i and features in T . However, when $\Delta_i v(T)$ is highly context-sensitive, which is
 278 common in complex non-additive or non-convex architectures like DNNs, the expectation collapses
 279 heterogeneous interaction effects into a single aggregate value. This can obscure the true role of the
 280 feature and lead to misleading attributions.

281 This issue becomes especially problematic in the presence of negative or redundant interactions (Ku-
 282 mar et al., 2021; Chang et al., 2025). Even in non-convex models, a relevant feature may appear
 283 irrelevant because positive contributions can be canceled out by negative interactions induced by
 284 redundancy. This cancellation can occur not only at the second order but also at higher orders: a
 285 positive pairwise interaction can flip sign when additional features participate due to higher-order
 286 negative interactions. Thus, when $\Delta_R v(T)$ varies substantially across contexts, the expectation
 287 $\mathbb{E}_T[\Delta_R v(T)]$ becomes an unreliable summary of the coalition's true influence. In such scenar-
 288 ios, exploring higher-order structure is essential. Rather than relying solely on expectation-based
 289 summarization, one must examine how the interaction behaves across different contexts and how
 290 different supersets activate distinctive Harsanyi dividends.

291 3.5 RELATION TO PRIOR WORK

292 A substantial line of work extends the Shapley value to quantify feature interactions, beginning
 293 with the Shapley Interaction Index (SII) (Grabisch & Roubens, 1999). Because SII does not sat-
 294 isfy efficiency, later methods such as STI (Sundararajan et al., 2020) and Faith-Shap (Tsai et al.,
 295 2023) incorporate this axiom, and n-Shapley (Bordt & von Luxburg, 2023) further unifies these for-
 296 mulations. All these indices reduce to the Shapley value at singleton levels and recover Harsanyi
 297 dividends at full cardinality, but differ in how they allocate higher-order effects.

298 Our work takes a different perspective. Rather than defining a new interaction index, we analyze
 299 how Shapley's expectation over marginal contributions is influenced by the intrinsic higher-order
 300 structure of non-additive and non-convex models. By decomposing each marginal contribution into
 301 a consecutive sum of interaction effects (Lemma 1), our formulation satisfies efficiency and reveals
 302 how Shapley-based explanations implicitly accumulate higher-order dividends. In this process, our
 303 max-order interaction term also naturally accumulates all higher-order dividends since we iteratively
 304 decompose marginal contributions from low order to high order. Thus, the second term in Theorem 2
 305 corresponds to the aggregation of STI uniformly allocated to each feature in $i \cup R$.

306 Despite these connections, our work highlights that expectation-based evaluations can suppress crit-
 307 ical interactions when discrete derivatives change sign across contexts, which is a phenomenon also
 308 noted by Shapley residuals (Kumar et al., 2021) and negative interactions in non-convex models
 309 (Chang et al., 2025). These sign cancellations can yield misleadingly small or even zero attribu-
 310 tions, not because of the choice of interaction index, but due to the intrinsic structure of marginal
 311 contributions themselves.

312 Our formulation makes this issue explicit by showing exactly how higher-order discrete derivatives
 313 are embedded within the marginal contributions. Section 4 illustrates this through simple operator
 314 examples, and Section 5 demonstrates that the same phenomenon appears in deep neural networks.
 315 These observations motivate the need for principled guidance to identify higher-order coalitions
 316 exhibiting context-sensitive, non-negligible interactions. This need is particularly pronounced in
 317 modern deep models, where meaningful higher-order interactions are extremely sparse. Recent
 318 works such as SPEX and ProxySPEX (Kang et al., 2025; Butler et al., 2025) further support this
 319 view by showing that impactful interactions in large language models often arise along only a small
 320 number of coalitional pathways.

321 Finally, although computing high-order discrete derivatives remains expensive, our formulation lies
 322 within the Cardinal Interaction Index (CII) class, making it compatible with efficient estimators
 323 such as SHAP-IQ and SVARM-IQ (Fumagalli et al., 2023; Muschalik et al., 2024; Kolpaczki et al.,

2024). Combining our guided-exploration strategy with these estimators offers a promising path toward scalable higher-order interaction analysis.

4 CASE STUDY

As discussed in Section 3.4, interaction effects are implicitly embedded in the marginal contribution by expectation when computing the Shapley value. This expectation structure may lead to unexpected allocation in complex functions where indispensable high-order interactions exist. We demonstrate this concept with two example functions that are frequently used in DNNs: max functions and attention.

Max function. The max function selects the largest value among its inputs and is widely used in various DNNs, e.g., max pooling.

$$v(x_1, \dots, x_5) = 4x_1 + \max(7x_2, 8x_3, 9x_4, 10x_5)$$

We set each variable x_i as binary (0 or 1) to represent the participation of player i . We then examine the necessity of analyzing k -th order interactions $\Delta_R v(T)$, with a particular focus on x_1 and x_5 . We can easily find that the marginal contribution of x_1 ($\Delta_1 v(T)$) is always 4 regardless of the coalition T . Thus, the Shapley value of x_1 (4) adequately summarizes its contribution. However, the marginal contribution of x_5 significantly differs depending on the coalition it joins. For instance, the marginal contribution of x_5 becomes 10, 3 and 1 when T is \emptyset , $\{1\}$ and $\{1, 3, 4\}$, respectively. Due to such large variations, the expectation reflected in x_5 's Shapley value (3.58) does not well capture x_5 's coalition-specific effects, highlighting the need to account for higher-order interactions.

Attention module. The attention module is a widely used component in modern DNNs (Vaswani et al., 2017; Dosovitskiy et al., 2020; Ho et al., 2020). For this example, we simplify its computation structure. Specifically, we define

$$\mathbf{z} = [3x_1, 5x_2, 9x_3, 10x_4]^T$$

$$v(x_1, \dots, x_5) = \text{softmax}(x_1, x_2, x_3, x_4)^T \mathbf{z}$$

where $\text{softmax}(x_1, x_2, x_3, x_4)_i = e^{x_i} / \sum_{j=1}^4 e^{x_j}$ indicates the attention weight of player i , and \mathbf{z} represents the corresponding value vectors (Vaswani et al., 2017). Similar to x_5 in the max function example, x_1 exhibits substantially different effects depending on the presence of x_2 , x_3 , and x_4 . For instance, x_1 contributes 1.43 in isolation ($T = \emptyset$), but makes negative contributions (-0.41 and -0.38) when $T = \{3, 4\}$ and $T = \{2, 3, 4\}$. Furthermore, 2nd and higher-order interactions fluctuate across coalitions, e.g., $\Delta_{12} v(\emptyset) = -0.88$, $\Delta_{12} v(3, 4) = -0.04$, and $\Delta_{123} v(4) = 0.2$. The presence of other strongly contributing features (x_2 , x_3 and x_4) in the attention module can induce complex high-order interactions, where negative interactions reduce the positive contributions of x_1 when it joins certain coalitions. For more detailed interaction values, please refer to Appendix C.

5 INTERACTION ANALYSIS

Experimental Setup. We conduct interaction analyses by performing experiments across practical real datasets with DNNs. We use VGG (Yan et al., 2015) and ViT (Dosovitskiy et al., 2020) models for image classification on ImageNet (Deng et al., 2009) and COCO (Lin et al., 2014) datasets. All images are divided into 64 equal-sized segments, which are used as features for Shapley interaction calculations. We perform additional experiments for natural language processing using BERT (Devlin et al., 2019) for sentiment classification on IMDB (Maas et al., 2011) dataset and report the results in the appendix.

5.1 INTERACTION ANALYSIS OF DEEP NEURAL NETWORKS

In this section, we demonstrate the identification of important higher-order interactions and their interpretation. Figure 2 presents two sample cases from the ViT model. We select two coalitions R_1 and R_2 with $|R| = 4$ from each input image. The coalition R_1 corresponds to regions relevant to the model's prediction, while R_2 corresponds to relatively less relevant regions. For each coalition, we sample 4th-order interaction effects from 50 random permutations, and compare the true marginal effect $v(R \cup T) - v(T)$ with the expectation and variance of sampled interactions $\Delta_R v(T)$.

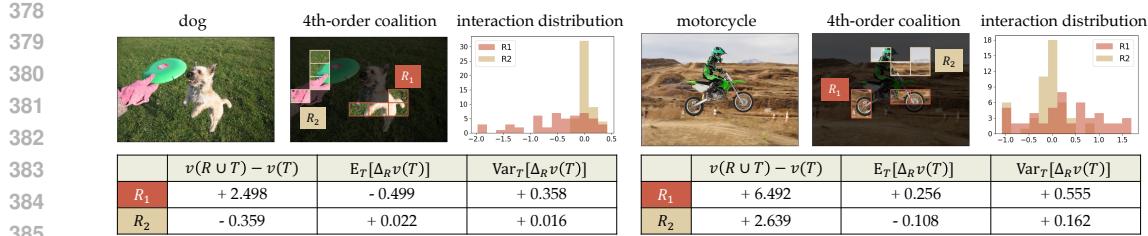


Figure 2: The distribution of interaction effects. Marginal change caused by removing $(v(R \cup T) - v(T))$ can vary significantly from the expected marginal effect $\mathbb{E}_T[\Delta_R v(T)]$ if the variance of interactions $\text{Var}_T[\Delta_R v(T)]$ is large.

In both examples, R_1 exhibits a larger marginal effect than R_2 , which is consistent with its stronger relevance to the model's prediction. However, the expected interaction of R_1 is often similar to, or even smaller than, that of R_2 , even taking negative values. This phenomenon may be attributed to the redundancy effects among features (Fujimoto et al., 2006; Chang et al., 2025). Moreover, R_1 shows consistently higher variance of interactions compared to R_2 . As discussed in Section 3.2, $\Delta_R v(T)$, the marginal effect of coalition R , subsumes higher-order interactions between R and subsets of T . When the interactions vary substantially across T , it indicates the presence of critical higher-order interactions that influences model prediction. This discrepancy highlights the importance of accounting for higher-order interactions to obtain a more complete picture of model behavior, since expected effects may ignore critical synergistic coalitions.

5.2 VARIANCE AS INDICATOR OF HIGHER-ORDER INTERACTIONS

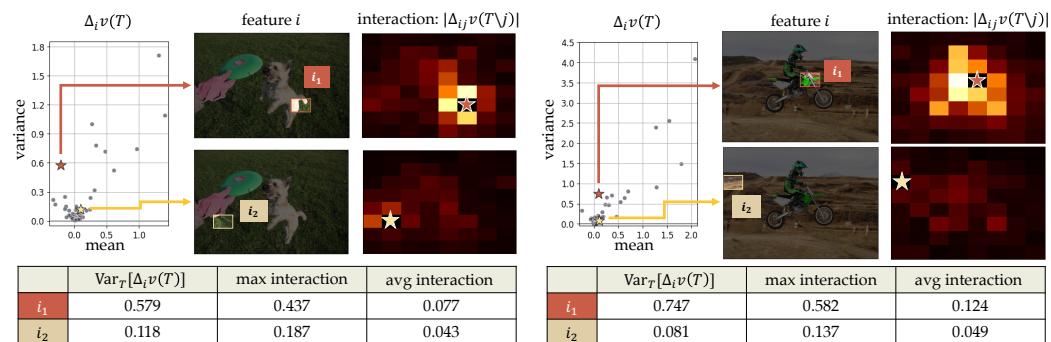


Figure 3: The relationship between marginal effect variance and interaction. Higher variance (i_1) is associated with greater interaction magnitude, and lower variance (i_2) with lower interactions.

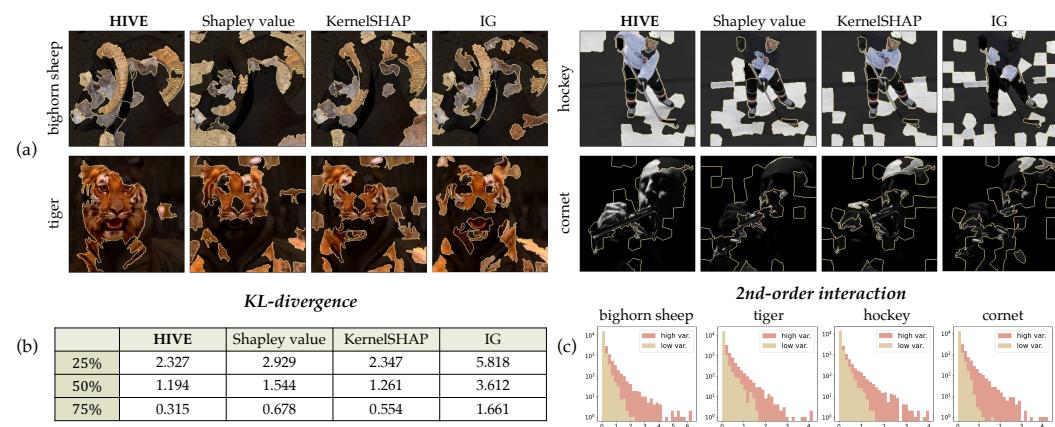
Searching for significant higher-order interactions in high-dimensional inputs is computationally prohibitive due to the combinatorial number of possible coalitions. This intractability motivates the need for a guideline for identifying coalitions worth investigating. We find empirically that the variance of sampled contributions acts as a simple yet effective criterion. Low variance suggests that a feature does not exhibit unique interactions with other coalitions and thus does not require higher-order analysis, whereas large variance indicates the presence of critical interactions.

In Figure 3, we demonstrate this insight using examples from the ViT model. We plot the variance and expectation of $\Delta_i v(T)$ for all $i \in N$. We then select features according to their variance and examine their pairwise interactions with the other features (averaged over permutations). The results show that i_1 (high variance) exhibits substantially stronger interactions—both in terms of maximum and average values—than i_2 (low variance). These findings suggest that features with large variance of sampled contributions are promising candidates for targeted higher-order interaction analysis. Consistent with this interpretation, i_1 in each image corresponds to one of the main components of the object driving the model’s decision (dog and motorcycle).

432 6 APPLICATIONS

434 Our analyses in Section 5 show that the variance of (interaction) effects provides a reliable structural
 435 signal of higher-order interactions. Motivated by this observation, we introduce the **High-Variance**
 436 **Effect (HIVE)** framework, a principled strategy for discovering meaningful higher-order interaction
 437 coalitions while avoiding unnecessary exploration. The HIVE framework begins by applying
 438 variance-based filtering to individual features to identify those whose effects fluctuate strongly
 439 across contexts. As shown in our analysis, such high-variance features are closely tied to the model’s
 440 decision and form natural anchors for exploring higher-order interactions. Building on this, we it-
 441 eratively extend the same variance-based criterion to larger coalitions: at each step, we compute
 442 the variance of (interaction) effects for candidate subsets, partition them into high-variance and
 443 low-variance groups, and expand only the supersets derived from the high-variance group. This
 444 procedure progressively focuses the search on coalitions that are most likely to carry substantial
 445 higher-order contributions, while pruning low-variance candidates that are unlikely to exhibit mean-
 446 ingful interactions.

447 In this section, we present two sets of applications. First, we evaluate whether the features identified
 448 by HIVE align with the image regions that are truly relevant to the model’s decision. Second, we ap-
 449 ply the HIVE framework iteratively to uncover higher-order synergistic coalitions. For image-based
 450 tasks, we use SLIC superpixels (Achanta et al., 2012) as feature segments. Additional quantitative
 451 analyses supporting our variance-based exploration are provided in Appendix D. Experiments on
 452 language models follow the similar procedure and are reported in Appendix E.



468 Figure 4: Regions with high variance of marginal contributions. (a) Generally, regions with higher
 469 variances are associated with segments including the main object of the class, providing a more com-
 470 plete understanding of important segments. (b) Inserting back top $K\%$ of segments in terms of in-
 471 teraction term variance causes the greatest decrease in KL-divergence from the original predictions.
 472 (c) Higher variance features have fatter-tailed distributions, i.e., many more critical interactions.

473 In Figure 4 (a), we compare the individual features selected by the HIVE filtering procedure with
 474 the highly attributed features identified by other attribution methods: Shapley value, KernelSHAP,
 475 and Integrated Gradients (IG), all of which follow the standard Shapley axioms (Shapley, 1953;
 476 Lundberg & Lee, 2017b; Sundararajan et al., 2017). Although variance measures the instability of
 477 contributions rather than their absolute magnitude, the highlighted regions captured by HIVE are
 478 more object-centric and thus more informative for interpretation. This aligns with the common ob-
 479 servation that deep models for image classification rely on groups of features to represent evidential
 480 patterns. We also verify that this information can help reconstruct the model’s original decision. In
 481 Figure 4 (b), we report the KL-divergence between the original logit output and the output obtained
 482 by inserting the top 25%, 50%, and 75% of segments to a blank image across 100 random sam-
 483 ples. Variance-based selection effectively approximates the model’s decision, achieving much lower
 484 average KL-divergence at all three levels compared to the other baselines.

485 The histograms in Figure 4 (c) show the distribution of 2nd-order interactions for top and bottom
 25% segments in terms of variance for each example in Figure 4 (a). The top 25% has much fatter

tail, indicating that there are far more significant interaction terms compared to the bottom 25%. In other words, if a coalition exhibits low variance in its interactions, it likely has no substantial synergy with other features; if the variance is high, the coalition becomes a promising candidate for further exploration.

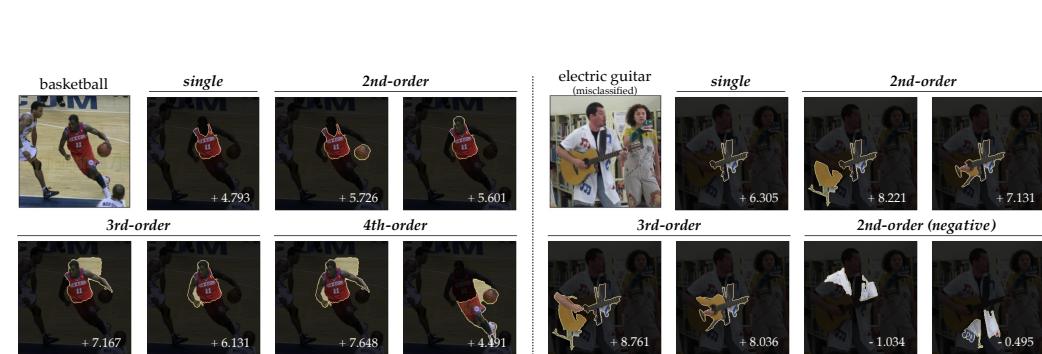


Figure 5: Examples of iterative search of critical high-order coalitions. In both the correctly classified (left) and misclassified (right) examples, critical higher-order coalitions generally include the main object of the prediction (the ball and the player in the correct classification, the guitar in the misclassification).

We apply the HIVE framework iteratively to identify higher-order synergistic coalitions, as shown in Figure 5. Given a collection \mathcal{R} of candidate sets of order k , we compute the variance for each $R \in \mathcal{R}$ via permutation sampling, and determine a high-variance group and a low-variance group. We then construct the candidate family for order $(k + 1)$ by expanding only the subsets in the high-variance group, while excluding those in the low-variance group from further consideration.

In Figure 5, we present one correctly classified (left) and misclassified (right) examples of discovered coalitions R with their expected marginal contributions $\mathbb{E}_T[v(R \cup T) - v(T)]$ annotated at the corners of each image. Our method effectively identifies such high-order coalitions despite their sparsity. In the misclassified example, the model predicts ‘electric guitar’ instead of the true label ‘library’. The detected higher-order coalitions are concentrated around the guitar, revealing the model’s reliance on misleading evidence. Some coalitions also appear on the shirt, but their negative contributions indicate that these regions counteract the model decision instead. These results demonstrate that variance-guided exploration can effectively uncover critical higher-order coalitions and provide actionable insights into the model’s decision-making.

7 CONCLUSION

We revisited the Shapley value by making its underlying interaction effects explicit, showing that it can be understood as decomposing the characteristic function into higher-order interaction terms and distributing each term equally among the players. This perspective extends the conventional interpretation of Shapley values as expected marginal contributions and clarifies how higher-order interactions are implicitly aggregated within them. Because this aggregation operates through expectation, it can suppress or distort meaningful higher-order interaction effects when those interactions fluctuate strongly across contexts. It leads to a structural limitation that has remained largely implicit in prior Shapley-based interpretations. Through theoretical case studies and empirical evaluations on deep neural networks, we demonstrated that the variance of low-order interaction effects reliably signals the presence of context-sensitive higher-order structure, providing a principled criterion for determining when such interactions should be explored. Building on this insight, our High-Variance Effect (HIVE) framework utilizes variance as a guidance signal to explore meaningful higher-order coalitions while pruning uninformative ones. We expect that this interaction-based perspective will advance the understanding of Shapley values and underscore the importance of explicitly analyzing higher-order interactions to obtain faithful and informative explanations of complex models.

540 REFERENCES
541

542 Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
543 Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. *IEEE transactions
544 on pattern analysis and machine intelligence*, 34(11):2274–2282, 2012.

545 Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
546 Samek. Layer-wise relevance propagation for neural networks with local renormalization layers.
547 In *International conference on artificial neural networks*, pp. 63–71. Springer, 2016.

548 Sebastian Bordt and Ulrike von Luxburg. From shapley values to generalized additive models and
549 back. In *International Conference on Artificial Intelligence and Statistics*, pp. 709–745. PMLR,
550 2023.

551 Landon Butler, Abhineet Agarwal, Justin Singh Kang, Yigit Efe Erginbas, Bin Yu, and Kannan
552 Ramchandran. Proxyspec: Inference-efficient interpretability via sparse feature interactions in
553 llms. *arXiv preprint arXiv:2505.17495*, 2025.

554 Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley value based
555 on sampling. *Computers & operations research*, 36(5):1726–1730, 2009.

556 Wonjoon Chang, Myeongjin Lee, and Jaesik Choi. Rethinking shapley value for negative interac-
557 tions in non-convex games. In *The Thirteenth International Conference on Learning Representa-
558 tions*, 2025.

559 Pierre Dehez. On harsanyi dividends and asymmetric values. *International Game Theory Review*,
560 19(03):1750012, 2017.

561 Huiqi Deng, Qihan Ren, Hao Zhang, and Quanshi Zhang. Discovering and explaining the represen-
562 tation bottleneck of dnns. *arXiv preprint arXiv:2111.06236*, 2021.

563 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
564 Image Database. In *CVPR09*, 2009.

565 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
566 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
567 the North American chapter of the association for computational linguistics: human language
568 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

569 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
570 Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth
571 16x16 words: Transformers for image recognition at scale. In *International Conference on Learn-
572 ing Representations*, 2020.

573 Naoki Egami and Kosuke Imai. Causal interaction in factorial experiments: Application to conjoint
574 analysis. *Journal of the American Statistical Association*, 2019.

575 Katsuhige Fujimoto, Ivan Kojadinovic, and Jean-Luc Marichal. Axiomatic characterizations of
576 probabilistic and cardinal-probabilistic interaction indices. *Games and Economic Behavior*, 55
577 (1):72–99, 2006.

578 Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara Ham-
579 mer. Shap-iq: Unified approximation of any-order shapley interactions. *Advances in Neural
580 Information Processing Systems*, 36:11515–11551, 2023.

581 Fabian Fumagalli, Maximilian Muschalik, Patrick Kolpaczki, Eyke Hüllermeier, and Barbara Ham-
582 mer. Kernelshap-iq: Weighted least square optimization for shapley interactions. In *International
583 Conference on Machine Learning*, pp. 14308–14342. PMLR, 2024.

584 Amirata Ghorbani and James Y Zou. Neuron shapley: Discovering the responsible neurons. *Ad-
585 vances in neural information processing systems*, 33:5922–5932, 2020.

586 Michel Grabisch and Marc Roubens. An axiomatic approach to the concept of interaction among
587 players in cooperative games. *International Journal of game theory*, 28(4):547–565, 1999.

594 John C Harsanyi. A simplified bargaining model for the n-person cooperative game. In *Papers in*
 595 *game theory*, pp. 44–70. Springer, 1982.

596

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 598 *neural information processing systems*, 33:6840–6851, 2020.

599 Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. Feature relevance quantification in ex-
 600 plainable ai: A causal problem. In *International Conference on artificial intelligence and statis-*
 601 *tics*, pp. 2907–2916. PMLR, 2020.

602

603 Justin Singh Kang, Landon Butler, Abhineet Agarwal, Yigit Efe Erginbas, Ramtin Pedarsani, Bin
 604 Yu, and Kannan Ramchandran. SPEX: Scaling feature interaction explanations for LLMs.
 605 In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=pR1KbAwczl>.

606

607 Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, and Tolga
 608 Bolukbasi. Guided integrated gradients: An adaptive path method for removing noise. In *Proceed-*
 609 *ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5050–5058,
 610 2021.

611 Patrick Kolpaczki, Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, and Eyke
 612 Hüllermeier. Svarm-iq: Efficient approximation of any-order shapley interactions through strati-
 613 *fication*. In *AISTATS*, 2024.

614

615 Indra Kumar, Carlos Scheidegger, Suresh Venkatasubramanian, and Sorelle Friedler. Shapley resid-
 616 *uals: Quantifying the limits of the shapley value for explanations*. *Advances in Neural Information*
 617 *Processing Systems*, 34:26598–26608, 2021.

618 Mingjie Li and Quanshi Zhang. Does a neural network really encode symbolic concepts? In
 619 *International conference on machine learning*, pp. 20452–20469. PMLR, 2023.

620

621 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 622 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 623 *Conference on Computer Vision*, pp. 740–755. Springer, 2014.

624

625 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
 626 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
 627 (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 628 2017a. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf.

629

630 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 631 *in neural information processing systems*, 30, 2017b.

632

633 Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit
 634 Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global
 635 understanding with explainable ai for trees. *Nature machine intelligence*, 2(1):56–67, 2020.

636

637 Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 638 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting*
 639 *of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–150,
 Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL <http://www.aclweb.org/anthology/P11-1015>.

640

641 Dov Monderer and Dov Samet. Variations on the shapley value. *Handbook of game theory with*
 642 *economic applications*, 3:2055–2076, 2002.

643

644 Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
 645 Müller. Explaining nonlinear classification decisions with deep taylor decomposition. *Pattern*
 646 *recognition*, 65:211–222, 2017.

647

Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara Hammer,
 and Eyke Hüllermeier. shapiq: Shapley interactions for machine learning. *Advances in Neural*
 648 *Information Processing Systems*, 37:130324–130357, 2024.

648 Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, and Seong-Whan Lee. Relative attributing
 649 propagation: Interpreting the comparative contributions of individual units in deep neural net-
 650 works. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 2501–
 651 2508, 2020.

652 Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quanshi Zhang. Defining and quantifying the
 653 emergence of sparse concepts in dnns. In *Proceedings of the IEEE/CVF conference on computer*
 654 *vision and pattern recognition*, pp. 20280–20289, 2023.

655 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
 656 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 657 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

658 Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nils-
 659 son, and Rik Sarkar. The shapley value in machine learning. In *The 31st International Joint*
 660 *Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence*,
 661 pp. 5572–5579. International Joint Conferences on Artificial Intelligence Organization, 2022.

662 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 663 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 664 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 665 2017.

666 Lloyd S Shapley. A value for n-person games. *Contribution to the Theory of Games*, 2, 1953.

667 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
 668 propagating activation differences. In *International conference on machine learning*, pp. 3145–
 669 3153. PMLR, 2017.

670 Divyansh Singhvi, Andrej Erkelens, Raghav Jain, Diganta Misra, and Naomi Saphra. Knowing
 671 your nonlinearities: Shapley interactions reveal the underlying structure of data. *arXiv e-prints*,
 672 pp. arXiv–2403, 2024.

673 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
 674 removing noise by adding noise. *arXiv preprint arXiv:1706.03825*, 2017.

675 Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In *Inter-
 676 national conference on machine learning*, pp. 9269–9278. PMLR, 2020.

677 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 678 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

679 Mukund Sundararajan, Kedar Dhamdhere, and Ashish Agarwal. The shapley taylor interaction
 680 index. In *International conference on machine learning*, pp. 9259–9268. PMLR, 2020.

681 Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Faith-shap: The faithful shapley interac-
 682 tion index. *Journal of Machine Learning Research*, 24(94):1–42, 2023.

683 Tyler VanderWeele. *Explanation in causal inference: methods for mediation and interaction*. Oxford
 684 University Press, 2015.

685 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 686 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 687 tion processing systems*, 30, 2017.

688 Jiaxuan Wang, Jenna Wiens, and Scott Lundberg. Shapley flow: A graph-based approach to inter-
 689 pretting model predictions. In *International Conference on Artificial Intelligence and Statistics*,
 690 pp. 721–729. PMLR, 2021.

691 Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
 692 and Yizhou Yu. Hd-cnn: hierarchical deep convolutional neural networks for large scale visual
 693 recognition. In *Proceedings of the IEEE international conference on computer vision*, pp. 2740–
 694 2748, 2015.

702 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
703 features for discriminative localization. In *Proceedings of the IEEE conference on computer*
704 *vision and pattern recognition*, pp. 2921–2929, 2016.

705
706 Huilin Zhou, Hao Zhang, Huiqi Deng, Dongrui Liu, Wen Shen, Shih-Han Chan, and Quanshi Zhang.
707 Explaining generalization power of a dnn using interactive concepts. In *Proceedings of the AAAI*
708 *Conference on Artificial Intelligence*, volume 38, pp. 17105–17113, 2024.

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

A PROOF

Notation. We summarize the notations used in this paper. For convenience, we follow the simplified notations in Grabisch & Roubens (1999); Fujimoto et al. (2006). For singletons, we omit braces and write $v(i), T \cup i, T \setminus i$ instead of $v(\{i\}), T \cup \{i\}, T \setminus \{i\}$. Similarly, for multiple elements, we use ij, ijk instead of $\{i, j\}, \{i, j, k\}$ when it is clear. The cardinalities of subsets $S, T, R \dots$ are typically denoted by the corresponding lowercase letters s, t, r, \dots . Moreover, $[\pi]_t$ is the subset of players up to the t -th player in a random permutation π , where $[\pi]_0 := \emptyset$ and $[\pi]_s := S$. π^R denotes the set of players in π that precede all players in R .

Lemma 1. (*k -th order interaction in $\Delta_i v(S)$*) For a permutation $\pi \in \Pi(S)$, for any $t \in [0, s - k + 1]$,

$$\Delta_i v(S) = \sum_{r=0}^{k-2} \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=r}} \Delta_{i \cup R} v([\pi]_t) + \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=k-1}} \Delta_{i \cup R} v(\pi^R). \quad (14)$$

Proof. We prove the theorem by mathematical induction on k . For $k = 2$, the statement holds as follows:

$$\begin{aligned} \Delta_i v(S) &= \Delta_i v([\pi]_s) \\ &= \Delta_i v([\pi]_{s-1}) + \{\Delta_i v([\pi]_s) - \Delta_i v([\pi]_{s-1})\} \\ &= \Delta_i v([\pi]_{s-1}) + \Delta_{i \cup \pi_s} v([\pi]_{s-1}) \\ &= \dots \\ &= \Delta_i v([\pi]_t) + \sum_{l=t}^s \Delta_{i \cup \pi_l} v([\pi]_{l-1}) \\ &= \Delta_i v([\pi]_t) + \sum_{j \in S \setminus [\pi]_t} \Delta_{i \cup j} v(\pi^j) \end{aligned} \quad (15)$$

Assuming the statement holds for an integer $k = a \geq 2$, we now show that it holds for $k = a + 1$. For $k = a$, the second term becomes

$$\begin{aligned} \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=a-1}} \Delta_{i \cup R} v(\pi^R) &= \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=a-1}} \left[\Delta_{i \cup R} v([\pi]_t) + \sum_{p \in \pi^R \setminus [\pi]_t} \Delta_{i \cup R \cup p} v(\pi^p) \right] \\ &= \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=a-1}} \Delta_{i \cup R} v([\pi]_t) + \sum_{\substack{R' \subseteq S \setminus [\pi]_t \\ |R'|=a}} \Delta_{i \cup R'} v(\pi^{R'}) \quad (R' = R \cup p) \end{aligned} \quad (16)$$

Combining Equation (16) with the first term proves the statement for $k = a + 1$.

$$\Delta_i v(S) = \sum_{r=0}^{a-1} \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=r}} \Delta_{i \cup R} v([\pi]_t) + \sum_{\substack{R \subseteq S \setminus [\pi]_t \\ |R|=a}} \Delta_{i \cup R} v(\pi^R). \quad (17)$$

□

Theorem 1. (*k -th order interaction representation of a set function*) A set function $v : 2^N \rightarrow \mathbb{R}$ can be expressed with k -th order interaction terms:

$$v(N) = \sum_{r=0}^{k-1} \sum_{\substack{R \subseteq N \\ |R|=r}} \Delta_R v(\emptyset) + \sum_{\substack{R \subseteq N \\ |R|=k}} \sum_{\substack{T \subseteq N \setminus R \\ |T|=r}} \frac{k}{n} \binom{n-1}{t}^{-1} \Delta_R v(T) \quad (18)$$

810 *Proof.* For any permutation $\pi \in \Pi(N)$, the following equation holds:
 811

$$812 \quad v(N) = \sum_{t=0}^{n-1} \Delta_{\pi_{t+1}} v([\pi]_t). \quad (19)$$

813
 814 Apply Lemma 1 to the expectation of these forms with random permutations. Then, $v(N)$ is repre-
 815 sented as the weighted sum of $\Delta_R v(\emptyset)$ with $|R| \in [1, k-1]$ and $\Delta_R v(T)$ with $|R| = k, T \subseteq N \setminus R$.
 816

817 For $|R| \in [1, k-1]$, $\Delta_R v(\emptyset)$ appears in all permutations. So the weight is 1.
 818

819 For $|R| = k$, count the number of appearance of $\Delta_R v(T)$.
 820

$$821 \quad \frac{1}{n!} \cdot t! \cdot k \cdot (n-t-1)! \\ 822 \quad = \frac{k}{n} \binom{n-1}{t}^{-1} \quad (20)$$

823
 824 Using Theorem 2 and the efficiency property of the Shapley value, the same result can be easily
 825 obtained.
 826

□

827
 828 **Theorem 2.** (*k-th order interaction representation*) *The Shapley value can be represented in terms*
 829 *of k-th order interactions:*
 830

$$831 \quad \phi_i(v) = \sum_{r=0}^{k-2} \frac{1}{r+1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=r}} \Delta_{i \cup R} v(\emptyset) + \sum_{t=0}^{n-k} \frac{1}{n} \binom{n-1}{t}^{-1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=k-1}} \sum_{\substack{T \subseteq N \setminus (i \cup R) \\ |T|=t}} \Delta_{i \cup R} v(T). \quad (21)$$

834
 835 *Proof.* Note that the Shapley value is represented as follows:
 836

$$837 \quad \frac{1}{n!} \sum_{\pi \in \Pi(N)} \Delta_i v(\pi^i). \quad (22)$$

838
 839 Apply this representation for the second term in Lemma 1. Check the weight of $\Delta_{i \cup R} v(T)$ for a
 840 given R, T , by counting the number of appearance in all permutations. p denotes the index of i in
 841 the given permutation.
 842

$$843 \quad \frac{1}{n!} \cdot t! \cdot \sum_{p=k+t}^n \binom{p-t-2}{k-2} \cdot (k-1)! \cdot (n-k-t)! \\ 844 \\ 845 \quad = \frac{t!}{n!} \cdot \binom{n-t-1}{k-1} \cdot (k-1)! \cdot (n-k-t)! \\ 846 \\ 847 \quad = \frac{1}{n} \binom{n-1}{t}^{-1} \quad (23)$$

□

850
 851 **Theorem 3.** (*permutation sampling*) *The Shapley value with k-th order interaction can be estimated*
 852 *through permutation sampling:*
 853

$$854 \quad \phi_i(v) = \sum_{\substack{R \subseteq N \setminus i \\ |R| \in [0, k-2]}} \frac{1}{r+1} \Delta_{i \cup R} v(\emptyset) + \frac{1}{k-1} \sum_{t=0}^{n-k} \mathbb{E}_{\pi \in \Pi(N)} \left[\sum_{\substack{R \subseteq N \setminus [\pi]_{t+1} \\ |R|=k-2}} \Delta_{i \pi_{t+1} \cup R} v([\pi]_t) \right] \quad (24)$$

855
 856
 857
 858 *Proof.* Check the coefficient of $\Delta_{i \cup R} v(T)$ by calculating the expectation part.
 859

$$860 \quad \frac{1}{n!} \cdot t! \cdot (k-1) \cdot (n-t-1)! \\ 861 \\ 862 \quad = (k-1) \cdot \frac{1}{n} \binom{n-1}{t}^{-1} \quad (25)$$

863 Then, the second term is the same as the second term in Theorem 2.
 864

□

864 **Theorem 4.** (dividends in k -th order interaction representation) The Harsanyi dividend of $L \subseteq N$
 865 is embedded in the k -th order interaction representation of Shapley value as follows:
 866

$$867 \quad \phi_i(v) = \sum_{r=0}^{k-2} \frac{1}{r+1} \sum_{\substack{R \subseteq N \setminus i \\ |R|=r}} \alpha_{i \cup R} + \sum_{\substack{R \subseteq N \setminus i \\ |R|=k-1}} \sum_{\substack{L \subseteq N \\ (i \cup R) \subseteq L}} \frac{1}{k} \binom{l}{l-k}^{-1} \alpha_L. \quad (26)$$

$$868$$

$$869$$

$$870$$

871 *Proof.* Let $l' := l - k$. α_L appears in $\Delta_{i \cup R} v(T)$ when T includes $L \setminus (i \cup R)$. Therefore, for given
 872 R, L , count the number of permutations where $L \setminus (i \cup R) \subseteq \pi^R$ in $\Delta_i v(\pi^i)$ as done in the proof of
 873 Theorem 2. t denotes the size of π^R .

$$874 \quad \frac{l'!}{n!} \cdot \sum_{t=l'}^{n-k} \binom{t}{l'} \sum_{p=k+t}^n \binom{p-t-2}{k-2} \cdot (k-1)! \cdot (n-k-l')! \\ 875 \quad \frac{l'!}{n!} \cdot (k-1)! \cdot (n-k-l')! \cdot \sum_{t=l'}^{n-k} \binom{t}{l'} \binom{n-t-1}{k-1} \quad (27)$$

$$876$$

$$877$$

$$878$$

$$879$$

$$880$$

881 Using Vandermonde's identity, we obtain

$$882 \quad \frac{l'!}{n!} \cdot (k-1)! \cdot (n-k-l')! \cdot \binom{n}{l'+k} \\ 883 \quad = \frac{1}{k} \binom{l'+k}{l'}^{-1} \quad (28)$$

$$884$$

$$885$$

$$886$$

$$887$$

$$888$$

$$889$$

□

892 B OTHER RELATED WORK

893 **Game-theoretical model interpretation.** Modern model interpretation methods aim to explain
 894 complex models by quantifying the contribution of each input feature to the model's output (Ribeiro
 895 et al., 2016; Lundberg & Lee, 2017b; Sundararajan et al., 2017). A variety of feature attribution tech-
 896 niques have been proposed, including gradient-based and perturbation-based approaches (Binder
 897 et al., 2016; Zhou et al., 2016; Smilkov et al., 2017; Selvaraju et al., 2017; Montavon et al., 2017;
 898 Shrikumar et al., 2017; Nam et al., 2020; Kapishnikov et al., 2021). Although effective in practice,
 899 these methods are largely heuristic and lack rigorous theoretical guarantees. In contrast, game-
 900 theoretical techniques approach model prediction as a cooperative game, where features act as play-
 901 ers contributing to the overall payoff (Rozemberczki et al., 2022). Among these methods, Shapley
 902 value-based attributions are axiomatically grounded: they uniquely and fairly distribute the model
 903 prediction among input features by satisfying four axioms—efficiency, symmetry, dummy, and ad-
 904 ditivity (Sundararajan & Najmi, 2020).

905 **Interactions.** Feature interaction refers to the additional contribution that arises when a set of play-
 906 ers act together beyond their individual effects (Grabisch & Roubens, 1999). This notion can be
 907 formalized through the Harsanyi dividend, which decomposes any cooperative game into context-
 908 free coalition contributions (Harsanyi, 1982; Fujimoto et al., 2006). Since each dividend represents
 909 the pure interaction of a coalition, the Shapley value can be seen as the sum of all interaction terms
 910 involving a given player (Grabisch & Roubens, 1999; Dehez, 2017). This insight is especially im-
 911 portant for highly nonlinear models, where interactions can dominate the predictions and must be
 912 explicitly treated to obtain faithful and robust explanations (Singhvi et al., 2024). However, because
 913 the Shapley value provides only an additive allocation, it conflates main effects with interaction ef-
 914 fects rather than disentangling them. Chang et al. (2025) partially address this gap by reformulating
 915 the Shapley value as a weighted sum of 2nd-order interactions via permutation sampling.

916

917

918 C INTERACTIONS IN CASE STUDY EXAMPLES
919

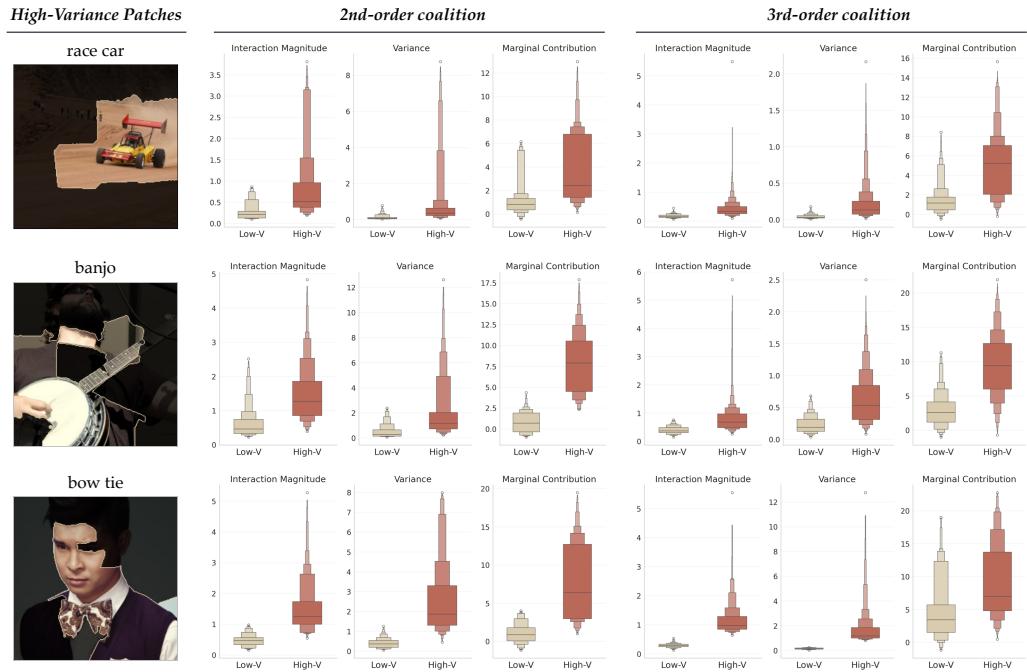
920 We describe the interaction values for the case study examples in Section 4. Tables 1 and 2 report the
921 detailed marginal contribution and interaction values of x_5 in the max function and x_1 in the attention
922 module example. The results show that the marginal contributions of x_5 and x_1 vary drastically
923 depending on T . In particular, the contribution decreases—and even becomes negative—when other
924 players are present. Similar variations are observed in higher-order interactions, where the signs of
925 2nd-, 3rd-, and 4th-order terms fluctuate substantially across coalitions. These results indicate that
926 variables participating with other strongly contributing features in the max function and attention
927 module can exhibit complex interaction structures, including frequent negative interactions. In such
928 cases, the expectation-based computation of Shapley values may obscure the positive contributions
929 of certain players in specific coalitions, highlighting the need to explicitly analyze higher-order
930 interactions to capture their detailed effects.

931
932 Table 1: Marginal contribution and interaction values $\Delta_R v(T)$ for the max function example, fo-
933 cusing on player x_5 . Columns correspond to the context coalitions T and rows to R .

$R \setminus T$	\emptyset	{2}	{3}	{4}	{2, 3}	{3, 4}	{2, 4}	{2, 3, 4}
{5}	10.0	3.0	2.0	1.0	2.0	1.0	1.0	1.0
{5, 2}	-7.0	-	0.0	0.0	-	0.0	-	-
{5, 3}	-8.0	-1.0	-	0.0	-	-	0.0	-
{5, 4}	-9.0	-2.0	-1.0	-	-1.0	-	-	-
{5, 2, 3}	7.0	-	-	0.0	-	-	-	-
{5, 2, 4}	7.0	-	0.0	-	-	-	-	-
{5, 3, 4}	8.0	1.0	-	-	-	-	-	-
{5, 2, 3, 4}	-7.0	-	-	-	-	-	-	-

944
945
946 Table 2: Marginal contribution and interaction values $\Delta_R v(T)$ for the attention module example,
947 focusing on player x_1 . Columns correspond to the context coalitions T and rows to R .

$R \setminus T$	\emptyset	{2}	{3}	{4}	{2, 3}	{3, 4}	{2, 4}	{2, 3, 4}
{1}	1.4261	0.5474	0.1080	-0.0018	-0.0697	-0.4128	-0.1383	-0.3761
{1, 2}	-0.8787	-	-0.1778	-0.1365	-	0.0366	-	-
{1, 3}	-1.3181	-0.6171	-	-0.4110	-	-	-0.2378	-
{1, 4}	-1.4279	-0.6857	-0.5208	-	-0.3064	-	-	-
{1, 2, 3}	0.7009	-	-	0.1732	-	-	-	-
{1, 2, 4}	0.7422	-	0.2144	-	-	-	-	-
{1, 3, 4}	0.9071	0.3793	-	-	-	-	-	-
{1, 2, 3, 4}	-0.5278	-	-	-	-	-	-	-

972 D JUSTIFICATION OF THE VARIANCE-BASED EXPANSION STRATEGY
973
974

997 Figure 6: Comparison between supersets derived from high-variance vs. low-variance feature
998 groups. High-variance supersets consistently yield stronger and more context-dependent interaction
999 terms, validating variance as an effective criterion for guiding higher-order coalition exploration.

1000 To justify the use of variance as a criterion for guiding the exploration of higher-order coalitions, we
1001 conduct a quantitative analysis using a VGG-based ImageNet classifier with 15 SLIC segments per
1002 image. For each first-order feature, we sample $\Delta_i v(T)$ across sampled permutations and compute
1003 its variance. As shown in Figure D, high-variance features spatially align with the regions most
1004 responsible for the model’s prediction, indicating that variance captures semantically meaningful
1005 and influential feature behavior.

1007 We then evaluate whether high-variance features indeed serve as better building blocks for con-
1008 structing higher-order coalitions. Specifically, we construct two groups: high-variance (top 30%)
1009 and low-variance (bottom 30%). From these groups, we construct two families of supersets at inter-
1010 action order 2: (1) Low-V supersets, which include at least one low-variance feature but exclude all
1011 high-variance features; (2) High-V supersets, which include at least one high-variance feature but
1012 exclude all low-variance features. The same grouping procedure is applied to second-order feature
1013 coalitions to construct candidate third-order coalitions.

1014 For each coalition R in these families, we measure the interaction magnitude $\mathbb{E}_T[|\Delta_R v(T)|]$, the
1015 variance $\text{Var}_T[|\Delta_R v(T)|]$, and the expected marginal contribution ($\mathbb{E}_T[v(R \cup T) - v(T)]$). The
1016 expected marginal contribution indicates how strongly the coalition impacts the network’s inference.

1017 In Figure D, our results show a clear pattern. Low-V supersets consistently exhibit small interac-
1018 tion magnitude and low interaction variance, indicating that they do not meaningfully participate in
1019 higher-order effects. Consequently, extending such coalitions provides little benefit and would only
1020 increase computational overhead. This demonstrates that variance serves as an effective pruning
1021 criterion, substantially reducing the number of evaluations for higher-order interactions.

1022 Their low expected marginal contributions further confirm that these coalitions have minimal direct
1023 influence on the model’s inference. Consequently, extending such coalitions provides little benefit
1024 and would only increase computational overhead. This demonstrates that variance serves as an
1025 effective pruning mechanism, substantially reducing the number of higher-order coalitions that must
be explored.

1026 Conversely, High-V supersets display substantially larger interaction magnitudes, higher interaction
 1027 variance, and notably larger marginal contributions. These characteristics indicate the presence
 1028 of non-negligible and context-dependent higher-order structure. Such supersets are precisely the
 1029 coalitions whose interactions cannot be reliably summarized via expectations and therefore should
 1030 be prioritized for higher-order evaluation. Moreover, the large marginal contributions imply that
 1031 these coalitions directly influence the model’s decision-making process, validating that our variance-
 1032 guided expansion strategy not only avoids unnecessary exploration but also directs computation
 1033 toward the most inference-critical feature combinations.

1034

		2nd-order coalition					3rd-order coalition								
		Marginal Contribution	Variance	SII	BII	STI	FaithShap	Marginal Contribution	Variance	SII	BII	STI	FaithShap		
		High-V	+ 3.845	0.916	+ 0.034	+ 0.177	- 0.105	+ 0.103	High-V	+ 4.975	0.216	+ 0.082	+ 0.016	+ 0.176	+ 0.035
1035	race car	Low-V	+ 1.216	0.113	+ 0.015	- 0.006	- 0.019	+ 0.012	Low-V	+ 1.454	0.041	+ 0.004	+ 0.004	+ 0.013	+ 0.004
1036	banjo	High-V	+ 7.934	2.161	- 0.349	- 0.267	- 0.415	- 0.305	High-V	+ 9.394	0.625	+ 0.065	- 0.009	+ 0.174	+ 0.010
1037		Low-V	+ 0.768	0.536	- 0.057	- 0.010	- 0.122	- 0.028	Low-V	+ 2.951	0.231	+ 0.043	+ 0.002	+ 0.104	+ 0.008
1038	bow tie	High-V	+ 7.583	2.562	- 0.217	+ 0.260	- 0.326	+ 0.010	High-V	+ 8.537	1.189	+ 0.179	- 0.032	+ 0.593	+ 0.029
1039		Low-V	+ 1.045	0.400	- 0.001	+ 0.124	- 0.110	+ 0.068	Low-V	+ 4.252	0.246	+ 0.084	+ 0.014	+ 0.216	+ 0.026
1040															
1041															
1042															
1043															
1044															
1045															

1046 Figure 7: Comparison with existing interaction indices. Expectation-based interaction indices (SII,
 1047 BII, STI, Faith-Shap) fail to distinguish the two superset families, whereas variance reliably sepa-
 1048 rates them by capturing context-sensitive higher-order effects that expectation-based measures over-
 1049 look.

1050

1051 To demonstrate that variance provides information beyond existing interaction indices, we compare
 1052 several widely used Cardinal Interaction Indices: the Shapley Interaction Index (SII), the Banzhaf
 1053 Interaction Index (BII) (Grabisch & Roubens, 1999), the Shapley–Taylor Interaction Index (STI)
 1054 (Sundararajan et al., 2020), and Faith-Shap (Tsai et al., 2023). All of these methods evaluate
 1055 interactions through an expectation (or weighted summation) over discrete derivatives, and therefore
 1056 belong to the Cardinal Interaction Index (CII) class.

1057

1058 Our aim is to assess whether these indices can distinguish two families of supersets: those derived
 1059 from high-variance coalitions versus those from low-variance coalitions. Figure 7 reports the aver-
 1060 age values for each family. All existing indices produce similarly small values for both groups and
 1061 therefore fail to separate them, even though the two families differ markedly in their true marginal
 1062 contributions and interaction variance.

1063

1064 This limitation stems from the fact that expectation-based indices inherit the sign-cancellation prob-
 1065 lem of discrete derivatives in deep neural networks. When positive and negative interactions oscillate
 1066 across contexts, their aggregated value collapses toward zero. In contrast, variance does not suf-
 1067 fer from this cancellation and provides diagnostic information that reveals which coalitions exhibit
 1068 meaningful, context-sensitive higher-order interactions. As a result, variance serves as a far more
 1069 reliable criterion for guiding higher-order coalition expansion than existing interaction indices.

1070

1071

1072

1073

1074

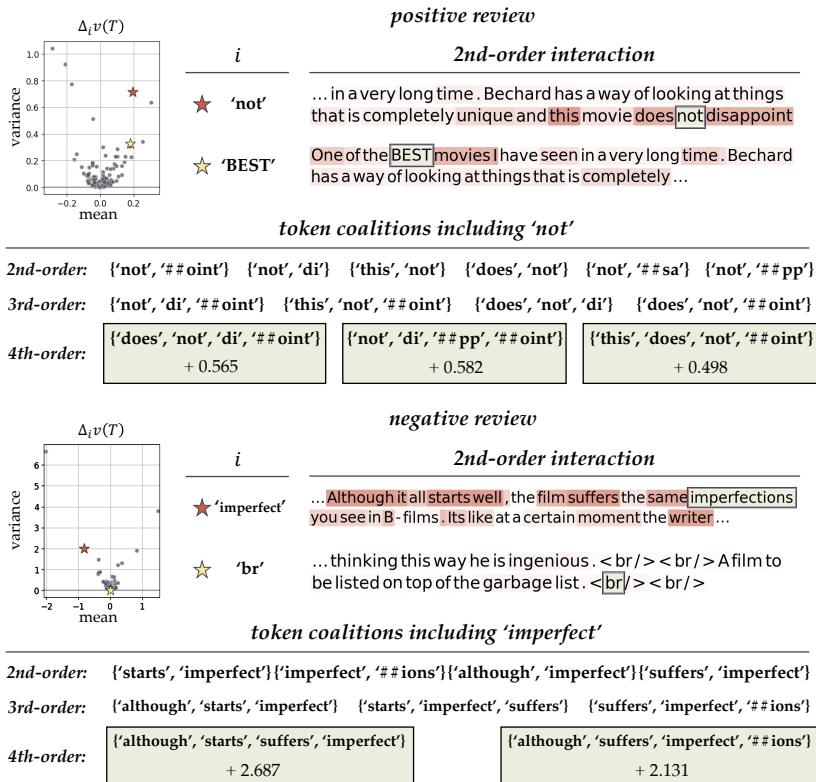
1075

1076

1077

1078

1079

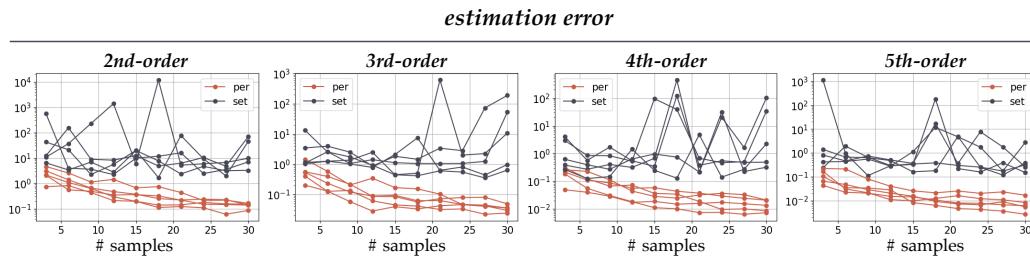
1080 E INTERACTION ANALYSIS IN LANGUAGE MODELS
1081
1082
1083
1084

1110 Figure 8: Interaction analysis on language model. For each case, a token with high variance of
1111 marginal contributions is shown to actively interact with other tokens. By examining higher-order
1112 coalitions involving this token, we identify meaningful token coalitions that play a decisive role in
1113 the model’s prediction.

1114
1115 We conduct additional experiments in natural language processing to examine interaction effects
1116 in language inference tasks. Specifically, we use a BERT-based sentiment classifier (Devlin et al.,
1117 2019) trained on the IMDB dataset (Maas et al., 2011), which predicts whether a given movie review
1118 is positive or negative. We analyze two representative samples—one positive and one negative
1119 review—by sampling marginal contributions for individual tokens and computing their mean and
1120 variance.

1121 In the positive example, the tokens ‘not’ and ‘BEST’ have similar expected contributions but very
1122 different variances. ‘BEST’ consistently supports the positive prediction by increasing the logit
1123 output regardless of the presence of other tokens. On the other hand, the token ‘not’ by itself
1124 indicates negativity; however, we observe that tokens in ‘this movie does not disappoint’ have a
1125 large magnitude of interaction values with ‘not’. Following the approach in Section 6, we investigate
1126 higher-order coalition structures by focusing on low-order coalitions with high variance. The token
1127 ‘not’ frequently forms coalitions with ‘disappoint’, and these coalitions yield substantially larger
1128 marginal contributions than the expected contribution of the single token ‘not’.

1129 In the negative case, tokens without semantic meaning, such as ‘br’, ‘/’, and ‘<’, generally have
1130 the lowest variance of contributions, which implies that they do not interact with any other tokens
1131 to construct sentence context. However, the token ‘imperfect’ has a smaller expected contribution
1132 than ‘br’ and much higher variance. This token commonly interacts with ‘suffer’, forming a coalition
1133 that conveys the reviewer’s dissatisfaction. Such coalitions have significantly larger marginal
contributions, thereby driving the negative classification.

1134
1135 F INTERACTION ESTIMATION ACCURACY
1136
11371144
1145 Figure 9: Interaction Estimation Accuracy: Set-based vs. Permutation-based Estimation.
1146

1148 We compare the estimation accuracy of the set-based estimator (Theorem 2) and the permutation-
1149 based estimator (Theorem 3) using a VGG network trained on ImageNet. Each image is partitioned
1150 into 15 segments using SLIC. To compute ground-truth interaction values, we evaluate the exact
1151 interaction terms for selected feature subsets and measure the absolute error between these ground-
1152 truth values and their corresponding estimates. Since most interactions are near zero due to sparsity,
1153 we first identify non-negligible interactions using our variance-based filtering and compute estima-
1154 tion errors only on these informative subsets that are constructed from features with high-variance
1155 effects.

1156 Figure 9 reports the estimation error across the number of sampled sets/permuations, evaluated
1157 over five examples. Each subplot corresponds to a different interaction order. The y-axis shows
1158 the sum of estimation errors over 30 randomly selected subsets (log-scale). The results indicate
1159 that the set-based estimator is substantially more sensitive to the particular sampled context sets,
1160 leading to slower and less stable convergence. In contrast, the permutation-based estimator con-
1161 verges more smoothly and consistently to the ground-truth interaction values. Beyond stability, it
1162 also achieves significantly lower estimation errors for the same number of evaluations, demon-
1163 strating that permutation-based sampling provides a more efficient and reliable strategy for estimating
1164 higher-order interaction terms.

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187