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ABSTRACT

A useful computation when acting in a complex environment is to infer the
marginal probabilities or most probable states of task-relevant variables. Prob-
abilistic graphical models can efficiently represent the structure of such complex
data, but performing these inferences is generally difficult. Message-passing al-
gorithms, such as belief propagation, are a natural way to disseminate evidence
amongst correlated variables while exploiting the graph structure, but these algo-
rithms can struggle when the conditional dependency graphs contain loops. Here
we use Graph Neural Networks (GNNs) to learn a message-passing algorithm
that solves these inference tasks. We demonstrate the efficacy of this inference
approach by training GNNs on an ensemble of graphical models and showing that
they substantially outperform belief propagation on loopy graphs. Our message-
passing algorithms generalize out of the training set to larger graphs and graphs
with different structure.

1 INTRODUCTION

Probabilistic graphical models provide a statistical framework for modelling conditional dependen-
cies between random variables, and are widely used to represent complex, real-world phenomena.
Given a graphical model for a distribution p(x), one major goal is to compute marginal probability
distributions pi(xi) of task-relevant variables at each node i of the graph: given a loss function, these
distributions determine the optimal estimator. Another major goal is to compute the most probable
state, x∗ = arg maxx p(x), or MAP (maximum a posteriori) inference.

For complex models with loopy graphs, exact inferences of these sorts is often computationally
intractable, and therefore generally relies on approximate methods. One important method for com-
puting approximate marginals is the belief propagation (BP) algorithm, which exchanges statistical
information among neighboring nodes (Pearl, 1988; Wainwright et al., 2003). This algorithm per-
forms exact inference on tree graphs, but not on graphs with cycles. Furthermore, the basic update
steps in belief propagation may not have efficient or even closed-form solutions.

In this work, we introduce end-to-end trainable inference systems based on Graph Neural Networks
(GNNs) (Gori et al., 2005; Scarselli et al., 2009; Li et al., 2016), which are recurrent networks that al-
low complex transformations between nodes. We show how this network architecture is well-suited
to message-passing inference algorithms, and have a flexibility that gives them wide applicability
even in cases where closed-form algorithms are unavailable. These GNNs have vector-valued nodes
that can encode probabilistic information about variables in the graphical model. The GNN nodes
send and receive messages about those probabilities, and these messages are determined by canon-
ical learned nonlinear transformations of the information sources and the statistical interactions be-
tween them. The dynamics of the GNN reflects the flow of probabilistic information throughout the
graphical model, and when the model reaches equilibrium, a nonlinear decoder can extract approxi-
mate marginal probabilities or states from each node.
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Figure 1: Two mappings between probabilistic graphical model and graph neural network. (a):
example graphical model. (b): mapping belief propagation messages µij to GNN nodes hv . Since
different messages flow in each direction, there are two messages per pairwise factor. Each GNN
message node is connected to other message nodes that share a variable. (c): mapping variable
nodes i ∈ V onto GNN nodes hv . Each GNN node is connected to others that share a factor in the
graphical model.

Table 1. Experimental design: after training on structured graphs with
n = 9 nodes, we evaluated performance on four classes of graphical
models, I-IV, with different sizes (n = 9 and n = 16) and graph
topologies (structured and random) as indicated in the table.

To demonstrate the value of these GNNs for inference in probabilistic graphical models, we create
an ensemble of graphical models, train our networks to perform marginal or MAP inference, and
test how well these inferences generalize beyond the training set of graphs. Our results compare
quite favorably to belief propagation on loopy graphs. See Appendix A for related work.

2 GRAPH NEURAL NETWORKS FOR INFERENCE IN GRAPHICAL MODELS

Background materials on probabilistic graphical models, binary Markov random fields, and Graph
Neural Networks (GNNs) are available in the Appendix B, C & D. In this section, we present two
mappings between graphical models and the GNN (Figure 1). Our experiments show that both
perform similarly, and much better than belief propagation.

The first mapping conforms most closely to the structure of conventional belief propagation, by
using a graph for the GNN that reflects how messages depend on each other (see Eq 6 in Appendix
C). Each node v in the GNN corresponds to a message µij between nodes i and j in the graphical
model. GNN nodes v and w are connected if their corresponding message nodes are ij and jk
(Figure 1b). If they are connected, messages are computed by mw = M(

∑
v:`j‖`∈Nj\k hv, ew).

The readout to extract node marginals or MAP states first aggregates all GNN nodes with the same
target by summation, and then applies a shared readout function, p̂i(xi) = R(

∑
v:ji|j∈Ni hv). This

representation grows in size with the number of factors in the graphical model.

The second mapping uses GNN nodes to represent variable nodes in the probabilistic graphical
model, and does not provide any hidden states to update the factor nodes (Figure 1c). These factors
still influence the inference, since each graphical model’s singleton and coupling parameters Jij ,
bi, and bj are passed into the message function on each iteration. However, this avoids spending
representational power on properties that may not change due to the invariances of tree-based repa-
rameterization. In this mapping, the readout p̂i(xi) is generated directly from the hidden state of the
corresponding GNN node hv .

3 EXPERIMENTS

3.1 EXPERIMENTAL DESIGN

Our experiments test how well graph neural networks trained on a diverse set of small graph struc-
tures perform on inference tasks. In each experiment we test two types of GNNs, one representing
variable nodes (node-GNN) and the other representing message nodes (msg-GNN). We examine
generalization under four conditions (Table 1): to unseen graphs of the same structure (I, II), and to
completely contrasting random graphs (III, IV). These graphs may be the same size (I, III) or larger
(II, IV). For each condition, we examine performance in estimating marginal probabilities and the
MAP state. See Appendix E for experimental details.
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Figure 2: Performance of GNN-based marginal inference on training graphs. (a–b) Example graph
structures used in training and testing, shown as adjacency matrices (a) and graphs (b). (c–e) Esti-
mated marginals (vertical axis) are shown against the true marginals for (c) BP, (d) msg-GNN, and
(e) node-GNN. Individual red dots reflect the marginals for a single node in one graph. These dots
should lie on the diagonal if inference is optimal.

3.2 WITHIN-SET GENERALIZATION

To understand the properties of our learned GNN, we evaluate it on different graph datasets than the
ones they are trained on. In condition I, test graphs had the same size and structure as training graphs,
but the values of singleton and edge potentials differed. We then compared the GNN inferences
against the ground truth, as well as against inferences drawn by BP. When tested on acyclic graphs,
BP is exact, but our GNNs show impressive accuracy as well (Figures 2c-e). However, as the
test graphs became loopier, BP worsened substantially while the GNN inference maintained strong
performance (Figures 2c-e).

3.3 OUT-OF-SET GENERALIZATION

After training our GNNs on the graph structures in condition I, we froze their parameters, and tested
these GNNs on a broader set of graphs.

In condition II (Table 1), we increased the graph size from n = 9 to n = 16 variables while
retaining the graph structures of the training set. In this scenario, scatter plots of estimated versus
true marginals show that the GNN still outperforms BP in all of the loopy graphs, except for the case
of graphs with a single loop (Figure 3a). We quantify this performance for BP and the GNNs by the
average Kullback-Leibler divergence 〈DKL[pi(xi)‖p̂i(xi)]〉 across the entire set of test graphs with
the small and large number of nodes. We find that performance of BP and both GNNs degrades as
the graphs grow. However, except for the msg-GNN tested on nearly fully-connected graphs, the
GNNs perform far better than BP, with improvements over an order of magnitude better for graphs
with many loops (Figure 3a–b).

To investigate how GNNs generalize to the networks of a different size and structure, we constructed
connected random graphs Gn,q , also known as Erdős-Rényi graphs (Erdős & Rényi, 1959), and
systematically changed the connectivity by increasing the edge probability from q = 0.1 (sparse) to
0.9 (dense) for smaller and larger graphs (Conditions III & IV, Figures 3c–d). Our GNNs clearly
ourperform BP irrespective of the size and structure of random graphs, although both inference
methods show a size- and connectivity-dependent decline in accuracy (Figure 3e). See Appendix
F.3 for MAP estimation.

4 CONCLUSION

Our experiments demonstrated that Graph Neural Networks provide a flexible method for learning to
perform inference in probabilistic graphical models. We showed that the learned representations and
nonlinear transformations operating on the edges of the graphical model do generalize to somewhat
larger graphs, even to those with different structure. These results support GNNs as an excellent
framework for solving difficult inference tasks. Future experiments will consider training and testing
on larger and more diverse graphs, as well as on broader classes of graphical models with non-binary
variables and more interesting sufficient statistics for nodes and factors.
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A RELATED WORK

Several researchers have used neural networks to implement some form of probabilistic inference.
Heess et al. (2013) proposes to train a neural network that learns to map message inputs to message
outputs for each message operation needed for Expectation Propagation inference, and Lin et al.
(2015) suggests learning CNNs for estimating factor-to-variable messages in a message-passing
procedure.

Another related line of work is on inference machines: Ross et al. (2011) trains a series of logistic
regressors with hand-crafted features to estimate messages. Wei et al. (2016) applied this idea to
pose estimation using convolutional layers and Deng et al. (2016) introduces a sequential inference
by recurrent neural networks for the same application domain.

The most similar line of work to the approach we present here is that of GNN-based models. GNNs
are essentially an extension of recurrent neural networks that operate on graph-structured inputs
(Scarselli et al., 2009; Li et al., 2016). The central idea is to iteratively update hidden states at
each GNN node by aggregating incoming messages that are propagated through the graph. Here,
expressive neural networks model both message- and node-update functions. Gilmer et al. (2017)
recently provide a good review of several GNN variants and unify them into a model called message-
passing neural networks. GNNs indeed have a similar structure as message passing algorithms used
in probabilistic inference. For this reason, GNNs are powerful architectures for capturing statistical
dependencies between variables of interest (Bruna et al., 2014; Duvenaud et al., 2015; Li et al.,
2016; Marino et al., 2016; Li et al., 2017; Qi et al., 2017; Kipf & Welling, 2017).
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B PROBABILISTIC GRAPHICAL MODELS

Probabilistic graphical models simplify a joint probability distribution p(x) over many variables x
by factorizing the distribution according to conditional independence relationships. Factor graphs
are one convenient, general representation of structured probability distributions. These are undi-
rected, bipartite graphs whose edges connect variable nodes i ∈ V that encode individual variables
xi, to factor nodes α ∈ F that encode direct statistical interactions ψα(xα) between groups of vari-
ables xα. (Some of these factors may affect only one variable.) The probability distribution is the
normalized product of all factors:

p(x) =
1

Z

∏
α∈F

ψα(xα) (1)

Here Z is a normalization constant, and xα is a vector with components xi for all variable nodes i
connected to the factor node α by an edge (i, α).

Our goal is to compute marginal probabilities pi(xi) or MAP states x∗i , for such graphical mod-
els. For general graphs, these computations require exponentially large resources, summing (in-
tegrating) or maximizing over all possible states except the target node: pi(xi) =

∑
x\xi p(x) or

x∗ = arg maxx p(x).

Belief propagation operates on these factor graphs by constructing messages µi→α and µα→i that
are passed between variable and factor nodes:

µα→i(xi) =
∑

xα\xi

ψα(xα)
∏

j∈Nα\i

µj→α(xj) (2)

µi→α(xi) =
∏

β∈Ni\α

µβ→i(xi) (3)

where Ni are the neighbors of i, i.e. factors that involve xi, and Nα are the neighbors of α, i.e.
variables that are directly coupled by ψα(xα). The recursive, graph-based structure of these message
equations leads naturally to the idea that we could describe these messages and their nonlinear
updates using a graph neural network in which GNN nodes correspond to messages, as described in
the next section.

Interestingly, belief propagation can also be reformulated entirely without messages: BP operations
are equivalent to successively reparameterizing the factors over subgraphs of the original graphical
model (Wainwright et al., 2003). This suggests that we could construct a different mapping between
GNNs and graphical models, where GNN nodes correspond to factor nodes rather than messages.
Interestingly, the reparameterization accomplished by BP only adjusts the univariate potentials, since
the BP updates lead the multivariate coupling potentials unchanged: after the inference algorithm
converges, the estimated marginal joint probability of a factor α, namely Bα(xα), is given by

Bα(xα) =
1

Z
ψα(xα)

∏
i∈Nα

µi→α(xi) (4)

Observe that all of the messages depend only on one variable at a time, and the only term that
depends on more than one variable at a time is the factor itself, ψα(xα), which is therefore invariant
over time. Since BP does not change these interactions, to imitate the action of BP the GNNs
need only to represent single variable nodes explicitly, while the nonlinear functions between nodes
can account for (and must depend on) their interactions. Our experiments evaluate both of these
architectures, with GNNs constructed with latent states that represent either message nodes or single
variable nodes.

C BINARY MARKOV RANDOM FIELDS

In our experiments, we focus on binary graphical models, with variables x ∈ {+1,−1}|V|. The
probability p(x) is determined by singleton factors ψi(xi) = ebixi biasing individual variables
according to the vector b, and pairwise factors ψij(xi, xj) = eJijxixj that couple different variables
according to the symmetric matrix J . Together these factors produce the joint distribution

p(x) = 1
Z exp (b · x + x · J · x) (5)
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In our experiments, each graphical model’s parameters J and b are specified randomly, and are
provided as input features for the GNN inference. We allow a variety of graph structures, ranging
in complexity from tree graphs to grid graphs to fully connected graphs. The target marginals are
pi(xi), and MAP states are given by x∗ = arg maxx p(x). For our experiments with small graphs,
the true values of these targets were computed exactly by exhaustive enumeration of states. Our
goal is to construct a recurrent neural network with canonical operations whose dynamics converge
to these targets, pi(xi) and x∗, in a manner that generalizes immediately to new graphical models.

Belief propagation in these binary graphical models updates messages µij from i to j according to

µij(xj) =
∑
xi

eJijxixj+bixi
∏

k∈Ni\j

µki(xi) (6)

where Ni is the set of neighboring nodes for i. BP provides estimated marginals by p̂i(xi) =
1
Z e

bixi
∏
k∈Ni µki(xi). This message-passing structure motivates one of the two graph neural net-

work architectures we will use below.

D GRAPH NEURAL NETWORKS

Graph Neural Networks (Gori et al., 2005; Scarselli et al., 2009; Li et al., 2016) are recurrent net-
works with vector-valued nodes hv whose states are iteratively updated by trainable nonlinear func-
tions that depend on the states of neighbor nodes hw : w ∈ Nv on a specified graph. The form of
these functions is canonical, i.e. shared by all graph edges, but the function can also depend on prop-
erties of each edge. The function is parameterized by a neural network whose weights are shared
across all edges. Eventually, the states of the nodes are interpreted by another trainable ‘readout’
network. Once trained, the entire GNN can be reused on different graphs without alteration, simply
by running it on a different graph with different inputs.

Our work builds on a specific type of GNN, the Gated Graph Neural Networks (GG-NNs) (Li et al.,
2016), which adds a Gated Recurrent Unit (GRU) (Cho et al., 2014) at each node to integrate in-
coming information with past states.

Mathematically, each node i in GNN graph G is associated with aD-dimensional hidden state vector
h
(t)
i ∈ RD at time step t. We initialize this hidden state to all zeros, but our results do not depend

on the initial values. On every successive time step, each node sends a message to each of its
neighboring nodes. We define the P -dimensional vector-valued message mt+1

w→v ∈ RP from node
w to v at time step t+ 1 by

mt+1
w→v =M(htv,h

t
w, εwv) (7)

whereM is a message function, here specified by a multilayer perceptron (MLP) with rectified linear
units (ReLU). Note that this message function depends the properties εwv of each edge (w → v).

We then aggregate all incoming messages into a single message for the destination node:

mt+1
v =

∑
w∈Nv

mt+1
w→v (8)

where Nv denotes the neighbors of a node v. Finally, every node updates its hidden state based on
the current hidden state and the aggregated message:

ht+1
v = U(htv,m

t+1
v ) (9)

where U is a node update function, in our case specified by another neural network, the gated recur-
rent unit (GRU), whose parameters are shared across all nodes. The described equations (7, 8, 9) for
sending messages and updating node states define a single time step. We evaluate the graph neural
network by iterating these equations for a fixed number of time steps T to obtain final state vectors
h
(T )
v , and then feeding these final node states {h(T )} to a readout functionR given by another MLP

with a final sigmoidal nonlinearity σ(x) = 1/(1 + e−x):

ŷ = σ
(
R(h(T )

vi )
)

(10)

We train our GNNs using supervised learning to predict target outputs y, using backpropagation
through time to minimize the loss function L(y, ŷ).
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E EXPERIMENTAL DETAILS

Our GNNs are trained on 100 graphical models for each of 13 classic graphs of size n = 9 (Figures
2a-b). For each graphical model, we sample coupling strengths from a normal distribution, Jij =
Jji ∼ N (0, 1), and sample biases from bi ∼ N (0, ( 1

4 )2). Our simulated data comprise 1300 training
models, 260 validation models, and 130 test models. All of these graphical models are small enough
that ground truth marginals and MAP states can be computed exactly by enumeration.

We train GNNs using ADAM (Kingma & Ba, 2014) with a learning rate of 0.001 until the validation
error saturates: we use early stopping with a window size of 20. The GNN nodes’ hidden states and
messages both have 5 dimensions. In all experiments, messages propagate for T = 10 time steps.
All the MLPs in the message functionM and readout function R have two hidden layers with 64
units each, and use ReLU nonlinearities.

We implement our models in Tensorflow (Abadi et al., 2015) and Sonnet.

F SUPPLEMENTAL RESULTS

F.1 OUT-OF-SET GENERALIZATION

Figure 3: Generalization performance of GNNs to novel graphs. (a) Novel test graphs (larger than
the training graphs), and scatter plots of estimated versus true marginals for different inference
algorithms, plotted as in Figure 2. (b) Accuracy of marginal inference, measured by negative log
KL-divergence in log scale, for graph structures shown above in (a) (n = 16, solid lines), and the
smaller variants (n = 9, dashed lines). Line colors indicate the type of inference method (black:
BP, orange: msg-GNN, blue: node-GNN). (c-d) Graphs and scatter plots for random graphs with
increasing edge probability q, for n = 9 nodes (c) and n = 16 nodes (d). (e) Generalization
performance on random graphs, plotted as in (b).

F.2 CONVERGENCE OF INFERENCE DYNAMICS

Past work provides some insight into the dynamics and convergence properties of BP (Weiss &
Freeman, 2000; Yedidia et al., 2001; Tatikonda & Jordan, 2002). For comparison, we examine how

8



Workshop track - ICLR 2018

GNN node hidden states change over time, by collecting the distances between successive node
states, ‖∆htv‖`2 = ‖htv −ht−1v ‖`2 . Despite some variability, the mean distance decreases with time
independently of graph topologies and size, which suggests reasonable convergence of the GNN
inferences (Figure 4), although the rate and final precision of convergence vary depending on graph
structures.

0 10
0.0
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time step
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I
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IV

Figure 4: Convergence of GNN inference, measured by the mean (white) and standard deviation
(dark blue) of the distances ‖∆htv‖`2 between successive hidden node states over time. Each row
displays the dynamics of GNN on the four experimental conditions I-IV.

F.3 MAP ESTIMATION

We also apply our GNN framework to the task of MAP estimation, using the same graphical mod-
els, but now minimizing the cross entropy loss between a delta function on the true MAP target
and sigmoidal outputs of GNNs. As in the marginalization experiments, the node-GNN slightly
outperformed the msg-GNN computing the MAP state, and both significantly outperform BP (the
max-product variant, sometimes called belief revision (Pearl, 1988)) in these generalization tasks
(Figure 5).

Figure 5: Performance on MAP estimation by GNN inference. (a) Test graphs with n = 9 (dashed
lines) and n = 16 (solid lines) nodes, and probability of correct MAP inference, for BP (black),
msg-GNN (orange), and node-GNN (blue). (b) As in (a), but for random graphs of n = 9 and
n = 16 nodes.
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