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ABSTRACT

Recent work has explored reduced numerical precision for parameters, activations,
and gradients during neural network training as a way to reduce the computational
cost of training (Na & Mukhopadhyayl 2016) (Courbariaux et al., |2014). We
present a novel dynamic precision scaling (DPS) scheme. Using stochastic fixed-
point rounding, a quantization-error based scaling scheme, and dynamic bit-widths
during training, we achieve 98.8% test accuracy on the MNIST dataset using an
average bit-width of just 16 bits for weights and 14 bits for activations, compared
to the standard 32-bit floating point values used in deep learning frameworks.

1 INTRODUCTION

It is well established that neural networks, though ordinarily trained using 32-bit single precision
floating point representation, can achieve desirable accuracy during inference with reduced precision
weights and activations (Judd et al.| [2015)) (Mishra et al.||2017) (Courbariaux et al., 2015) (Hubara
et al., 2016)). These reduced precision networks are amenable to acceleration on custom hardware
platforms which can take advantage of lower bit-widths in order to speed up computation (Na &
Mukhopadhyayl 2016) (Gupta et al.,[2015). Reduced precision strategies are not typically applied
during back-propagation whilst training, as this can lead to heavily reduced accuracy or even non-
convergence.

Recent work has shown that dynamic precision scaling, a technique in which the numerical precision
used during training is varied on-the-fly as training progresses, can achieve computational speedups
(on custom hardware) without hampering accuracy (Na & Mukhopadhyay, 2016) (Courbariaux
et al, 2014). DPS uses feedback from the training process to decide on an appropriate number
representation. For example, Na & Mukhopadhyay|(2016)) suggest starting with reduced precision,
and increasing precision dramatically whenever training becomes numerically unstable, or when
training loss stagnates.

In this paper, we present a novel DPS algorithm that uses the stochastic fixed-point rounding method
suggested by Gupta et al.| (2015)), the dynamic bit-width representation used by Na & Mukhopadhyay
(2016)), and an algorithm that leverages information on the quantization error encountered during
rounding as a heuristic for scaling the number of fractional bits utilized.

2  FIXED POINT REPRESENTATION AND QUANTIZATION/ROUNDING

Fixed point numbers are represented by a fractional portion appended to an integer portion, with an
implied radix point in between. We allow our fixed point representation to use arbitrary bit-width
for both the integer and fractional parts, and represent the bit-width of the integer part as I L and
the bit-width of the fractional part as F'L. We denote a given fixed point representation, then, as
(IL, FL). DPS modifies I L and F'L on-the-fly during training.

Inspired by |Gupta et al.| (2015)), we use stochastic rounding during quantization of floating point
values to (I L, F'L), as it implements an unbiased rounding.



Workshop track - ICLR 2018

Our algorithm employs a dynamic bit-width, dynamic radix scheme in which IL and F'L are
free to vary independently. Note that with the alternative fixed bit-width scheme, I L and F'L are
inter-dependent as increasing one necessitates a decrease in the other.

3 DYNAMIC PRECISION SCALING ALGORITHM

Here we formally introduce our novel DPS algorithm which leverages average % quantization error

as a metric for scaling fractional bits. Quantization error is calculated on a per-value basis as in

Equation|l| Quantization error % is accumulated and averaged over all round operations — this is the

metric used when scaling F'L.

B = [Tout = Zinl | 100 (1)
Lin

Table [T] frames this work in relation to prior work in the area.

Algorithm 1 Dynamic Precision Scaling with Quantization Error

Input: Current Integer Length: IL, Current Fractional Length: FL
Overflow Rate: R
Average % Quantization Error: E
Maximum Overflow Rate: R_max
Maximum Average Quantization Error: E_max
Output: (IL, FL) for the given attribute (Weights, Gradients, or Activations).

1:  Begin
2: if R > R_max:
3: IL+IL+1
4: else
5: IL<«+IL—-1
6: if E > E_max:
7 FL+ FL+1
8: else
9: FL<+ FL—-1
10: End
Table 1: Summary of related work
Authors Fixed point format
(bit width, radix) Scaling Rounding Precision
Granularity
" (Na & Mukhopadhyay}[2016)  (Dynamic, Dynamic)  Convergence/
Training Based = Nearest Per-Layer
" (Courbariaux et al.[[2014) (Fixed, Dynamic) Overflow Based  Nearest Per-Layer
" (Gupta et al.}[2015) (Fixed, Fixed) None Stochastic ~ Global
" |Essam et al.|(2017) (Fixed, Dynamic) Overflow Based  Stochastic Global
"~ (Koster et al.L[2017) (Fixed, Dynamic) Predictive
Max-Value N/A Per-Tensor
Ours (Dynamic, Dynamic)  Overflow and
Quantization
Error Based Stochastic Global

4 EXPERIMENTS

In order to perform evaluations, we emulate a dynamic fixed point representation by using custom
Caffe layers that quantize/round the native floating point values to values that are legal in our fixed
point format. In our study, we consider training a neural network using stochastic gradient descent
with dynamically scaled precision for weights, activations, and gradients during both the forward
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(inference) and backward pass. As per|Na & Mukhopadhyay|(2016), we quantize weights, biases,
activations, and gradients at the appropriate pass through the network, and update the precision
on-the-fly during training on each iteration.

We train LeNet-5 on the MNIST dataset using Caffe and our custom rounding layers and DPS
algorithm (Lecun et al.l|1998). We use a batch size of 64, and train for 10,000 iterations. We use an
initial learning rate of 0.01, momentum of 0.9, a weight decay factor of 0.0005, and scale the learning
rate using Ir = 7t % (1 4+ v *x iter) P°%, where v = 0.0001 and pow = 0.75. We update IL and FL
once each iteration, and use E,,qz = Rmaee = 0.01%.

We compare our results to a baseline network trained on the same dataset with the same hyperparame-
ters, but using full-precision floating point for all attributes. We also compare against a non-dynamic
fixed point representation that uses 13 bits for weights and activations, and keeps gradients at 32 bits.
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Figure 1: Comparison of training with Dynamic Precision Scaling vs. the baseline (floating point) vs.
fixed point reduced precision (13 bit weights and activations).

Our results reveal that we can achieve accuracy on-par with
the baseline, whilst drastically reducing the bit-width used
for both weights and activations. Our dynamic precision
scaling algorithm in general, however, doesn’t reduce the
gradient bit-width very much, as this requires the most
precision in order for training to converge. The training loss
using DPS is, in general, larger than the training loss of the
baseline model without hurting accuracy, suggesting that
the reduced precision may act as a regularization technique
during training — this needs validation via experimentation
on larger networks and more complex datasets. Note that
naively reducing the bit-width of weights and activations
to a fixed 13-bits with no dynamic precision scaling results
in the training process failing to converge. With dynamic
precision scaling, however, 13-bit weights and activations
are sufficient early in the training process.

5 DISCUSSION

Moving average of bitwidths over time
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Figure 2: Moving average bitwidths dur-
ing training using DPS.

We introduce a dynamic precision scaling algorithm that uses quantization error as a metric for
scaling dynamic bit-width fixed point values during neural network training. Combining this with
stochastic rounding, we achieve greatly reduced bit-width during training, whilst remaining within a
fraction of a % of SOTA accuracy on the MNIST dataset. This avenue of algorithmic work, when
paired with emerging hardware for training, has the potential to greatly increase the productivity of
engineers and machine learning researchers alike by decreasing training time.
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