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ABSTRACT

We propose an approach to address two issues that commonly occur during train-
ing of unsupervised GANs. First, since GANs use only a continuous latent dis-
tribution to embed multiple classes or clusters of data, they often do not correctly
handle the structural discontinuity between disparate classes in a latent space.
Second, discriminators of GANs easily forget about past generated samples by
generators, incurring instability during adversarial training. We argue that these
two infamous problems of unsupervised GAN training can be largely alleviated
by a learnable memory network to which both generators and discriminators can
access. Generators can effectively learn representation of training samples to un-
derstand underlying cluster distributions of data, which ease the structure discon-
tinuity problem. At the same time, discriminators can better memorize clusters of
previously generated samples, which mitigate the forgetting problem. We propose
a novel end-to-end GAN model named memoryGAN, which involves a memory
network that is unsupervisedly trainable and integrable to many existing GAN
models. With evaluations on multiple datasets such as Fashion-MNIST, CelebA,
CIFAR10, and Chairs, we show that our model is probabilistically interpretable,
and generates realistic image samples of high visual fidelity. The memoryGAN
also achieves the state-of-the-art inception scores over unsupervised GAN models
on the CIFAR10 dataset, without any optimization tricks and weaker divergences.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are one of emerging branches
of unsupervised models for deep neural networks. They consist of two neural networks named
generator and discriminator that compete each other in a zero-sum game framework. GANs have
been successfully applied to multiple generation tasks, including image syntheses (e.g. (Reed et al.,
2016b; Radford et al., 2016; Zhang et al., 2016a)), image super-resolution (e.g. (Ledig et al., 2017;
Snderby et al., 2017)), image colorization (e.g. (Zhang et al., 2016b)), to name a few. Despite such
remarkable progress, GANs are notoriously difficult to train. Currently, such training instability
problems have mostly tackled by finding better distance measures (e.g. (Li et al., 2015; Nowozin
et al., 2016; Arjovsky & Bottou, 2017; Arjovsky et al., 2017; Gulrajani et al., 2017; Warde-Farley
& Bengio, 2017; Mroueh et al., 2017; Mroueh & Sercu, 2017)) or regularizers (e.g. (Salimans et al.,
2016; Metz et al., 2017; Che et al., 2017; Berthelot et al., 2017)).

We aim at alleviating two undesired properties of unsupervised GANs that cause instability during
training. The first one is that GANs use a unimodal continuous latent space (e.g. Gaussian distribu-
tion), and thus fail to handle structural discontinuity between different classes or clusters. It partly
attributes to the infamous mode collapsing problem. For example, GANs embed both building and
cats into a common continuous latent distribution, even though there is no intermediate structure
between them. Hence, even a perfect generator would produce unrealistic images for some latent
codes that reside in transitional regions of two disparate classes. Fig.1 (a,c) visualize this problem
with examples of affine-transformed MNIST and Fashion-MNIST datasets. There always exist la-
tent regions that cause unrealistic samples (red boxes) between different classes (blue boxes at the
corners). Another problem is the discriminator’s forgetting behavior about past synthesized samples
by the generator, during adversarial training of GANs. The catastrophic forgetting has explored
in deep network research, such as (Kirkpatrick et al., 2016; Kemker et al., 2017); in the context of
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Figure 1: Evidential visualization of structural discontinuity in a latent space with examples of
affine-MNIST in (a)–(b) and Fashion-MNIST in (c)–(d). In each set, we first generate four images
at the four corners in blue boxes by randomly sampling four latent variables (z’s for DCGAN and
(z, c)’s for our memoryGAN). We then generate 64 images by interpolating latent variables between
them. In memoryGAN, c is a memory index, and it is meaningless to directly interpolate over c.
Therefore, for the four sampled c’s, we take their key values Kc and interpolate over Kc in the
query space. For each interpolated vector K̂c, we find the memory slot c = argmaxc p(c|K̂c), i.e.
the memory index whose posterior is the highest with respect to K̂c. (a,c) In unsupervised DCGAN,
unrealistic samples (depicted in red boxes) always exist in some interpolated regions, because differ-
ent classes are embedded in a unimodal continuous latent space. (b,d) In our memoryGAN, samples
gradually change, but no structural discontinuity occurs.

GANs, Shrivastava et al. (2017) address the problem that the discriminator often focuses only on lat-
est input images. Since the loss functions of the two networks depend on each other’s performance,
such forgetting behavior results in serious instability, including causing the divergence of adversarial
training, or making the generator re-introduce artifacts that the discriminator has forgotten.

We claim that a simple memorization module can effectively mitigate both instability issues of
unsupervised GAN training. First, to ease the structure discontinuity problem, the memory can
learn representation of training samples that help the generator better understand the underlying
class or cluster distribution of data. Fig.1 (b,d) illustrate some examples that our memory network
successfully learn implicit image clusters as key values using a Von Mises-Fisher (vMF) mixture
model. Thus, we can separate the modeling of discrete clusters from the embedding of data attributes
(e.g. styles or affine transformation in images) on a continuous latent space, which can ease the
structural discontinuity issue. Second, the memory network can mitigate the forgetting problem by
learning to memorize clusters of previously generated samples by the generator, including even rare
ones. It makes the discriminator trained robust to temporal proximity of specific batch inputs.

Based on these intuitions, we propose a novel end-to-end GAN model named memoryGAN, that
involves a life-long memory network to which both generator and discriminator can access. It can
learn multi-modal latent distributions of data in an unsupervised way, without any optimization
tricks and weaker divergences. Moreover, our memory structure is orthogonal to the generator and
discriminator design, and thus integrable with many existing variants of GANs.

We summarize the contributions of this paper as follows.

• We propose memoryGAN as a novel unsupervised framework to resolve the two key insta-
bility issues of existing GAN training, the structural discontinuity in a latent space and the
forgetting problem of GANs. To the best of our knowledge, our model is a first attempt to
incorporate a memory network module with unsupervised GAN models.

• In our experiments, we show that our model is probabilistically interpretable by visu-
alizing data likelihoods, learned categorical priors, and posterior distributions of mem-
ory slots. We qualitatively show that our model can generate realistic image samples
of high visual fidelity on several benchmark datasets, including Fashion-MNIST (Xiao
et al., 2017), CelebA (Liu et al., 2015), CIFAR10 (Krizhevsky, 2009), and Chairs (Aubry
et al., 2014). The memoryGAN also achieves the state-of-the-art inception scores among
unsupervised GAN models on the CIFAR10 dataset. The code is available at https:
//github.com/whyjay/memoryGAN.
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2 RELATED WORK

Memory networks. Augmenting neural networks with memory has been studied much (Bahdanau
et al., 2014; Graves et al., 2014; Sukhbaatar et al., 2015). In these early memory models, computa-
tional requirement necessitates the memory size to be small. Some networks such as (Weston et al.,
2014; Xu et al., 2016) use large-scale memory but its size is fixed prior to training. Recently, Kaiser
et al. (2017) extend (Santoro et al., 2016; Rae et al., 2016) and propose a large-scale life-long mem-
ory network, which does not need to be reset during training. It exploits nearest-neighbor search for
efficient memory lookup, and thus scales to a large memory size. Unlike previous approaches, our
memory network in the discriminator is designed based on a mixture model of Von Mises-Fisher
distributions (vMF) and an incremental EM algorithm. We will further specify the uniqueness of
read, write, and sampling mechanism of our memory network in section 3.1.

There have been a few models that strengthen the memorization capability of generative models. Li
et al. (2016) use additional trainable parameter matrices as a form of memory for deep generative
models, but they do not consider the GAN framework. Arici & Celikyilmaz (2016) use RBMs as
an associative memory, to transfer some knowledge of the discriminator’s feature distribution to the
generator. However, they do not address the two problems of our interest, the structural discontinuity
and the forgetting problem; as a result, their memory structure is far different from ours.

Structural discontinuity in a latent space. Some previous works have addressed this problem
by splitting the latent vector into multiple subsets, and allocating a separate distribution to each
data cluster. Many conditional GAN models concatenate random noises with vectorized external
information like class labels or text embedding, which serve as cluster identifiers, (Mirza & Osin-
dero, 2014; Gauthier, 2015; Reed et al., 2016b; Zhang et al., 2016a; Reed et al., 2016a; Odena
et al., 2017; Dash et al., 2017). However, such networks are not applicable to an unsupervised
setting, because they require supervision of conditional information. Some image editing GANs
and cross-domain transfer GANs extract the content information from input data using auxiliary
encoder networks (Yan et al., 2016; Perarnau et al., 2016; Antipov et al., 2017; Denton et al., 2016;
Lu et al., 2017; Zhang et al., 2017; Isola et al., 2017; Taigman et al., 2017; Kim et al., 2017; Zhu
et al., 2017). However, their auxiliary encoder networks transform only given images rather than
entire sample spaces of generation. On the other hand, memoryGAN learns the cluster distributions
of data without supervision, additional encoder networks, and source images to edit from.

InfoGAN (Chen et al., 2016) is an important unsupervised GAN framework, although there are
two key differences from our memoryGAN. First, InfoGAN implicitly learns the latent cluster in-
formation of data into small-sized model parameters, while memoryGAN explicitly maintains the
information on a learnable life-long memory network. Thus, memoryGAN can easily keep track of
cluster information stably and flexibly without suffering from forgetting old samples. Second, mem-
oryGAN supports various distributions to represent priors, conditional likelihoods, and marginal
likelihoods, unlike InfoGAN. Such interpretability is useful for designing and training the models.

Fogetting problem. It is a well-known problem that the discriminator of GANs is prone to forget-
ting past samples that the generator synthetizes. Multiple studies such as (Salimans et al., 2016;
Shrivastava et al., 2017) address the forgetting problem in GANs and make a consensus on the need
for memorization mechanism. In order for GANs to be less sensitive to temporal proximity of spe-
cific batch inputs, Salimans et al. (2016) add a regularization term of the `2-distance between current
network parameters and the running average of previous parameters, to prevent the network from
revisiting previous parameters during training. Shrivastava et al. (2017) modify the adversarial train-
ing algorithm to involve a buffer of synthetic images generated by the previous generator. Instead
of adding regularization terms or modifying GAN algorithms, we explicitly increase the model’s
memorization capacity by introducing a life-long memory into the discriminator.

3 THE MEMORYGAN

Fig.2 shows the proposed memoryGAN architecture, which consists of a novel discriminator network
named Discriminative Memory Network (DMN) and a generator network as Memory Conditional
Generative Network (MCGN). We describe DMN and MCGN in section 3.1–3.3, and then discuss
how our memoryGAN can resolve the two instability issues in section 3.4.
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Figure 2: The memoryGAN architecture. (a) The memory conditional generative network (MCGN)
samples a memory slot index c from a categorical prior distribution over memory slots, and use the
mean direction of corresponding mixture component Kc as conditional cluster information. (b) The
discriminative memory network (DMN) consists of an inference network and a memory module.

3.1 THE DISCRIMINATIVE MEMORY NETWORK

The DMN consists of an inference network and a memory network. The inference network µ is a
convolutional neural network (CNN), whose input is a datapoint x ∈ RD and output is a normalized
query vector q = µ(x) ∈ RM with ‖q‖ = 1. Then the memory module takes the query vector as
input and decides whether x is real or fake: y ∈ {0, 1}.
We denote the memory network by four tuples: M = (K, v, a, h). K ∈ RN×M is a memory key
matrix, where N is the memory size (i.e. the number of memory slots) and M is the dimension.
v ∈ {0, 1}N is a memory value vector. Conceptually, each key vector stores a cluster center repre-
sentation learned via the vMF mixture model, and its corresponding key value is a target indicating
whether the cluster center is real or fake. a ∈ RN is a vector that tracks the age of items stored in
each memory slot, and h ∈ RN is the slot histogram, where each hi can be interpreted as the effec-
tive number of data points that belong to i-th memory slot. We initialize them as follows: K = 0,
a = 0, h = 10−5, and v as a flat categorical distribution.

Our memory network partly borrows some mechanisms of the life-long memory network (Kaiser
et al., 2017), that is free to increase its memory size, and has no need to be reset during training. Our
memory also uses the k-nearest neighbor indexing for efficient memory lookup, and adopts the least
recently used (LRU) scheme for memory update. Nonetheless, there are several novel features of
our memory structure as follows. First, our method is probabilistically interpretable; we can easily
compute the data likelihood, categorical prior, and posterior distribution of memory indices. Sec-
ond, our memory learns the approximate distribution of a query by maximizing likelihood using an
incremental EM algorithm (see section 3.1.2). Third, our memory is optimized from the GAN loss,
instead of the memory loss as in (Kaiser et al., 2017). Fifth, our method tracks the slot histogram to
determine the degree of contributions of each sample to the slot.

Below we first discuss how to compute the discriminative probability p(y|x) for a given real or fake
sample x at inference, using the memory and the learned inference network (section 3.1.1). We then
explain how to update the memory during training (section 3.1.2).

3.1.1 THE DISCRIMINATIVE OUTPUT

For a given sample x, we first find out which memory slots should be referred for computing the
discriminative probability. We use c ∈ {1, 2, . . . , N} to denote a memory slot index. We represent
the posterior distribution over memory indices using a Von Mises-Fisher (vMF) mixture model as

p(c = i|x) = p(x|c = i)p(c = i)∑N
j=1 p(x|c = j)p(c = j)

=
exp(κKT

i µ(x))p(c = i)∑N
j=1 exp(κK

T
j µ(x))p(c = j)

(1)

where the likelihood p(x|c = i) = C(κ) exp(κKT
i µ(x)) with a constant concentration parameter

κ = 1. Remind that vMF is, in effect, equivalent to a properly normalized Gaussian distribution
defined on a unit sphere. The categorical prior of memory indices, p(c), is obtained by nomalizing
the slot histogram: p(c = i) = hi+β∑N

j=1(hj+β)
, where β(= 10−8) is a small smoothing constant

for numerical stability. Using p(y = 1|c = i, x) = vi (i.e. the key value of memory slot i),
we can estimate the discriminative probability p(y = 1|x) by marginalizing the joint probability
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p(y = 1, c|x) over c:

p(y = 1|x) =
N∑
i=1

p(y = 1|c = i, x)p(c = i|x) =
N∑
i=1

vip(c = i|x) = Ei∼p(c|x)[vi]. (2)

However, in practice, it is not scalable to exhaustively sum over the whole memory of size N for
every sample x; we approximate Eq.(2) considering only top-k slots S = {s1, ..., sk} with the
largest posterior probabilities (e.g. we use k = 128 ∼ 256):

S = argmax
c1,...,ck

p(c|x) = argmax
c1,...,ck

p(x|c)p(c) = argmax
c1,...,ck

exp(κKT
c µ(x))(hc + β) (3)

where p(x|c) is vMF likelihood and p(c) is prior distribution over memory indicies. We omit the
normalizing constant of the vMF likelihood and the prior denominator since they are constant over
all memory slots. Once we obtain S, we approximate the discriminative output as

p(y|x) ≈
∑
i∈S vip(x|c = i)p(c = i)∑
j∈S p(x|c = j)p(c = j)

. (4)

We clip p(y|x) into [ε, 1− ε] with a small constant ε = 0.001 for numerical stability.

3.1.2 MEMORY UPDATE

Memory keys and values are updated during the training. We adopt both a conventional memory
update mechanism and an incremental EM algorithm. We denote a training sample x and its label
y that is 1 for real and 0 for fake. For each x, we first find k-nearest slots Sy as done in Eq.(3),
except using the conditional posterior p(c|x, vc = y) instead of p(c|x). This change is required
to consider only the slots that belong to the same class with y during the following EM algorithm.
Next we update the memory in two different ways, according to whether Sy contains the correct
label y or not. If there is no correct label in the slots of Sy , we find the oldest memory slot by
na = argmaxi∈{1,...,N} ai, and copy the information of x on it: Kna ← q = µ(x), vna ← y,
ana
← 0, and hna

← 1
N

∑N
i=1 hi. If S contains the correct label, memory keys are updated to partly

include the information of new sample x, via the following modified incremental EM algorithm for
T iterations. In the expectation step, we compute posterior γti = p(ci|x) for i ∈ Sy , by applying
previous keys K̂t−1

i and ĥt−1i to Eq.(1). In the maximization step, we update the required sufficient
statistics as

ĥti ← ĥt−1i + γt − γt−1, K̂t
i ← K̂t−1

i +
γt − γt−1

ĥti
(qi − K̂t

i ) (5)

where t ∈ 1, ..., T , γ0 = 0, K̂1
i = Ki, ĥ1i = αhi and α = 0.5. After T iterations, we update the

slots of Sy byKi ← K̂t
i and hi ← ĥti. The decay rate α controls how much it exponentially reduces

the contribution of old queries to the slot position of the mean directions of mixture components. α
is often critical for the performance, give than old queries that were used to update keys are unlikely
to be fit to the current mixture distribution, since the inference network µ itself updates during the
training too. Finally, it is worth noting that this memory updating mechanism is orthogonal to any
adversarial training algorithm, because it is performed separately while the discriminator is updated.
Moreover, adding our memory module does not affects the running speed of the model at test time,
since the memory is updated only at training time.

3.2 THE MEMORY-CONDITIONAL GENERATIVE NETWORK

Our generative network MCGN is based on the conditional generator of InfoGAN (Chen et al.,
2016). However, one key difference is that the MCGN synthesizes a sample not only conditioned on
a random noise vector z ∈ RDz , but also on conditional memory information. That is, in addition to
sample z from a Gaussian, the MCGN samples a memory index i from P (c = i|vc = 1) = hivi∑N

j hjvj
,

which reflects the exact appearance frequency of the memory cell i within real data. Finally, the
generator synthesizes a fake sample from the concatenated representation [Ki, z], where Ki is a key
vector of the memory index i.
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Algorithm 1 Training algorithm of memoryGAN. φ is parameters of discriminator, θ is parameters
of generator. α = 0.5, η = 2 · 10−4.

1: for number of training iterations do
2: Sample a minibatch of examples x from training data.
3: Sample a minibatch of noises z ∼ p(z) and memory indices c ∼ p(c|v = 1).
4: Update by the gradient descent φ← φ− η∇φLD
5: Find Sy for each data in the minibatch
6: Initialize γ0s ← 0, ĥ0s ← αhs and K̂0

s ← Ks for s ∈ Sy
7: for number of EM iterations do
8: Estimate posterior γts for s ∈ Sy
9: ĥts ← ĥt−1s + γts − γt−1s for s ∈ Sy

10: K̂t
s ← K̂t−1

s +
γt
s−γ

t−1
s

ĥt
s

(qi − K̂t
s) for s ∈ Sy

11: Update vMF mixture model hsy ← ĥTsy ,Ksy ← K̂T
sy for sy ∈ Sy

12: Sample a minibatch of noises z ∼ p(z) and memory indices c ∼ p(c|v = 1).
13: Update by gradient descent θ ← θ − η∇θLG

Unlike other conditional GANs, the MCGN requires neither additional annotation nor any external
encoder network. Instead, MCGN makes use of conditional memory information that the DMN
learns in an unsupervised way. Recall that the DMN learns the vMF mixture memory with only the
query representation q = µ(x) of each sample x and its indicator y.

Finally, we summarize the training algorithm of memoryGAN in Algorithm 1.

3.3 THE OBJECTIVE FUNCTION

The objective of memoryGAN is based on that of InfoGAN (Chen et al., 2016), which maximizes
the mutual information between a subset of latent variables and observations. We add another mu-
tual information loss term between Ki and G(z,Ki), to ensure that the structural information is
consistent between a sampled memory information Ki and a generated sample G(z,Ki) from it:

I (Ki;G(z,Ki)) ≥ H(Ki)− Î − logC(κ) (6)

where Î is the expectation of negative cosine similarity Î = −Ex∼G(z,Ki)[κK
T
i µ(x)]. We defer the

derivation of Eq.(6) to Appendix A.1. Finally, the memoryGAN objective can be written with the
lower bound of mutual information, with a hyperparameter λ (e.g. we use λ = 2 · 10−6) as

LD = −Ex∼p(x) [logD(x)]− E(z,c)∼p(z,c)[log(1−D(G(z,Ki)))] + λÎ. (7)

LG = E(z,c)∼p(z,c)[log(1−D(G(z,Ki)))] + λÎ. (8)

3.4 HOW DOES MEMORYGAN MITIGATE THE TWO INSTABILITY ISSUES?

Our memoryGAN implicitly learns the joint distribution p(x, z, c) = p(x|z, c)p(z)p(c), for which
we assume the continuous variable z and the discrete memory variable c are independent. This
assumption reflects our intuition that when we synthesize a new sample (e.g. an image), we separate
the modeling of its class or cluster (e.g. an object category) from the representation of other image
properties, attributes, or styles (e.g. the rotation and translation of the object). Such separation of
modeling duties can largely alleviate the structural discontinuity problem in our model. For data
synthesis, we sample Ki and z as an input to the generator. Ki represents one of underlying clusters
of training data that the DMN learns in a form of key vectors. Thus, z does not need to care about
the class discontinuity but focus on the attributes or styles of synthesized samples.

Our model suffers less from the forgetting problem, intuitively thanks to the explicit memory. The
memory network memorizes high-level representation of clusters of real and fake samples in a form
of key vectors. Moreover, the DMN allocates memory slots even for infrequent real samples while
maintaining the learned slot histogram h nonzero for them (i.e. p(c|vc = 1) 6= 0). It opens a chance
of sampling from rare ones for a synthesized sample, although their chance could be low.
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Figure 3: Some probabilistic interpretations of MemoryGAN. (a) The biased log-likelihood p̃(x|y =
1) of 10, 000 real test images (i.e. unseen for training) according to training epochs. (b) Examples
of posteriors p(c|x) of nine randomly selected memory slots for a given input image shown at the
left-most column in the red box. (c) The categorical prior distribution p(c) along training iterations.
We sort all N slots and remove the ones with too low probabilities within [0, 0.0004] for readability.

4 EXPERIMENTS

We present some probabilistic interpretations of memoryGAN to understand how it works in sec-
tion 4.1. We show both qualitative and quantitative results of image generation in section 4.2 on
Fashion-MNIST (Xiao et al., 2017), CelebA (Liu et al., 2015), CIFAR10 (Krizhevsky, 2009), and
Chairs (Aubry et al., 2014). We perform ablation experiments to demonstrate the usefulness of key
components of our model in section 4.3. We present more experimental results in Appendix B.

For MNIST and Fashion-MNIST, we use DCGAN (Radford et al., 2016) for the inference net-
work and generator, while for CIFAR10 and CelebA, we use the WGAN-GP ResNet (Gulrajani
et al., 2017) with minor changes such as using layer normalization (Ba et al., 2016) instead of batch
normalization and using ELU activation functions instead of ReLU and Leaky ReLU. We use mini-
batches of size 64, a learning rate of 2 · 10−4, and Adam (Kingma & Ba, 2014) optimizer for all
experiments. More implementation details can be found in Appendix B.

4.1 PROBABILISTIC INTERPRETATION

Fig.3 presents some probabilistic interpretations of memoryGAN to gain intuitions of how it works.
We train MemoryGAN using Fashion-MNIST (Xiao et al., 2017), with a hyperparameter setting of
z ∈ R2, the memory sizeN = 4, 096, the key dimensionM = 256, the number of nearest neighbors
k = 128, and λ = 0.01. Fig.3(a) shows the biased log-likelihood p̃(x|y = 1) of 10, 000 real test
images (i.e. unseen for training), while learning the model up to reaching its highest inception
score. Although the inference network keeps updated during adversarial training, the vMF mixture
model based memory successfully tracks its approximate distribution; as a result, the likelihood
continuously increases. Fig.3(b) shows the posteriors p(c|x) of nine randomly selected memory
slots for a random input image (shown at the left-most column in the red box). Each image below
the bar are drawn by the generator from its slot key vector Ki and a random noise z. We observe
that the memory slots are properly activated for the query, in that the memory slots with highest
posteriors indeed include the information of the same class and similar styles (e.g. shapes or colors)
to the query image. Finally, Fig.3(c) shows categorical prior distribution p(c) of memory slots. At
the initial state, the inference network is trained yet, so it uses only a small number of slots even for
different examples. As training proceeds, the prior spreads along N memory slots, which means the
memory fully utilizes the memory slots to distribute training samples according to the clusters of
data distribution.

4.2 IMAGE GENERATION PERFORMANCE

We perform both quantitative and qualitative evaluations on our model’s ability to generate realistic
images. Table 1 shows that our model outperforms state-of-the-art unsupervised GAN models in
terms of inception scores with no additional divergence measure or auxiliary network on the CI-
FAR10 dataset. Unfortunately, except CIFAR10, there are no reported inception scores for other
datasets, on which we do not compare quantitatively.

7



Published as a conference paper at ICLR 2018

Table 1: Comparison of CIFAR10 inception scores between state-of-the-art unsupervised GAN
models. Our memoryGAN achieves the highest score.

Method Score Objective Auxiliary net
ALI (Dumoulin et al., 2017) 5.34 ± 0.05 GAN Inference net
BEGAN (Berthelot et al., 2017) 5.62 Energy based Decoder net
DCGAN (Radford et al., 2016) 6.54 ± 0.067 GAN -
Improved GAN (Salimans et al., 2016) 6.86 ± 0.06 GAN + historical averaging -

+ minibatch discrimination
EGAN-Ent-VI (Dai et al., 2017) 7.07 ± 0.10 Energy based Decoder net
DFM (Warde-Farley & Bengio, 2017) 7.72 ± 0.13 Energy based Decoder net
WGAN-GP (Gulrajani et al., 2017) 7.86 ± 0.07 Wasserstein + gradient penalty -
Fisher GAN (Mroueh et al., 2017) 7.90 ± 0.05 Fisher integral prob. metrics -
MemoryGAN 8.04 ± 0.13 GAN + mutual information -

(a) CIFAR10 (32 × 32) (b) CelebA (64 × 64) (c) Chair (64 × 64)

Figure 4: Image samples generated on (a) CIFAR10, (b) CelebA, and (c) Chairs dataset. Top four
rows show successful examples, while the bottom two show near-miss or failure cases.

Fig.4 shows some generated samples on CIFAR10, CelebA, and Chairs dataset, on which our model
achieves competitive visual fidelity. We observe that more regular the shapes of classes are, more
realistic generated images are. For example, car and chair images are more realistic, while the faces
of dogs and cats, hairs, and sofas are less. MemoryGAN also has failure samples as shown in 4.
Since our approach is completely unsupervised, sometimes a single memory slot may include similar
images from different classes, which could be one major reason of failure cases. Nevertheless,
significant proportion of memory slots of MemoryGAN contain similar shaped single class, which
leads better quantitative performance than existing unsupervised GAN models.

4.3 ABLATION STUDY

We perform a series of ablation experiments to demonstrate that key components of MemoryGAN
indeed improve the performance in terms of inception scores. The variants are as follows. (i)
(– EM) is our MemoryGAN but adopts the memory updating rule of Kaiser et al. (2017) instead
(i.e. Kt ← Kt−1+q

‖Kt−1+q‖ ). (ii) (– MCGN) removes the slot-sampling process from the generative
network. It is equivalent to DCGAN that uses the DMN as discriminator. (iii) (– Memory) is
equivalent to the original DCGAN. Results in Table 2 show that each of proposed components of
our MemoryGAN makes significant contribution to its outstanding image generation performance.
As expected, without the memory network, the performance is the worst over all datasets.

4.4 GENERALIZATION EXAMPLES

We present some examples of generalization ability of MemoryGAN in Fig.5, where for each sample
produced by MemoryGAN (in the left-most column), the seven nearest images in the training set are
shown in the following columns. As the distance metric for nearest search, we compute the cosine
similarity between normalized q = µ(x) of images x. Apparently, the generated images and the
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Table 2: Variation of inception scores when removing one of key components of our memoryGAN
on CIFAR10, affine-MNIST and Fashion-MNIST datasets.

Variants CIFAR10 affine-MNIST Fashion-MNIST
MemoryGAN 8.04 ± 0.13 8.60 ± 0.02 6.39 ± 0.29

(– EM) 6.67 ± 0.17 8.17 ± 0.04 6.05 ± 0.28
(– MCGN) 6.39 ± 0.02 8.11 ± 0.03 6.02 ± 0.27
(– Memory) 5.35 ± 0.17 8.00 ± 0.01 5.82 ± 0.19

Figure 5: Examples of generalization ability of MemoryGAN. For each sample produced by Mem-
oryGAN (in the left-most column), the seven nearest training images are shown in the following
columns. The generated images and the nearest training images are quite different, which means the
MemoryGAN indeed creates novel images rather than memorizing and retrieving training images.

nearest training images are quite different, which means our MemoryGAN generates novel images
rather than merely memorizing and retrieving the images in the training set.

4.5 COMPUTATIONAL OVERHEAD

Our memoryGAN can resolve the two training problems of unsupervised GANs with mild increases
of training time. For example of CIFAR10, we measure training time per epoch for MemoryGAN
with 4,128K parameters and DCGAN with 2,522K parameters, which are 135 and 124 seconds,
respectively. It indicates that MemoryGAN is only 8.9% slower than DCGAN for training, even with
a scalable memory module. At test time, since only generator is used, there is no time difference
between MemoryGAN and DCGAN.

5 CONCLUSION

We proposed a novel end-to-end unsupervised GAN model named memoryGAN, that effectively
learns a highly multi-modal latent space without suffering from structural discontinuity and forget-
ting problems. Empirically, we showed that our model achieved the state-of-the-art inception scores
among unsupervised GAN models on the CIFAR10 dataset. We also demonstrated that our model
generates realistic image samples of high visual fidelity on Fashion-MNIST, CIFAR10, CelebA, and
Chairs datasets. As an interesting future work, we can extend our model for few-shot generation that
synthesizes rare samples.
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Table 3: Summary of experimental settings.

affine-MNIST Fashion-MNIST CIFAR10 Chair CelebA
Test sample size 640, 000 64, 000 640, 000 - -
Test classifier (Acc.) AlexNet (0.9897) ResNet (0.9407) Inception Net. - -
Noise dimension 2 2 16 16 16
Key dimension M 256 256 512 512 512
Memory size N 4, 096 4, 096 16, 384 16, 384 16, 384
Image size 40× 40 28× 28 32× 32 64× 64 64× 64
Learning rate decay None None Linear Linear Linear

A APPENDIX A: MORE TECHNICAL DETAILS

A.1 DERIVATION OF THE OBJECTIVE FUNCTION

Our objective is based on that of InfoGAN (Chen et al., 2016), which maximizes the mutual infor-
mation between a subset of latent variables and observations. We add another mutual information
loss term between Ki and G(z,Ki), to ensure that the structural information is consistent between
a sampled memory key vector Ki and a generated sample G(z,Ki) from it:

I(Ki;G(z,Ki)) = H(Ki)−H(Ki|G(z,Ki))

≥ H(Ki) + Ex∼G(z,Ki)[Eq∼P (Ki|x)[− logQ(q|x)]]
= H(Ki) + Ex∼G(z,Ki)[Eq∼P (Ki|x)[κK

T
i q − logC(κ)]] (9)

whereQ is a von Mises-Fisher distributionC(κ)exp(κKT
i q). Maximizing the lower bound is equiv-

alent to minimizing the expectation term Î = −Ex∼G(z,Ki)[Eq∼P (Ki|x)[κK
T
i q]]. The modified

GAN objective can be written with the lower bound of mutual information, with a hyperparameter
λ (we use λ = 2 · 10−6).

LD = −Ex∼p(x) [logD(x)]− E(z,c)∼p(z,c)[log(1−D(G(z,Ki)))] + λÎ.

LG = E(z,c)∼p(z,c)[log(1−D(G(z,Ki)))] + λÎ. (10)

B APPENDIX B: MORE EXPERIMENTAL RESULTS

B.1 EXPERIMENTAL SETTINGS

We summarize experimental settings used for each dataset in Table 3. The test sample size indicates
the number of samples that we use to evaluate inception scores. For Chair and CelebA dataaset, we
do not compute the inception scores. The test classifier indicates which image classifier is used for
computing inception scores. For affine-MNIST and Fashion-MNIST, we use a simplified AlexNet
and ResNet, respectively. The noise dimension is the dimension of z, and the image size indicates
the height and width of training images. For CIFAR10, Chair, and CelebA, we linearly decay the
learning rate: αt = α0 · (1 − γ−1 · t/1, 000), where t is the iteration, and γ is the number of
minibatches per epoch.

B.2 MORE INTERPOLATION EXAMPLES FOR VISUALIZING STRUCTURE IN A LATENT SPACE

We present more interpolation examples similar to Fig.1. We use Fashion-MNIST and affine-
transformed MNIST, in which we randomly rotate MNIST images by 20◦ and randomly place it
in a square image of 40 pixels. First, we randomly fix a memory slot c, and randomly choose four
noise vectors {z1, . . . , z4}. Then, we interpolate the four noise vectors to extract intermediate noise
vectors ẑ = (1 − e)zi + ezj , where i, j ∈ {1, 2, 3, 4} and e ∈ (0, 1), and visualize the generated
samples G(ẑ, c). Fig.6 shows the results. We set the memory size N = 4, 096, the key dimension
M = 256, the number of nearest neighbors k = 128, and λ = 0.01 for both datasets. We use
z ∈ R32 for DCGAN and z ∈ R2 for MemoryGAN. In both datasets, the DMN successfully learns
to partition a latent space into multiple modes, via the memory module using a von Mises-Fisher
mixture model. Fig.7 presents results of the same experiments on the Chair dataset. We here show
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(a) (b) (c)

(d) (e) (f)

Figure 6: More interpolation examples generated by MemoryGAN. Samples are generated by fixing
a discrete latent variable c and sampling 64 continuous latent variable z. Some memory slots contain
single stationary structure as shown in (a) and (d), while other slots contain images of the same class,
but variation of styles as shown in (b)-(c) and (e)-(f).

examples of failure cases in (d), where interestingly some unrealistic chair images are observed as
the back of chair rotates from left to right.
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(a) (b)

(c) (d)

Figure 7: Interpolation examples generated by MemoryGAN on the Chair dataset. Memory slots
contain different shapes, colors and angles of chairs as in (a)-(c). In the failure case (d), there are
some unrealistic chair images as the back of chair rotates from left to right.
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