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ABSTRACT

This paper presents a storage-efficient learning model titled Recursive Binary
Neural Networks for embedded and mobile devices having a limited amount
of on-chip data storage such as hundreds of kilo-Bytes. The main idea of the
proposed model is to recursively recycle data storage of weights (parameters)
during training. This enables a device with a given storage constraint to train
and instantiate a neural network classifier with a larger number of weights on
a chip, achieving better classification accuracy. Such efficient use of on-chip
storage reduces off-chip storage accesses, improving energy-efficiency and speed
of training. We verified the proposed training model with deep and convolutional
neural network classifiers on the MNIST and voice activity detection benchmarks.
For the deep neural network, our model achieves data storagerequirement of as
low as 2 bits/weight, whereas the conventional binary neural network learning
models require data storage of 8 to 32 bits/weight. With the same amount of data
storage, our model can train a bigger network having more weights, achieving
1% less test error than the conventional binary neural network learning model.
To achieve the similar classification error, the conventional binary neural network
model requires 4× more data storage for weights than our proposed model. For
the convolution neural network classifier, the proposed model achieves 2.4% less
test error for the same on-chip storage or 6× storage savings to achieve the similar
accuracy.

1 INTRODUCTION

Deep Neural Networks (DNN) have demonstrated the state-of-the-art results in a wide range
of cognitive workloads such as computer vision Krizhevsky et al. (2012) and speech recognition
(Hinton et al. (2012)), achieving better-than-human performance for the tasks often considered
too complex for machines. The success of DNNs has indeed motivated scientists and engineers
to implement a DNN in mobile and embedded devices, dubbed as Internet of Smart Things
(Kortuem et al. (2010)). The recent works in this area, however, mostly implement the inference
function of DNN, rather than training, while training is performed in cloud computers and post-
training weights are downloaded to mobile and embedded devices (Lane et al. (2016)).

On-devicelearning, however, becomes increasingly important for themobile and embedded devices
for the following three reasons. First, an intelligent device benefits to have the model that is custom-
built for the device itself, its end user, and environment. This is because the model tends to be more
accurate and effective if constructed with the consideration of those factors. Second, the training
data from mobile and embedded devices can contain security-sensitive information, e.g., personal
health data from wearable medical devices. At the risk of being leaked, users typically do not want to
upload such data onto cloud computers. Finally, in the era ofInternet of Things (IoT), we anticipate
a drastic increase in the number of deployed devices, which can proportionally increase the number
of learning tasks to be done in the cloud. Coupled with the complexity of training, even for powerful
cloud computers, this can be a computationally challengingtask.

On-device learning, however, entails various challenges in algorithms, data, and systems (Roschelle
(2003); Vogel et al. (2009)). The most eminent challenge regarding computing systems is high
energy consumption caused by dense computation and data access, which is considered prohibitive
for the limited resources of embedded devices. The high overhead of data access is caused by
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fetching DNN weights from DRAM (or FLASH) external to a computing chip on an embedded
device. Since the data storage size is limited for such computing chip, the parameters of a DNN
have to be stored in external DRAM and FLASH during training.For example, ARM Cortex M3
processor, a processor widely used in commercial wearable devices such as FitBit, has only 64
kilo-Byte (kB) on-chip data storage. This can only store very small size of DNN especially if each
weight is 32-bit float point number. Compared to accessing on-chip SRAM, accessing off-chip
DRAM incurs 3 to 4 orders of magnitudes more energy and delay overhead. Therefore, fetching
weights every time for each data makes training prohibitiveto be implemented on a mobile and
embedded device (Han et al. (2015)).

Recently several techniques such as pruning, distilling, and binarizing weights have been proposed
to compress the parameters of a DNN. This makes it more feasible to fit weights in on-chip SRAM
(Han et al. (2015); Courbariaux et al. (2015; 2016); Rastegari et al. (2016); Hinton et al. (2015)).
These techniques can also reduce computation overhead. However, these works focused on weight
size compressionafter training is finished. The data storage requirementduring training remains
the same.

Similarly, several learning models, which belong to so-called Binary Neural Networks (BNN), have
been proposed (Courbariaux et al. (2015; 2016); Rastegari et al. (2016)). These model uses sign
bits (or binary information) of weights in several parts of the learning model notably the part
of multiplying and accumulating weights with inputs/activations. Although this greatly reduces
computational complexity, each weight still needs to be represented in high precision number with
multiple bits (e.g. 32 bits in Courbariaux et al. (2015; 2016); Rastegari et al. (2016)) during the
end-to-end training process. This is because weights have to be fine-tuned in the weight update
part. Therefore, this so-called BNN models have not demonstrated to scale storage requirement for
training below 32 bits/weight.

Our goal is, therefore, to efficiently use the limited amountof on-chip data storage during training.
We also aim to scale computational complexity. Toward this goal, we propose a new learning model,
Recursive Binary Neural Network (RBNN). This model is based on the process of weight training,
weight binarization, recycling storage of the non-sign-bit portion of weights to add more weights
to enlarge the neural network for accuracy improvement. We recursively perform this process until
either accuracy stops improving or we use up all the storage on a chip.

We verified the proposed RBNN model on a Multi-Layer Perceptron (MLP)-like and a convolutional
neural network classifier on the MNIST and Voice Activity Detection (VAD) benchmark. We
considered typical storage constraints of embedded sensing devices in the order of hundreds of
kB. The experiment in the MLP-like classifier on MNIST confirms that the proposed model (i)
demonstrates 1% less test error over the conventional BNN learning model specifically following
Courbariaux et al. (2015) for the same storage constraints or (ii) scales on-chip data storage
requirement by 4× for the same classification test error rate(∼2%), marking the storage requirement
of 2 bits/weight. The conventional BNN models in Courbariaux et al. (2015; 2016); Rastegari et al.
(2016) exhibit a significantly larger storage requirementsof 8 to 32 bits/weight. The experiment of
the CNN classifier for MNIST confirms up to 6× reduction of data storage requirement and 2.4%
less test error. For the VAD benchmark, the proposed RBNN achieves 9× savings in data storage
requirement.

The remainder of the paper is as follow. In Sec. 2 we will introduce the works related to this paper,
including comparison to existing works on distillation, compression, BNNs, and low-precision
weights. In Sec. 3 we will describe our proposed model. Sec. 4will present the experimental
results and comparisons to the conventional BNN model. Finally, in Sec. 5, we will conclude the
paper. The paper includes Appendix A to D to describe additional experiments and analysis.

2 RELATED WORK

2.1 DISTILLATION AND COMPRESSION OFDNN PARAMETERS

Knowledge distillation (Hinton et al. (2015)) is a technique to compress knowledge of an ensemble
of DNNs into one small DNN while maintaining the accuracy. Although this technique can scale the
number of weights for deployment systems post-training, itcannot scale data storage requirement
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for training. Specifically, during training, each of weights is represented in high-precision number,
which needs to be stored in multi-bit data storage.

Another technique is to compress the data size of weights by exploiting redundancies in them. In
Han et al. (2015), the authors combine four sub-techniques,namely weight pruning, quantization,
sharing, and compression coding to reduce the data size of weights. Similar to the knowledge
distillation, this technique can be applied to the weights that are already trained, and cannot scale
data storage requirement of weights during training.

2.2 BINARY NEURAL NETWORK (BNN)

Recent works proposed to use binary information of weights (Courbariaux et al. (2015);
Baldassi et al.), activations (Courbariaux et al. (2016); Rastegari et al. (2016)), and even inputs
(Rastegari et al. (2016)) in some parts of training and post-training operations. The use of binary
information of weights notably in Multiply-and-Accumulate (MAC) operation can drastically
reduce computational complexity. However, those BNN techniques still cannot scale the storage
requirement of weights during training. In these works, each weight is represented in 32 bits. This
is because mainstream training models such as stochastic gradient decent requires to update weights
in a fine-grained manner.

2.3 LOW-PRECISION FIX-POINT WEIGHT REPRESENTATION

Several studies have demonstrated that moderately lowering the precision of weights (i.e., quan-
tization) has a tolerable impact on training and post-training operations of DNN (Gupta et al.
(2015); Courbariaux et al. (2014)). In Gupta et al. (2015), the authors trained a DNN having 16-
bit fixed-point weights with the proposed stochastic rounding technique, and demonstrated little to
no degradation in classification accuracy. In Courbariaux et al. (2014), the authors proposed the
dynamic fixed-point representation (i.e., dynamically changing the position of decimal point over
computation sequences) to further reduce the precision requirement down to 10 bits per synapse.
Using fixed-point representation help to reduce storage requirement and fixed-point arithmetic is
more hardware friendly (Han et al. (2015)).

3 RECURSIVEBINARY NEURAL NETWORK (RBNN) MODEL

3.1 KEY IDEA

Table 1 shows which information of weights are used in each step of training in both conventional
BNN Courbariaux et al. (2015; 2016); Rastegari et al. (2016)and our proposed RBNN. The
conventional BNN works (Courbariaux et al. (2015; 2016); Rastegari et al. (2016)) use sign bits of
weights during multiply-and-accumulate (MAC) operation in forward and backward propagations.
However, the weight update has to be done with high precision. This mandates to store multi-
bit (16 or 32 bits in those works) weights in data storage during learning, resulting in no savings
in weight storage requirement. On the other hand, it has beenstudied that in the trained neural
networks we can use only the sign bits of weights to perform inference (Courbariaux et al. (2015;
2016); Rastegari et al. (2016)). This vast difference in therequirements of weight precision between
learning and post-learning inspires us to create our RBNN model.

As shown in Table 1, we also use only the sign bits for MAC operations to reduce computational
complexity for training. The main difference is that we binarize weights (keep only the sign bits) and
then we recycle the data storage that are used to store these non-sign bits of weights. This recycled
storage is used to add more multi-bittrainableweights to the neural network. We then train this new
network having both the binarized non-trainable weights and the newly-added trainable weights.
We perform these steps recursively, which makes the neural networks larger and more accurate but
using the same amount of data storage for weights.

Figure 1 depicts the process of our proposed RBNN learning model with an example of the multi-
layer neural network classifier. In the beginning, the neural network has one input, two sets of
two hidden, and one output neurons, and eight weights each ofwhich has n bits. We first train
this 1 × 2 × 2 × 1 network using the conventional back-propagation trainingalgorithm for BNN
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Table 1: Comparisons of weight information usage in BNNs andRBNN

Steps BNN Proposed RBNN

MAC in forward prop. Sign bits of weights Sign bits of weights

MAC in back prop. Sign bits of weights Sign bits of weights

Weight update All bits of weights All bits of weights

Recursive recycling N/A
Keep sign bits and recycle storages

of the other bits for more plastic weights

(Courbariaux et al. (2015)). After that, we discard all bitsexcept the sign bit in each weight
(binarization), resulting in a1 × 2 × 2 × 1 trained network having binary weights (trained BNN).
Then we continue the second iteration of training (the second subfigure of Figure 1). Specifically,
we recycle the storage that is used to store the n-1 non-sign bits of weights in the1 × 2 × 2 × 1
network. Using this data storage, we add a new network namedincrementalBNN comprising eight
additional weights (W21 to W28 in Figure 1) to thetrained BNN, expanding the network size to
1 × 4 × 4 × 1 which we name asenlargedBNN. In theenlargedBNN, each of the newly-added
weights isn − 1 bits. In other words, theenlargedBNN comprises of onetrained BNN that has
eight weight (W b

11 to W b
18) that are trained (binary, non-plastic, marked as solid lines in Figure 1)

and oneincrementalBNNwith eight weights (W21 toW28) that are under training (n-1 bits, plastic,
marked as dash lines in Figure 1). TheincrementalBNN is trained together with thetrained BNN
but only the weights ofincrementalBNN are updated.

We repeat the same process of binarization and recycling. Inevery iteration, theenlargedBNN inte-
grates eight more weights, and the bit-width of newly-addedplastic weights in theincrementalBNN
is reduced by one. At the k-th iteration, thetrained BNN has8 · (k − 1) neurons and the plastic
weights have (n−k+1) bit-width. After the k-th iteration, as shown in the rightmost in Figure 1, the
neural network becomes a1×2k×2k×1 with 8 ·k binary weights. This network has k times more
weights than the first1× 2× 2× 1 network. However, the data storage used for weights remainsthe
same, scaling the storage requirement per weight ton/k (= 4 ·n/4 ·k), which is k times smaller than
that of the first network. Thus the proposed RBNN can either achieve better classification accuracy -
enabled by the more number of weights - with the same amount ofweight storage, or reduce weight
storage requirement for the same classification accuracy level.

3.2 MODEL DETAILS

Figure 2 depicts the details of the proposed RBNN model. In the beginning of the training
procedure, conventional BNN training algorithmBNN Training is used to train a BNN. After
training, we have atrained BNN having binary weights. Then we reduce the weight bit-width
by one and train a newincrementalBNN. The training algorithm forincrementalBNN is named as
incrementalBNN Training which is shown in Algorithm 1. After theincrementalBNN is trained,
the performance of theenlargedBNN is tested. If the accuracy keeps on improving and there is still
available data storage after weight binarization, we will continue to reduce the weight bit-width by
one and train anotherincrementalBNN.

The methodIncrementalBNN Training is designed to train theincrementalBNN to improve
performance ofenlargedBNN. It is based on the conventional BNN training method. As shown
in Algorithm 1, the main idea of this training method is: bothtrained BNN and incrementalBNN
are used to calculate the output of theenlargednetwork in the forward propagation. During
back-propagation and parameter-update, however, only plastic weights inincrementalBNN are
updated. The binary weights intrained BNNare not modified. One possible hardware and software
implementation of this sub-word operation of synaptic weights are illustrated in Appendix A. Note
that similar to the conventional BNN training algorithm (Zhou et al. (2002)), binary weights are used
in both forward and backward propagation inIncrementalBNN Training, to reduce computational
overhead. Since weights intrained BNN are binary, the multiplication related to weights are
simplified as shift.
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Figure 1: RBNN learning model with an example neural network. The recursive operation increases
the number of weights in the neural network (top) while usingthe same amount of storage for
weights (bottom).

BNN_Training

Bit_width_Reduction

Incremental_BNN_Training

Stop criteria met?
FALSE

END

TRUE

Performance_evaluation

BNN_Training: Training initial BNN using
conventional BNN training method.

Bit-width_Reduction: Reduce bit-width of all
synaptic weights by 1

Incremental_BNN_Training:
Training incremental_BNN with previously Trained_
BNN

Performance_evaluation: Test the performance of

trained enlarged BNN

Figure 2: RBNN training flowchart.

4 EXPERIMENT SETUP

In this and the next section, we will describe the detailed experiment setup and the results for the
MLP-like classifier and the MNIST benchmark. In addition, wewill discuss the setup and results of
applying the proposed RBNN model to CNN classifiers and VAD benchmarks in Appendix B and
C, respectively.

4.1 PERMUTATION-INVARIANT MNIST BENCHMARK

We used the permutation-invariant MNIST to test the performance of the proposed RBNN model
on MLP-like classifier. We use the original training set of 60,000 28-by-28 pixel gray-scale images
and the original test set of 10,000 images. The training and testing data are normalized to [-1, 1]
and zero mean. Following the common practices, we use the last 10,000 images of the training set
as a validation set for early stopping and model selection. We did not consider data augmentation,
pre-processing, and unsupervised pre-training during ourexperiment.
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Algorithm 1 IncrementalBNN Training. C is the cost function for mini-batch,η the learning rate
and L the number of layers. The functionBinarize()specifies how to binarize the weights.Act hid()
andAct out()are activation function of hidden layers and output layer, respectively.

Require: a minibatch of inputs and targets (a0, a
∗), previous weights of incremental BNNW (I),

weights oftrained BNNW (T )
Ensure: updated weights of incremental BNNW (I)(t+1)

1. Forward Propagation
1.1 Computing outputs of hidden layers intrained BNN andincrementalBNN
for k = 1 to L-1do

a(T )k = Act hid(W (T )k · a(T )(k−1))

W (I)bk ← Binarize(W (I)bk)
a(I)k = Act hid(W (I)bk · a(I)(k−1))

end for
1.2 Computing outputs of enlarged BNN
aL = Act out(W (T )L · a(T )(L−1) +W (I)L · a(I)(L−1))
2. Backward propagation
{Please note that only gradients ofincrementalBNN are computed.}
ComputegaL = ∂C

∂aL

knowingaL anda∗

for k = L to 1 do
gW (I)b

k

← (ga(I)k ◦ a
′

(I)k) · (W (I)bk) · a(I)k−1

end for
3. Parameter Update
Please note that only weights of incrementalBNN are updated.
for k = L to 1 do

W (I)T+1
k ←W (I)tk + η · gWIb

k

end for

4.2 NEURAL NETWORK CONFIGURATION AND DATA FORMAT

We consider the storage constraints of mainly hundreds of kBbased on the typical embedded
systems (Shiue & Chakrabarti (1999)). We considered a feed-forward neural network with one or
two hidden layers. We considered several different numbersof neurons in the hidden layer ranging
from 200 to 800. The numbers of the input and output units are 784 and 10, respectively. We used
the tanh opt() for the activation function of the hidden layer and thesoftmax()or linear output for
that of the output layer. We used the classical Stochastic Gradient Descent (SGD) algorithm for
cross-entropy or hinge loss minimization without momentum. We used a small size of batch (1,000)
and a single static learning rate which is optimized for eachBNN. Any other advanced techniques
such as dropout, Maxout, and ADAM are not used for both the proposed and the baseline learning
models. We recorded the best training and test errors associated with the best validation error after
up to 1,000 epochs. The results from 20 independent experiments are averaged for each case.

We used the fixed-point arithmetic for all the computation and data access. The fixed-point
intermediate computations, such as gradient calculation,also use fixed-point arithmetic with
sufficient precision. The translations from wide fixed-point numbers to narrow fixed-point and
binary numbers are performed with simple decimation without using advanced techniques such
as stochastic rounding (Courbariaux et al. (2014)). We saturated values in the event of overflow or
underflow in weight update. The dynamic range of fixed-point representation is optimized to achieve
better accuracy performance.

5 RESULTS AND DISCUSSION

5.1 ACCURACY IMPROVEMENT

Figure 3 depicts the classification errors of the proposed RBNN model across three recursive
iterations. The initial bit-width of weights is eight. In each series of data points in Figure 3, the
leftmost point represents the initial neural network, i.e., with 2 layers of 200 hidden units and
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198,800 weights (= 784 · 200 + 200 · 200 + 200 · 10). At this point, the storage requirement,
defined as the ratio of total storage bits to the number of weights, is 8 bits/weight. The network
at this point, is equivalent to one trained by the conventional BNN model specifically following
Courbariaux et al. (2015). The second leftmost data point inthe series is the neural network after the
first recursive iteration. The network size is enlarged by twice, resulting in the 784×400×400×10
network. This reduces storage requirement to 4 bits/weight. Compared to the initial BNN, the
enlargedBNN achieves∼0.7% and∼0.4% reduction in training and test error rate, respectively.
Finally, after three recursive iterations, the size of the neural network becomes 784×800×800×10
(555,800 weights). It marks the storage requirement as small as 2 bits/weight to achieve the test
error of 2.17%. This accuracy is as good as the fully-connected network using 4× times more data
storage for weights, trained by the conventional BNN model in (Courbariaux et al. (2015)).

Note that we have various ways of using the recycled data storage to enlarge the neural network in the
proposed RBNN model. As shown in Figure 1, we chose a ”tiled” approach where no connections
are made amongincrementalBNNs. This is because it is easier to implement the algorithm in
hardware or map it onto the conventional CPU and GPU (see Appendix A). In Appendix D, we have
the RBNN to train a fully-connected DNN. The results show that with same size of total data storage
for weights, bothtiled and fully-connected exhibit similar test error.
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Figure 3: (left) Training error and (right) test error across recursive iterations in the proposed RBNN
model. The total weight storage assumed in this experiment is 198.8 kB.

5.2 STORAGE AND ARITHMETIC COMPLEXITY

To evaluate the storage and arithmetic complexity of the proposed RBNN, we trained mul-
tiple single-hidden-layer DNNs using the proposed RBNN andthe conventional BNN model
(Courbariaux et al. (2015)). For the conventional model, weconsidered BNN containing 100 to
800 hidden neurons and 6 to 16 bit weight precisions. For the proposed model, we considered 100
to 800 initial hidden neurons and 12 to 16 bit initial weight precisions. Those DNNs require 116 kB
to 1.2 MB data storage for weights.

Figure 4 shows the results of this experiment: the proposed model can achieve 1% less test error
than the conventional model using the similar amount of datastorage. To achieve the similar test
error, the proposed RBNN model requires 3-4× less data storage than the conventional BNN model.

Table 2 shows the detail comparisons of six neural networks out of the 16 networks shown in Figure
4, three of which are trained by the proposed RBNN model (R1, R2, R3) and the other three by
the conventional BNN model (B1, B2, B3) (Courbariaux et al. (2015)). We compare the arithmetic
complexity for training and inferring. For training, to achieve similar accuracy performance (R1
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Figure 4: The storage requirement and test error trade-offsachieved by the proposed RBNN model
and the conventional BNN model. The proposed model achieves3× data storage savings for the
same test error and> 1% lower error for the same data storage.

Table 2: Detail comparisons of RBNNs and BNNs

R1 R2 R3 B1 B2 B3

Initial hidden neurons 200 100 100 800 400 200

Final hidden neurons 800 700 400 800 400 200

Final synaptic weights 635,200 555,800 317,600 635,200 317,600 155,600

Initial weight bit-width 16 16 12 12 12 16

Storage requirement 4 2.28 3 12 12 16

Test error (%) 2.56 2.65 2.76 2.61 2.80 3.60

Arithm., training 2,223,200 2,779,000 1,111,600 1,270,400 635,200 317,600
Shift/Multiply/Add 635,200 555,800 317,600 635,200 317,600 158,800

2,223,200 2,779,000 1,111,600 1,270,400 635,200 317,600

Arithm., inference 635,200 555,800 317,600 635,200 317,600 158,800
Shift,Add 635,200 555,800 317,600 635,200 317,600 158,800

Storage for weights 310kB 155kB 116kB 930kB 465kB 114kB

Total Train Energy (nJ) 2,715.18 2,459.41 1,004.58 231,197.91 115,304.86 655.05
Arithm. 365.24 402.95 123.56 175.67 87.84 67.49

Data Access 2,350.24 2,056.46 881.02 231,022.24 115,217.02 587.56

Table 3: Energy table for 45nm CMOS process

Operation(int)
12-bit 12-bit 12-bit 12-bit 16-bit 16-bit 16-bit 16-bit
ADD/ MULT SRAM DRAM ADD/ MULT SRAM DRAM
SHIFT SHIFT

Energy [pJ] 0.0375 0.126 1.387 240 0.05 0.225 1.85 320

Relative Cost 1 3.4 37 6400 1.3 6 49.3 8533

andB1; R3 andB2), RBNN requires around twice as many add and shift operations as conventional
BNN does. On the other hand, RBNN and BNN have the same amount of multiply operations. Since
the complexity of multiplication is much higher than add andshift, it is important not to increase the
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number of multiplications. For inference, both RBNN and BNNhave the same amount of shift and
add operations. Inference requires no multiplication since MAC uses binary information of weights.

5.3 ENERGY CONSUMPTIONSAVINGS

In Table 2, we also compare the energy dissipations for training. Total energy dissipation per one
data and one epochEtotal is:

Etotal = Earith + Eacc (1)

, whereEarith is the energy dissipation of arithmetic operations andEacc is the energy dissipation
of data storage access for weights.Earith is:

Earith = Nshift · Eshift +Nadd · Eadd +Nmult · Emult (2)

, where Nshift, Nadd, and Nmultiply are the numbers of shifts, adds, and multiplications,
respectively, andEshift, Eadd, andEmult are their energy consumptions.Eacc is calculated as:

Eacc = (2 ·Nweight,SRAM ·Eaccess,SRAM +2 ·Nweight,DRAM ·Eaccess,DRAM ) ·Niteration (3)

, whereNweight,SRAM and Nweight,DRAM are the number of SRAM and DRAM accesses,
respectively, andEaccess,SRAM and Eaccess,DRAM are their respective energy dissipations.
Niteration is the number of recursive iterations in the RBNN and it becomes 1 in the conventional
BNN training model. 2 is factored since weights are accessedtwo times in forward and backward
propagations.

Table 3 summarizes energy cost of each operation. It is basedon the 45nm CMOS process, presented
in Han et al. (2016). We normalized the energy costs to the bit-widths of operations, quadratically
for multiplication and linearly for all the other operations. DRAM access consumes 173× more
energy than SRAM access, and 1,422× than multiplication. Therefore, it is critical to reduce DRAM
access for saving energy. In the conventional BNN traning case, however, we have to store the extra
weights that cannot be stored in SRAM in DRAM. Our RBNN, however, can utilize only SRAM for
weight access during the training process. This differenceresults in∼100× less energy dissipation
in the RBNN.

6 CONCLUSION AND FUTURE WORK

This paper presents a new learning model for on-device training with limited data storage. The
proposed RBNN model efficiently uses limited on-chip data storage resources by recycling the
part of data storage that would have been wasted in conventional BNN model, to add and train
more weights to a neural network classifier. We verified the proposed model with MLP-like
DNN and CNN classifiers on the MNIST and VAD benchmark under the typical embedded device
storage constraints. The results of MLP-like DNNs on MNIST show that the proposed model
achieves 2 bits/weight storage requirement while achieving 1% less test error as compared to
the conventional BNN model for the same storage constraint.Our proposed model also achieves
4× less data storage than the conventional model for the same classification error. The similar to
greater savings are verified with the CNN classifiers and the VAD benchmarks. We expect the future
work of further reduce computation complexity, such as binarization of activation function of BNN
(Courbariaux et al. (2016)). We also expect to apply the RBNNmodel to the ensembles of neural
networks (Zhou et al. (2002), and the mixture of experts (Shazeer et al. (2017)).
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Yann LeCun, Ĺeon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

David Pearce and J Picone. Aurora working group: Dsr front end lvcsr evaluation au/384/02.Inst.
for Signal & Inform. Process., Mississippi State Univ., Tech. Rep, 2002.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Jeremy Roschelle. Keynote paper: Unlocking the learning value of wireless mobile devices.Journal
of computer assisted learning, 19(3):260–272, 2003.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Wen-Tsong Shiue and Chaitali Chakrabarti. Memory exploration for low power, embedded systems.
In Proceedings of the 36th annual ACM/IEEE Design Automation Conference, pp. 140–145.
ACM, 1999.

Doug Vogel, David Kennedy, and Ron Chi-Wai Kwok. Does using mobile device applications lead
to learning?Journal of Interactive Learning Research, 20(4):469, 2009.

Xiao-Lei Zhang and DeLiang Wang. Boosting contextual information for deep neural network based
voice activity detection.IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(2).

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better than
all. Artificial intelligence, 137(1-2):239–263, 2002.

10



Under review as a conference paper at ICLR 2018

A I MPLEMENTATION OF SUB-WORD OPERATION OFRBNN

In the proposed RBNN model, each word contains both non-plastic and plastic weights but we need
to update only the plastic weights. We can implement this sub-word operation using the mask and
bitwise logical operations which are widely supported in the conventional CPUs and GPUs. Figure 5
illustrates a possible implementation. We assume the word size of eight bits, where at the exemplary
moment three already-trained weights take up the top three bits of the word and the weight currently
under training takes the remaining five bits. We fetch this weight word from the storage. We also
generate/fetch a mask wordsynpmaskwhich stores 11100000 in this example. We bitwise-AND
the weight word with the mask word to produce a temporary wordsynpfix. We do the same with the
bitwise inverse of the mask word to another temporary wordsynpplsb, which is then updated via
the RBNN model. Note thatsynpfix is not changed. These two words, then, combined via a bitwise
XOR operation to produce a wordsynpout. This completes one training epoch. As compared to
the conventional BNN model, the proposed RBNN additionallyrequires only two bitwise-AND and
one bitwise-XOR operations. These operations are supported in modern CPUs and GPUs and their
cost is not significant.

5-bit plastic weights
3-bit fixed

weights

3-bit fixed

weights
0 5-bit plastic weights

0
5-bit plastic weights

(updated)

5-bit plastic weights

(updated)

3-bit fixed

weights

0

AND synp_mask AND ~synp_mask

Learning

synp_fix synp_plsb

XOR

synp_update

synp_out

synp_in

Figure 5: Sub-word operation using a mask word and bitwise AND and XOR operations in RBNN.

B APPLICATION OFRBNN TO CONVOLUTIONAL NEURAL NETWORKS

B.1 EXPERIMENT SETUP

We applied the proposed RBNN model to the LeNet5 Convolutional Neural Network (LeCun et al.
(1998)). The network has two convolution layers, one havingsix 5-by-5 and the other having twelve
5-by-5 feature maps. Each of the convolution layers is followed by a 4× dowsampling average-
pooling layer. The LeNet5 has a fully-connected (FC) classifier consist of one input, one hidden,
and one output layer. As in Courbariaux et al. (2015), we usedbinary information of weights in the
convolutional layers and the FC classifier for forward and backward propagations and fixed-point
weights for weight update. We applied the proposed RBNN model on the hidden layer of the FC
classifier.

B.2 RESULTS

We trained multiple CNN classifiers for the MNIST benchmark while changing configurations of
the FC classifier. For the proposed RBNN model, we consideredthe FC classifier containing 200
to 800initial hidden neurons and 16 bitinitial weight precision. For the conventional BNN model
Courbariaux et al. (2015), we considered the FC classifier containing 200 to 2,500 hidden neurons
and 16-bit weight precision. Those CNNs require 81 kB to 1.01MB data storage for all the weights
in the convolutional layers and the FC classifer. Figure 6 shows the trade-off between the test error
and the weight storage requirement of those CNNs. The proposed RBNN model can achieve 2.4%
less test error than the conventional BNN model for the same amount of data storage for weights.
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For the similar test error of∼2.5%, the proposed RBNN model requires more than 6× less weight
data storage than the conventional BNN model.
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Figure 6: Trade-offs between test error and weight storage requirement. The proposed RBNN
achieves more than 6X data storage savings for the same test error and∼2.4% less test error for
the same data storage requirement.

C APPLICATION OFRBNN TO VOICE ACTIVITY DETECTION

We applied the RBNN to train MLP-like DNN classifiers for the VAD benchmark. The VAD
benchmark is based on Aurora 4 (Pearce & Picone (2002)), which has 7,133 utterances from 83
speakers. It also contains five noise scenarios: bus, cafe, park, river, and traffics. The signal-to-noise
ratio of the data used in the experiment is 10 dB. We use the same DNN configurations used in
Sec. 4.2. The input to the DNN (features) are five frames of 16-dimensional band-pass filter-bank
output commonly used in other works Zhang & Wang. Table 4 summarizes the classifier models
trained by the RBNN and the conventional BNN methods. For each noise scenario we list only the
models that achieve the similar test errors. The experimentconfirms that the proposed RBNN model
can save up to 9× data storage than the conventional BNN for the similar levelof detection accuracy.

Table 4: Accuracy and data storage size comparison of the RBNN and the conventional BNN on
VAD benchmark

Scenario
RBNN BNN Data

storage
savings

Weight Hidden neurons Test Weight Hidden Test
bit-width inital/final accuracy(%) bit-width neurons accuracy(%)

bus

16

100/500 5.27

12

900 5.9 6.7×
cafe 100/400 8.8 1100 8.71 8.25×
park 100/600 7.94 1200 8.21 9×
river 100/500 8.15 1000 8.12 7.5×
traffic 100/600 8.05 900 8.07 6.75×

D RBNN IN FULLY-CONNECTEDDNN SYSTEMS

In Sec. 3.1, we have the RBNN to train atiled feedforward DNN. In this section, we experiment to
train afully-connectedDNN using the proposed RBNN. Note that the fully-connected DNN is only
one way of many other possible approaches on how to recycle the data storage to expand a neural
network. Figure 7 illustrates the training process. It starts with an exemplary DNN whose initial
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size is 1×2×2×1. Each weight is n bits. As shown in the first two sub-figures, we first train a tiled
DNN as we did in Sec. 3.1. Then, we start to add the weights thatconnect between tiles (the last two
sub-figures), again by recycling the data storage from the binarization in each recursive iteration.

   
Figure 7: The way to use the proposed RBNN model to train a fully-connected DNN classifier

Figure 8 shows the scaling of test errors over the recursive iterations. The total data storage constraint
and structure of the initial neural network in this experiment are the same as ones of the experiment in
Sec. 5.1, which are 198.8kB and 784×200×200×10, respectively. The first three iterations expands
the DNN in the tiled manner and the last four iterations adds weights that connect the tiles. In the
forth iteration, the neurons of the first hidden layer of the first tile are connected to the neurons
in the second hidden layers of all the other tiles, making theDNN 1/4-connected. The bit-width
of weights are 7 bits. This is because fewer weights are addedthan the first three iterations. In
following iterations, the hidden layers of the first hidden layer of the rest of the tiles are connected
to the hidden neurons of the second hidden layer in the same way as the forth iterations. Figure 8
shows that the fully-connected DNN classifier has the similar accuracy performance as the one has
tiled structure in Sec. 5.1.
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Figure 8: Performance of fully-connected DNN generated by the proposed RBNN model
.
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