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ABSTRACT

This paper presents a storage-efficient learning modeldtiRecursive Binary
Neural Networks for embedded and mobile devices having &dimamount
of on-chip data storage such as hundreds of kilo-Bytes. Tam mdea of the
proposed model is to recursively recycle data storage oflvtgi(parameters)
during training. This enables a device with a given storagestraint to train
and instantiate a neural network classifier with a larger lmemof weights on

a chip, achieving better classification accuracy. Suchiefficuse of on-chip
storage reduces off-chip storage accesses, improvingeedficiency and speed
of training. We verified the proposed training model with gead convolutional
neural network classifiers on the MNIST and voice activitieddon benchmarks.
For the deep neural network, our model achieves data stoeggérement of as
low as 2 bits/weight, whereas the conventional binary Henetwork learning
models require data storage of 8 to 32 bits/weight. With Hreesamount of data
storage, our model can train a bigger network having moreghisj achieving
1% less test error than the conventional binary neural m&tearning model.
To achieve the similar classification error, the convergidrnary neural network
model requires # more data storage for weights than our proposed model. For
the convolution neural network classifier, the proposedehadhieves 2.4% less
test error for the same on-chip storage ar€gorage savings to achieve the similar
accuracy.

1 INTRODUCTION

Deep Neural Networks (DNN) have demonstrated the statbeshrt results in a wide range
of cognitive workloads such as computer vision Krizhevskale(2012) and speech recognition
(Hinton et al. [(2012)), achieving better-than-human pennce for the tasks often considered
too complex for machines. The success of DNNs has indeed/aedi scientists and engineers
to implement a DNN in mobile and embedded devices, dubbedi@snkt of Smart Things
(Kortuem et al.[(2010)). The recent works in this area, hakemostly implement the inference
function of DNN, rather than training, while training is f@mmed in cloud computers and post-
training weights are downloaded to mobile and embeddeddsyLane et al, (2016)).

On-devicdearning, however, becomes increasingly important fontlobile and embedded devices
for the following three reasons. First, an intelligent devbenefits to have the model that is custom-
built for the device itself, its end user, and environmeritisTis because the model tends to be more
accurate and effective if constructed with the considenatif those factors. Second, the training
data from mobile and embedded devices can contain seaaitsitive information, e.g., personal
health data from wearable medical devices. At the risk aidpetaked, users typically do not want to
upload such data onto cloud computers. Finally, in the etatefnet of Things (IoT), we anticipate

a drastic increase in the number of deployed devices, whdntpooportionally increase the number
of learning tasks to be done in the cloud. Coupled with thegderity of training, even for powerful
cloud computers, this can be a computationally challentzisg.

On-device learning, however, entails various challengedgorithms, data, and systems (Roschelle
(2003); Vogel et al.[ (2009)). The most eminent challengeamigg computing systems is high
energy consumption caused by dense computation and dassaedhich is considered prohibitive
for the limited resources of embedded devices. The highheast of data access is caused by
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fetching DNN weights from DRAM (or FLASH) external to a contjmg chip on an embedded
device. Since the data storage size is limited for such céimpehip, the parameters of a DNN
have to be stored in external DRAM and FLASH during trainik@r example, ARM Cortex M3
processor, a processor widely used in commercial wearahlieas such as FitBit, has only 64
kilo-Byte (kB) on-chip data storage. This can only storepngmall size of DNN especially if each
weight is 32-bit float point number. Compared to accessinglop SRAM, accessing off-chip
DRAM incurs 3 to 4 orders of magnitudes more energy and deleyhead. Therefore, fetching
weights every time for each data makes training prohibitivébe implemented on a mobile and
embedded device (Han et al. (2015)).

Recently several techniques such as pruning, distillind,t@narizing weights have been proposed
to compress the parameters of a DNN. This makes it more fedsilfit weights in on-chip SRAM
(Han et al. (2015);_Courbariaux et al. (2015; 2016); Rasteral (2016); Hinton et al. (2015)).
These techniques can also reduce computation overheadevdogwhese works focused on weight
size compressioafter training is finished The data storage requiremehiring training remains
the same.

Similarly, several learning models, which belong to sdezhBinary Neural Networks (BNN), have

been proposed (Courbariaux et al. (2015; 2016); Rastegalii 2016)). These model uses sign
bits (or binary information) of weights in several parts betlearning model notably the part
of multiplying and accumulating weights with inputs/aetions. Although this greatly reduces
computational complexity, each weight still needs to beesgnted in high precision number with
multiple bits (e.g. 32 bits in_Courbariaux et al. (2015; Z)1®astegari et al. (2016)) during the
end-to-end training process. This is because weights labe fine-tuned in the weight update
part. Therefore, this so-called BNN models have not dematest to scale storage requirement for
training below 32 bits/weight.

Our goal is, therefore, to efficiently use the limited amoofn-chip data storage during training.
We also aim to scale computational complexity. Toward tbil gnve propose a new learning model,
Recursive Binary Neural Network (RBNNhis model is based on the process of weight training,
weight binarization, recycling storage of the non-sighgartion of weights to add more weights
to enlarge the neural network for accuracy improvement. &ansively perform this process until
either accuracy stops improving or we use up all the storageahip.

We verified the proposed RBNN model on a Multi-Layer Peraap{MLP)-like and a convolutional
neural network classifier on the MNIST and Voice Activity Petion (VAD) benchmark. We
considered typical storage constraints of embedded sgulgvices in the order of hundreds of
kB. The experiment in the MLP-like classifier on MNIST confgrthat the proposed model (i)
demonstrates 1% less test error over the conventional Bidivileg model specifically following
Courbariaux et al.| (2015) for the same storage constraint§iioscales on-chip data storage
requirement by 4% for the same classification test error rat@0o), marking the storage requirement
of 2 bits/weight. The conventional BNN models.in Courbaxiatial. (2015; 2016); Rastegari ef al.
(2016) exhibit a significantly larger storage requiremerfitd to 32 bits/weight. The experiment of
the CNN classifier for MNIST confirms up tox6reduction of data storage requirement and 2.4%
less test error. For the VAD benchmark, the proposed RBNNegeh 9« savings in data storage
requirement.

The remainder of the paper is as follow. In Sec. 2 we will idtroe the works related to this paper,
including comparison to existing works on distillation,ngpression, BNNs, and low-precision
weights. In Sec. 3 we will describe our proposed model. Sewill4resent the experimental
results and comparisons to the conventional BNN model. llgjna Sec. 5, we will conclude the
paper. The paper includes Appendix A to D to describe additiexperiments and analysis.

2 RELATED WORK

2.1 DISTILLATION AND COMPRESSION OFDNN PARAMETERS

Knowledge distillation/(Hinton et al. (2015)) is a technégio compress knowledge of an ensemble
of DNNSs into one small DNN while maintaining the accuracyth®lugh this technique can scale the
number of weights for deployment systems post-trainingaitnot scale data storage requirement
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for training. Specifically, during training, each of weighs represented in high-precision number,
which needs to be stored in multi-bit data storage.

Another technique is to compress the data size of weightxplpiing redundancies in them. In
Han et al. |(2015), the authors combine four sub-techniquasely weight pruning, quantization,
sharing, and compression coding to reduce the data size ightge Similar to the knowledge
distillation, this technique can be applied to the weightt @are already trained, and cannot scale
data storage requirement of weights during training.

2.2 BINARY NEURAL NETWORK (BNN)

Recent works proposed to use binary information of weighfoutbariaux et al. | (2015);
Baldassi et &l.), activations (Courbariaux et al. (2016astegari et al.| (2016)), and even inputs
(Rastegari et all (20116)) in some parts of training and pa&ting operations. The use of binary
information of weights notably in Multiply-and-Accumuét(MAC) operation can drastically
reduce computational complexity. However, those BNN tégqines still cannot scale the storage
requirement of weights during training. In these works heaeight is represented in 32 bits. This
is because mainstream training models such as stochaatiegt decent requires to update weights
in a fine-grained manner.

2.3 LOW-PRECISION FIXPOINT WEIGHT REPRESENTATION

Several studies have demonstrated that moderately logvéi precision of weights (i.e., quan-
tization) has a tolerable impact on training and post-inginoperations of DNN/[(Gupta etlal.

(2015);/ Courbariaux et al. (2014)). In Gupta et al. (201B§ &uthors trained a DNN having 16-
bit fixed-point weights with the proposed stochastic rongdiechnigue, and demonstrated little to
no degradation in classification accuracy.| In Courbaridwat|g2014), the authors proposed the
dynamic fixed-point representation (i.e., dynamicallyraiag the position of decimal point over

computation sequences) to further reduce the precisianresgent down to 10 bits per synapse.
Using fixed-point representation help to reduce storagairegent and fixed-point arithmetic is

more hardware friendly (Han etlal. (2015)).

3 RECURSIVEBINARY NEURAL NETWORK (RBNN) MODEL

3.1 KEY IDEA

Table[1 shows which information of weights are used in eagh sf training in both conventional
BNN |Courbariaux et al.| (2015; 2016); Rastegari et al. (20&46) our proposed RBNN. The
conventional BNN works (Courbariaux et al. (2015; 2016)stegari et al.[(2016)) use sign bits of
weights during multiply-and-accumulate (MAC) operationféorward and backward propagations.
However, the weight update has to be done with high precisibhnis mandates to store multi-
bit (16 or 32 bits in those works) weights in data storagerdutearning, resulting in no savings
in weight storage requirement. On the other hand, it has baetied that in the trained neural
networks we can use only the sign bits of weights to perforfarence [(Courbariaux etlal. (2015;
2016)) Rastegari et al. (2016)). This vast difference irrdfriirements of weight precision between
learning and post-learning inspires us to create our RBNNeho

As shown in Tablé]l, we also use only the sign bits for MAC opena to reduce computational
complexity for training. The main difference is that we brima weights (keep only the sign bits) and
then we recycle the data storage that are used to store thessgn bits of weights. This recycled
storage is used to add more multi-tsainableweights to the neural network. We then train this new
network having both the binarized non-trainable weightd tire newly-added trainable weights.
We perform these steps recursively, which makes the neatadanks larger and more accurate but
using the same amount of data storage for weights.

Figure[d depicts the process of our proposed RBNN learnindemnaeith an example of the multi-
layer neural network classifier. In the beginning, the nenedwork has one input, two sets of
two hidden, and one output neurons, and eight weights eaghizch has n bits. We first train
this1 x 2 x 2 x 1 network using the conventional back-propagation trairatgprithm for BNN
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Table 1: Comparisons of weight information usage in BNNsRB&N

Steps BNN Proposed RBNN
MAC in forward prop. Sign bits of weights Sign bits of weights
MAC in back prop. Sign bits of weights Sign bits of weights
Weight update All bits of weights All bits of weights
. ) Keep sign bits and recycle storages
Recursive recycling N/A of the other bits for more plastic weights

(Courbariaux et al.| (2015)). After that, we discard all bitscept the sign bit in each weight
(binarization), resulting in & x 2 x 2 x 1 trained network having binary weightsgined BNN).
Then we continue the second iteration of training (the seéaubfigure of Figurgll). Specifically,
we recycle the storage that is used to store the n-1 non-sigrfoweights in thel x 2 x 2 x 1
network. Using this data storage, we add a new network nanoeeimentalBNN comprising eight
additional weights /21 to Wag in Figure[1) to thetrained BNN, expanding the network size to
1 x 4 x 4 x 1 which we name asnlargedBNN In the enlargedBNN, each of the newly-added
weights isn — 1 bits. In other words, thenlargedBNN comprises of oné¢rained BNN that has
eight weight (I, to W) that are trained (binary, non-plastic, marked as soliddim Figurd1L)
and onencrementalBNN with eight weights {15, to Wsg) that are under training (n-1 bits, plastic,
marked as dash lines in Figurk 1). TinerementalBNN is trained together with theained BNN
but only the weights oincrementalBNN are updated.

We repeat the same process of binarization and recyclingudry iteration, thenlargedBNN inte-
grates eight more weights, and the bit-width of newly-adgladtic weights in théncrementalBNN

is reduced by one. At the k-th iteration, threined BNN has8 - (k — 1) neurons and the plastic
weights haver{ — k + 1) bit-width. After the k-th iteration, as shown in the rightst in Figuré 1, the
neural network becomeslax 2k x 2k x 1 with 8 - & binary weights. This network has k times more
weights than the first x 2 x 2 x 1 network. However, the data storage used for weights rentlans
same, scaling the storage requirement per weighfto(= 4-n/4-k), which is k times smaller than
that of the first network. Thus the proposed RBNN can eithkieae better classification accuracy -
enabled by the more number of weights - with the same amouméight storage, or reduce weight
storage requirement for the same classification accuraey. le

3.2 MODEL DETAILS

Figure[2 depicts the details of the proposed RBNN model. ® likginning of the training
procedure, conventional BNN training algorithBNN Training is used to train a BNN. After
training, we have arained BNN having binary weights. Then we reduce the weight bit-width
by one and train a neimcrementalBNN The training algorithm foincrementalBNN is named as
incrementalBNN Training which is shown in AlgorithniL 1. After thncrementalBNN is trained,
the performance of thenlargedBNN is tested. If the accuracy keeps on improving and therelis sti
available data storage after weight binarization, we wdgltinue to reduce the weight bit-width by
one and train anothéncrementalBNN

The methodincrementalBNN Training is designed to train théncrementalBNN to improve
performance oknlargedBNN It is based on the conventional BNN training method. As ghow
in Algorithm[d, the main idea of this training method is: bathined BNN andincrementalBNN
are used to calculate the output of thalargednetworkin the forward propagation. During
back-propagation and parameter-update, however, onbtiplaveights inincrementalBNN are
updated. The binary weights irained BNN are not modified. One possible hardware and software
implementation of this sub-word operation of synaptic vésgare illustrated in AppendixIA. Note
that similar to the conventional BNN training algorithm @thet al.[(2002)), binary weights are used
in both forward and backward propagationlircrementalBNN Training, to reduce computational
overhead. Since weights imained BNN are binary, the multiplication related to weights are
simplified as shift.
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Figure 1: RBNN learning model with an example neural netwditke recursive operation increases
the number of weights in the neural network (top) while usihg same amount of storage for
weights (bottom).

BNN_Training BNN_Training: Training initial BNN using
l conventional BNN training method.

Bit-width_Reduction: Reduce bit-width of all
synaptic weights by 1

Bit_width_Reduction

l Incremental BNN_Training:
Incremental BNN_Training Training incremental BNN with previously Trained

l BNN
Performance_evaluation: Test the performance of
Performance_evaluation trained enlarged BNN

Stop criteria met?

TRUE

Figure 2: RBNN training flowchart.

4 EXPERIMENT SETUP

In this and the next section, we will describe the detailepkeexnent setup and the results for the
MLP-like classifier and the MNIST benchmark. In addition, widl discuss the setup and results of
applying the proposed RBNN model to CNN classifiers and VABdbhenarks in Appendik1B and
[C, respectively.

4.1 PERMUTATION-INVARIANT MNIST BENCHMARK

We used the permutation-invariant MNIST to test the peréoroe of the proposed RBNN model
on MLP-like classifier. We use the original training set of @D 28-by-28 pixel gray-scale images
and the original test set of 10,000 images. The training asting data are normalized to [-1, 1]
and zero mean. Following the common practices, we use th&@0a300 images of the training set
as a validation set for early stopping and model selectioa.dWf not consider data augmentation,
pre-processing, and unsupervised pre-training duringerperiment.
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Algorithm 1 IncrementalBNN Training. C is the cost function for mini-batch the learning rate
and L the number of layers. The functi@marize()specifies how to binarize the weigh#sct hid()
andAct.out() are activation function of hidden layers and output layespectively.

Require: a minibatch of inputs and targetsy( a*), previous weights of incremental BNW (1),
weights oftrained BNN W (T')
Ensure: updated weights of incremental BNIN (7)(“+1)
1. Forward Propagation
1.1 Computing outputs of hidden layerstiained BNN andincrementalBNN
for k=1to L-1do
a(T)k = ACt,hid(W(T)k . a(T)(k_l))
W(I)b « Binarize(W(I)})
a(I)y = Act-hid(W (D), - a(I) (1))
end for
1.2 Computing outputs of enlarged BNN
ajp = ACt,OUt(W(T)L : a(T)(L_l) + W(I)L : Q(I)(L—l))
2. Backward propagation
{Please note that only gradientsiofrementalBNN are computed.
Computey,;, = gTCL knowingz;, anda*
for k=Lto 1do ,
dwiny < Gary, 00 (D) - (WDR) - a(l)x-1
end for
3. Parameter Update
Please note that only weights of incremerB&IN are updated.
for k=_Lto 1do
W(D) WD +n- gwrb
end for

4.2 NEURAL NETWORK CONFIGURATION AND DATA FORMAT

We consider the storage constraints of mainly hundreds ob&8ed on the typical embedded
systems|(Shiue & Chakrabarti (1999)). We considered a feedard neural network with one or
two hidden layers. We considered several different numblengurons in the hidden layer ranging
from 200 to 800. The numbers of the input and output units 84and 10, respectively. We used
thetanh.opt() for the activation function of the hidden layer and sg@tmax()or linear output for
that of the output layer. We used the classical Stochasti@nt Descent (SGD) algorithm for
cross-entropy or hinge loss minimization without momenti\ivie used a small size of batch (1,000)
and a single static learning rate which is optimized for éABIN. Any other advanced techniques
such as dropout, Maxout, and ADAM are not used for both thegsed and the baseline learning
models. We recorded the best training and test errors adedaivith the best validation error after
up to 1,000 epochs. The results from 20 independent expetinage averaged for each case.

We used the fixed-point arithmetic for all the computatiord atata access. The fixed-point
intermediate computations, such as gradient calculatidee use fixed-point arithmetic with

sufficient precision. The translations from wide fixed-pamumbers to narrow fixed-point and

binary numbers are performed with simple decimation withosing advanced techniques such
as stochastic rounding (Courbariaux etlal. (2014)). Weratgd values in the event of overflow or
underflow in weight update. The dynamic range of fixed-paptesentation is optimized to achieve
better accuracy performance.

5 RESULTS ANDDISCUSSION

5.1 ACCURACY IMPROVEMENT

Figure[3 depicts the classification errors of the proposediRBnodel across three recursive
iterations. The initial bit-width of weights is eight. In @aseries of data points in Figure 3, the
leftmost point represents the initial neural network,, iwith 2 layers of 200 hidden units and
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198,800 weights=£ 784 - 200 + 200 - 200 + 200 - 10). At this point, the storage requirement,
defined as the ratio of total storage bits to the number of kigjgs 8 bits/weight. The network
at this point, is equivalent to one trained by the convertiddNN model specifically following
Courbariaux et all (2015). The second leftmost data poitftérseries is the neural network after the
first recursive iteration. The network size is enlarged bigéwresulting in the 784400x400x 10
network. This reduces storage requirement to 4 bits/wei@ampared to the initial BNN, the
enlargedBNN achieves~0.7% and~0.4% reduction in training and test error rate, respegtivel
Finally, after three recursive iterations, the size of teenal network becomes 78800x800x 10
(555,800 weights). It marks the storage requirement aslsma& bits/weight to achieve the test
error of 2.17%. This accuracy is as good as the fully-coretenetwork using # times more data
storage for weights, trained by the conventional BNN mod¢dourbariaux et all (2015)).

Note that we have various ways of using the recycled datagédo enlarge the neural network in the
proposed RBNN model. As shown in Figlide 1, we chose a "tilggffraach where no connections
are made amonicrementalBNNs. This is because it is easier to implement the algorithm in
hardware or map it onto the conventional CPU and GPU (seedip@). In AppendiXD, we have
the RBNN to train a fully-connected DNN. The results showt thigh same size of total data storage
for weights, botttiled and fully-connected exhibit similar test error.

121 Storage constraints: 198.8kB 3.5, , Storage constraints: 198.8kB
k.
1.04 %
Q . —~ k. Firstrecursive
s *| First recursive §3_0 . iteration
° 0.8 ".iteration 5 .
= : o 1s
96 & \*
o - .
£ ' 7] *. Second
£ 0.4 h | 225 .
o *’, Second Q
F o2 N * Third
* Third *
4
2.0 : \
T s 4 3 g 1 8765 4 3 2 1
Storage requirement Storage requirement
(bits/weight) (bits/weight)

Figure 3: (left) Training error and (right) test error agoscursive iterations in the proposed RBNN
model. The total weight storage assumed in this experinsel®8.8 kB.

5.2 STORAGE AND ARITHMETIC COMPLEXITY

To evaluate the storage and arithmetic complexity of theppsed RBNN, we trained mul-
tiple single-hidden-layer DNNs using the proposed RBNN &mel conventional BNN model
(Courbariaux et al. (2015)). For the conventional model,coasidered BNN containing 100 to
800 hidden neurons and 6 to 16 bit weight precisions. For tbpgsed model, we considered 100
to 800 initial hidden neurons and 12 to 16 bit initial weigheégisions. Those DNNs require 116 kB
to 1.2 MB data storage for weights.

Figure 4 shows the results of this experiment: the proposedehcan achieve 1% less test error
than the conventional model using the similar amount of d&deage. To achieve the similar test
error, the proposed RBNN model requires 3-#ss data storage than the conventional BNN model.

Table[2 shows the detail comparisons of six neural netwanksfthe 16 networks shown in Figure
[, three of which are trained by the proposed RBNN mod&l, (B2, R3) and the other three by
the conventional BNN modelH;, B2, B3) (Courbariaux et all (2015)). We compare the arithmetic
complexity for training and inferring. For training, to debe similar accuracy performance&(
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Figure 4: The storage requirement and test error tradeaofieved by the proposed RBNN model
and the conventional BNN model. The proposed model achigxedata storage savings for the

same test error and 1% lower error for the same data storage.

Table 2: Detail comparisons of RBNNs and BNNs

R: Ry Rs B: B Bs
Initial hidden neurons 200 100 100 800 400 200
Final hidden neurons 800 700 400 800 400 200
Final synaptic weights] 635,200 | 555,800 | 317,600 635,200 317,600 | 155,600
Initial weight bit-width 16 16 12 12 12 16
Storage requirement 4 2.28 3 12 12 16
Test error (%) 2.56 2.65 2.76 2.61 2.80 3.60
Arithm., training 2,223,200| 2,779,000| 1,111,600| 1,270,400 | 635,200 | 317,600
Shift/Multiply/Add 635,200 | 555,800 | 317,600 635,200 317,600 | 158,800
2,223,200| 2,779,000| 1,111,600 1,270,400 635,200 | 317,600
Arithm., inference 635,200 555,800 317,600 635,200 317,600 | 158,800
Shift,Add 635,200 555,800 317,600 635,200 317,600 | 158,800
Storage for weights 310kB 155kB 116kB 930kB 465kB 114kB
Total Train Energy (nJ)] 2,715.18 | 2,459.41 | 1,004.58 | 231,197.91| 115,304.86| 655.05
Arithm. 365.24 402.95 123.56 175.67 87.84 67.49
Data Access 2,350.24 2,056.46 881.02 231,022.24 115,217.02 587.56
Table 3: Energy table for 45nm CMOS process
12-bit | 12-bit | 12-bit | 12-bit | 16-bit | 16-bit | 16-bit | 16-bit
Operation(int) ADD/ | MULT | SRAM | DRAM | ADD/ | MULT | SRAM | DRAM
SHIFT SHIFT
Energy [pJ] | 0.0375| 0.126 | 1.387 | 240 | 0.05 | 0.225 | 1.85 | 320
Relative Cost 1 3.4 37 6400 1.3 6 49.3 8533

andBj; R3 andBs), RBNN requires around twice as many add and shift opersagrconventional
BNN does. On the other hand, RBNN and BNN have the same ambomitltiply operations. Since
the complexity of multiplication is much higher than add ahidft, it is important not to increase the
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number of multiplications. For inference, both RBNN and BN&Ve the same amount of shift and
add operations. Inference requires no multiplicationesiM&C uses binary information of weights.

5.3 ENERGY CONSUMPTIONSAVINGS

In Table[2, we also compare the energy dissipations foritrginTotal energy dissipation per one
data and one epodh; ;. is:
Etotal = Earith + Eacc (1)

, WhereE,,.;;, is the energy dissipation of arithmetic operations &Rg. is the energy dissipation
of data storage access for weights,.;;, is:

Eeorith = Nshist - Eshift + Nadd * Eadd + Nmuit - Emalt (2

, where Ngpire, Noad, and Np,uzipiy are the numbers of shifts, adds, and multiplications,
respectively, andv,y;f¢, Faqq, and B, are their energy consumptiongs,.. is calculated as:

Eacc = (2 . Nweight,SRA]W . Eaccsss,SRAM +2- Nweight,DRAJ\l . Eaccess,DRAM) . Niterution (3)
,» Where Nyecight,sram @and Nyeighe, pram are the number of SRAM and DRAM accesses,
respectively, andE,ccess,spam and Egccess, pranv are their respective energy dissipations.
Niteration 1S the number of recursive iterations in the RBNN and it beesrh in the conventional
BNN training model. 2 is factored since weights are accessedimes in forward and backward
propagations.

Table 3 summarizes energy cost of each operation. Itis st 45nm CMOS process, presented
inHan et al.|(2016). We normalized the energy costs to thevitiths of operations, quadratically
for multiplication and linearly for all the other operatjinDRAM access consumes 173nore
energy than SRAM access, and 1,42than multiplication. Therefore, it is critical to reduce BRI
access for saving energy. In the conventional BNN tranirsg chowever, we have to store the extra
weights that cannot be stored in SRAM in DRAM. Our RBNN, howean utilize only SRAM for
weight access during the training process. This differeasalts in~100x less energy dissipation
in the RBNN.

6 CONCLUSION AND FUTURE WORK

This paper presents a new learning model for on-deviceimigiwith limited data storage. The
proposed RBNN model efficiently uses limited on-chip dataragie resources by recycling the
part of data storage that would have been wasted in convet®BNN model, to add and train
more weights to a neural network classifier. We verified theppsed model with MLP-like
DNN and CNN classifiers on the MNIST and VAD benchmark undertjipical embedded device
storage constraints. The results of MLP-like DNNs on MNISW0w that the proposed model
achieves 2 bits/weight storage requirement while achigvitPbo less test error as compared to
the conventional BNN model for the same storage constr&ntr proposed model also achieves
4x less data storage than the conventional model for the saamssifitation error. The similar to
greater savings are verified with the CNN classifiers and #i& Menchmarks. We expect the future
work of further reduce computation complexity, such as hzaion of activation function of BNN
(Courbariaux et all (2016)). We also expect to apply the RBhddlel to the ensembles of neural
networks|(Zhou et all (2002), and the mixture of experts £8baet al.[(2017)).
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A |IMPLEMENTATION OF SUB-WORD OPERATION OFRBNN

In the proposed RBNN model, each word contains both nortiplasd plastic weights but we need
to update only the plastic weights. We can implement thiswatd operation using the mask and
bitwise logical operations which are widely supported ia tonventional CPUs and GPUs. Figlre 5
illustrates a possible implementation. We assume the wipeds$ eight bits, where at the exemplary
moment three already-trained weights take up the top thteefthe word and the weight currently
under training takes the remaining five bits. We fetch thisggeword from the storage. We also
generate/fetch a mask wosynpmaskwhich stores 11100000 in this example. We bitwise-AND
the weight word with the mask word to produce a temporary vggrgafix. We do the same with the
bitwise inverse of the mask word to another temporary weyigpplsb, which is then updated via
the RBNN model. Note thatynpfix is not changed. These two words, then, combined via a bitwise
XOR operation to produce a wosynpout This completes one training epoch. As compared to
the conventional BNN model, the proposed RBNN additionadtyuires only two bitwise-AND and
one bitwise-XOR operations. These operations are supportemodern CPUs and GPUs and their
cost is not significant.

| 3-bit fixed

weights I 5-bit plastic weights |

synp_in

AND synp_maskl l AND ~synp_mask

3-bit fixed \ L
s | 0 | | 0 | 5-bit plastic weights |
synp_fix synp_plsb
l Learning
0 5-bit plastic weights
(updated)
/ synp_update
XOR
3-bit fixed 5-bit plastic weights
weights (updated)
synp_out

Figure 5: Sub-word operation using a mask word and bitwis®ANd XOR operations in RBNN.

B APPLICATION OFRBNN TO CONVOLUTIONAL NEURAL NETWORKS

B.1 EXPERIMENT SETUP

We applied the proposed RBNN model to the LeNet5 Convolafitdfeural Network|(LeCun et al.

(1998)). The network has two convolution layers, one hagird-by-5 and the other having twelve
5-by-5 feature maps. Each of the convolution layers is ¥o#ld by a 4« dowsampling average-

pooling layer. The LeNet5 has a fully-connected (FC) cfasstonsist of one input, one hidden,
and one output layer. As in Courbariaux et al. (2015), we Uxseary information of weights in the

convolutional layers and the FC classifier for forward andkiaaard propagations and fixed-point
weights for weight update. We applied the proposed RBNN rhodéghe hidden layer of the FC

classifier.

B.2 RESULTS

We trained multiple CNN classifiers for the MNIST benchmathile changing configurations of
the FC classifier. For the proposed RBNN model, we considigredrC classifier containing 200
to 800initial hidden neurons and 16 hititial weight precision. For the conventional BNN model
Courbariaux et al. (2015), we considered the FC classifietaining 200 to 2,500 hidden neurons
and 16-bit weight precision. Those CNNs require 81 kB to MBlLdata storage for all the weights
in the convolutional layers and the FC classifer. Fidured@ashthe trade-off between the test error
and the weight storage requirement of those CNNs. The pegpBB8NN model can achieve 2.4%
less test error than the conventional BNN model for the sameuat of data storage for weights.
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For the similar test error 6£.2.5%, the proposed RBNN model requires more thandss weight
data storage than the conventional BNN model.
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Figure 6: Trade-offs between test error and weight storageirement. The proposed RBNN
achieves more than 6X data storage savings for the samertestaad~2.4% less test error for
the same data storage requirement.

C APPLICATION OFRBNN TO VOICE ACTIVITY DETECTION

We applied the RBNN to train MLP-like DNN classifiers for thé benchmark. The VAD
benchmark is based on Auroral4 (Pearce & Picone (2002)),hneés 7,133 utterances from 83
speakers. It also contains five noise scenarios: bus, cale,jpver, and traffics. The signal-to-noise
ratio of the data used in the experiment is 10 dB. We use the 2NN configurations used in
Sec[4.2. The input to the DNN (features) are five frames afliiensional band-pass filter-bank
output commonly used in other works Zhang & Wang. Table 4 sanmes the classifier models
trained by the RBNN and the conventional BNN methods. Foh emise scenario we list only the
models that achieve the similar test errors. The experiwanfirms that the proposed RBNN model
can save up to:9 data storage than the conventional BNN for the similar lefeletection accuracy.

Table 4: Accuracy and data storage size comparison of theNR&MN the conventional BNN on
VAD benchmark

RBNN BNN Data
Scenario | Weight | Hidden neurons Test Weight | Hidden Test storage
bit-width inital/final accuracy(%)| bit-width | neurons| accuracy(%)| savings
bus 100/500 5.27 900 5.9 6.7x
cafe 100/400 8.8 1100 8.71 8.25x
park 16 100/600 7.94 12 1200 8.21 9x
river 100/500 8.15 1000 8.12 7.5%
traffic 100/600 8.05 900 8.07 6.75x

D RBNNIN FULLY-CONNECTEDDNN SYSTEMS

In Sec[3.1, we have the RBNN to trairtiked feedforward DNN. In this section, we experiment to
train afully-connecteddNN using the proposed RBNN. Note that the fully-connect@&iNOs only
one way of many other possible approaches on how to recyelddta storage to expand a neural
network. Figurdl7 illustrates the training process. lttstanith an exemplary DNN whose initial

12
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size is Ix2x2x 1. Each weight is n bits. As shown in the first two sub-figures finst train a tiled
DNN as we did in Se¢,_3l1. Then, we start to add the weightstivatect between tiles (the last two
sub-figures), again by recycling the data storage from tharldation in each recursive iteration.

v
WK
‘7’;“\"\\'

A

i/
>N

Figure 7: The way to use the proposed RBNN model to train g-tdhnected DNN classifier

Figurd 8 shows the scaling of test errors over the recursvations. The total data storage constraint
and structure of the initial neural network in this expernirnare the same as ones of the experimentin
Sec[5.0L, which are 198.8kB and %8200x 200x 10, respectively. The first three iterations expands
the DNN in the tiled manner and the last four iterations addights that connect the tiles. In the
forth iteration, the neurons of the first hidden layer of thstftile are connected to the neurons
in the second hidden layers of all the other tiles, makingDhN 1/4-connected. The bit-width
of weights are 7 bits. This is because fewer weights are atltlt the first three iterations. In
following iterations, the hidden layers of the first hiddegér of the rest of the tiles are connected
to the hidden neurons of the second hidden layer in the sameasvthe forth iterations. Figufé 8

shows that the fully-connected DNN classifier has the sinaitzuracy performance as the one has
tiled structure in Se€¢. 5.1.

3.2
[784-200-200-10]
3.0 " 8b tiled
2.8
S [784-800-800-10]
s 2.64 7b 1/4-connected [784-800-800-10]
= L .
th i [784-400-400-10] 6b half-connected
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0 2.4 [784-800-800-10]
|q_, 4 5b 3/4-connected
224 [784-600-600-10] /’
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Figure 8: Performance of fully-connected DNN generatechieyptroposed RBNN model
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