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Abstract

It is a fundamental problem to construct accurate dense cor-
respondences between two images. Despite the efforts and
promising methods handling relatively small motion, one
remaining challenge is induced by large and complex non-
rigid motion. Aiming at this challenge, the new method
proposed exploits the mutual boosting between the varia-
tional flow and the nearest-neighbor field (NNF). The pro-
posed method “IVANN” gives a very effective solution un-
der rather complex motion, and currently achieved state-of-
the-art performance on both the Middlebury[3] and MPI-
Sintel benchmarks[7].

1 Introduction

Inferring a dense motion field between two images is one
of the most fundamental problems. It can be dated back to
the early 80s with the original seminal work [12]. There
have since been many great advances [19, 8], as indicated
by the Middlebury benchmark [3]. However, a good solu-
tion still remains elusive in challenging situations such as
complex large displacement motions. This paper addresses
particularly the issue in optical flow.

Most existing methods are based on linearizing the op-
tical flow constraint. However, their performance highly
depends on the quality of initial motion field, while large
complex scenarios makes the numerical optimization prone
to low quality local optima. In the absence of any prior
knowledge, zero are used as the initialization, which is then
refined by a gradient-based optimization technique. These
methods can only recover small deviations around the ini-
tial value. To handle large deviations, most methods adopt a
multi-scale framework, with the insight that motion at lower
resolution is generally smaller. Sub-sampling reduces the

Figure 1: Top left, right: Frame 14 and 15 from the Se-
quence “Ambush 2” [7]; Middle left: color-coded motion
from the variational flow [17]; Middle Right: color-coded
motion from the NNF Matching [5]. We color incorrect mo-
tion with red. Bottom left: our final result. Bottom right:
ground truth.

size and motion within, but the reduction in image size leads
to a loss of motion details unrecoverable. Therefore, these
methods perform poorly on image structures with motions
larger than their size, which is an intrinsic limitation of the
traditional framework.

In this paper, we propose to incorporate a different
type of correspondence information between two images,
namely nearest neighbor fields or NNF [5]. An NNF is
defined as, for each patch in one image, the most similar
patch in the other image. While computing exact NNF can
be computationally expensive, a very recent attempt [5, 13]
provides very efficient approximate solutions based on its
strong spatial dependency.
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1.1 Related Work

There is a huge body of literature on optical flow following
the original work of Horn and Schunck [12]. We only dis-
cuss the papers that address the large displacement motion
problem, since it is the main focus of this work.

The coarse-to-fine framework was first proposed in [2].
It has since been adopted by most optical flow algorithms
to handle large motions. [1] was probably the first to note
that the standard coarse-to-fine framework may not be suf-
ficient. Brox and Malik [6] proposed to add robust keypoint
matching with SIFT [14] into the optical flow framework to
handle arbitrarily large motion with no performance sacri-
fice. Xu et al. [19] also proposed to use similar techniques
but with fusion. Both [6] and [19] are based on keypoint de-
tection and matching algorithms and may suffer in regions
with weak texture due to lack of reliable keypoints.

Our work is closely related to [8, 11, 18, 6, 19, 4] com-
bining feature matching with dense registration, especially
to [8, 11, 18, 4] where NNF is also applied. The method
in [8] assumes that the dominant motion patterns are well-
behaved statistically globally, while [15, 11, 18, 4] denoise
motion locally by either edge-aware filtering [15, 4], clus-
tering [11] or max-pooling [18]. It is worth mention that
Deep Matching[18] relies on dense HOG descriptors (His-
togram of Gradient Orientations), which is embedded in a
top-down convolution-pooling framework.

1.2 Contributions

The main contribution of our work is a high-accuracy opti-
cal flow framework that can handle large displacement mo-
tions. In particular we improve upon existing methods in
the following ways:

• We use approximate NNF algorithms to initialize the
dense correspondence field. It contains a high percent-
age of approximately accurate motions to recover the
dominant motion patterns.

• We propose an efficient approach to handle large dis-
placement. Observing that NNF and traditional flow
have complementary power, we formulate the flow es-
timation as a motion segmentation problem by com-
bining NNF and traditional flow results.

• Experimentally, our algorithm achieved a top ranking
on the Middlebury [3] and MPI-Sintel [7] bench-
marks.

Our IVANN Algorithm
1. Construct image pyramids, set scale l = 0,
initialize ul = 0

2. Propagate ul to level 1 + 1

3. Flow Refinement:
3.1 Continuous variational refinement
3.2 Denoised NNF
3.3 Adaptively Fuse results from 3.1 and 3.2 to obtain ul

4. If l is not the finest scale, go to step 2.

Table 1: The proposed IVANN algorithm.

2 Our Solution– the IVANN Method
We formulate our general motion estimation problems as an
optimization problem with the objective function:

E(u) = ED(u) + ES(u) (1)

where ED(u) measures the matching error or data penalty,
and ES(u) regularizes the flow field. We base our penalty
function on the l1-norm to reject outliers and preserve mo-
tion boundaries [19].

To optimize 1 is not trivial. We propose to use a denoised
NNF with [11] as well as a traditional optical flow for nu-
merical optimization. Then, we leverage an adaptive fusion
method to obtain our final solution. The whole framework
is shown in Figure 2.

2.1 Denoised-NNF
Given a pair of input images, we first compute an approxi-
mate NNF between them using PatchMatch [5]. As empir-
ically studied in [8], the NNF is approximately consistent
with the ground truth flow field. Accordingly, we apply the
Non-Rigid Dense Correspondence (NRDC) [11] to aggre-
gate the NNF since it is more robust to complex motion.

2.2 Traditional Variational Flow
We also apply the off-the-shelf classical optical flow meth-
ods to obtain an alternative solution. Specifically, we use
the codes [17], which contain many modern techniques to
achieve good performance, such as a coarse-to-fine frame-
work, warping, robust cost function and so forth.

2.3 NNF Meets Variational Flow
While the denoised NNF enjoys more flexibility and robust-
ness than the traditional variational flow, it also brings a lot
of noises, especially vulnerable in case of large smooth re-
gions, repetitive patterns and occlusions. However, tradi-
tional optical flow methods generally work well. Accord-
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Figure 2: An illustration of our approach: variational flow and NNF are integrated in a multi-scale framework.

Figure 3: Complex Motion on real sequences[13]. The first
and second columns are the input frames. The third col-
umn shows that NNF-Local captures the motion of the fast
moving objects in these examples.

ingly, we also obtain a result from variational flow [17] and
adaptively fuse with denoised-NNF.

Given the two flow fields: u1 from denoised NNF and
u2 from variational flow, our final step is an adaptive fusion.
We formulate the integration of two alternatives as a binary
labeling problem:

u∗ =argmin
u

E(u) = ED(u) + ES(u)

s.t. u(x) ∈ {u1(x),u2(x)}
(2)

and then apply a QPBO fusion [16].

3 Experiments

Qualitative Evaluation

To further evaluate our approach, we apply NNF-Local on
some real sequences with complex motions from VidPair
dataset [13], namely the Sequence “Jackass”, “Prince of
Persia” and “Resident Evil Afterlife”. Some results are

shown in Figure 3. As we can see, NNF-Local can cap-
ture the fast moving objects quite accurately and the results
are visually pleasant.

Quantitative Evaluation

Finally, we quantitatively evaluate our algorithm on the
MPI-Sintel [7] and Middlebury [3] benchmarks.

For the Middlebury benchmark, we listed the Average
End-point Error and Average Angle Error (AAE) of our al-
gorithm in Table 3. At the time of publishing, our method
achieves state-of-the-art quantitative results on the bench-
mark. In Figure 4, we copied the ranking from the evalua-
tion websites [7]. Our method is ranked top at submission.

On the large-scale MPI-Sintel benchmark [7], we ob-
tained an EPE of 7.249 and 5.386 on the final and clean
video frames respectively. Our methods ranks 20-th among
the 70 submissions. Our results are comparable to the state-
of-art result of 5.459 and 3.102. It is noticeable that our
algorithm achieves fairly small “EPE matched” on Sintel,
indicating its ability to perform very well on pixels with
correspondences.

4 Conclusion

In this work, we make an attempt to tackle the dense corre-
spondence problem in complex motion scenarios. We pro-
pose the “IVANN” approach, where the denoised NNF are
interleaved with the variational flow in a top-down frame-
work. Our experiments on MPI-Sintel and Middlebury
benchmarks clearly show that our approach can achieve
satisfactory performance. Furthermore, we notice a recent
work of Deep-Flow [18, 9] uses a deep-learning framework
to obtain high-quality large motion. Our next step will focus
on leveraging deep learning for further improvement.
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Army Mequon Schefflera Wooden Grove Urban osemite Teddy
AEPE 0.07 0.15 0.18 0.10 0.41 0.23 0.10 0.34
AAE 2.89 2.10 2.27 1.58 2.35 1.89 2.43 1.01

Table 2: Experimental results of our algorithm on Middlebury test set [3].

Figure 4: AEPE on the the Middlebury [3] test set.
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