
Under review as a conference paper at ICLR 2018

GENERATIVE ADVERSARIAL NETWORKS USING
ADAPTIVE CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Most existing GANs architectures that generate images use transposed convolu-
tion or resize-convolution as their upsampling algorithm from lower to higher res-
olution feature maps in the generator. We argue that this kind of fixed operation
is problematic for GANs to model objects that have very different visual appear-
ances. We propose a novel adaptive convolution method that learns the upsam-
pling algorithm based on the local context at each location to address this problem.
We modify a baseline GANs architecture by replacing normal convolutions with
adaptive convolutions in the generator. Experiments on CIFAR-10 dataset show
that our modified models improve the baseline model by a large margin. Further-
more, our models achieve state-of-the-art performance on CIFAR-10 and STL-10
datasets in the unsupervised setting.

1 INTRODUCTION

Generative Adversarial Networks (Goodfellow et al., 2014) (GANs) are an unsupervised learning
method that is able to generate realistic looking images from noise. GANs employs a minimax game
where a generator network learns to generate synthesized data from random noise and in conjunc-
tion, a discriminator network learns to distinguish between real and generated data. Theoretically,
the training processes of the two networks intertwine and iterate until both networks reach a Nash
equilibrium where real and synthesized data are indistinguishable.

However, in practice, GANs are notoriously hard to train. For the learning of the generator to happen
effectively, hyper-parameters, as well as the architectures of the generator and discriminator, must
be chosen carefully. Nevertheless, on datasets with visually similar images, such as bedroom scenes
(Yu et al., 2015) and faces (Chen et al., 2016), GANs have produced good results (Radford et al.,
2015). This success, however, does not translate to datasets that have diverse visual categories.
GANs models trained on ImageNet (Russakovsky et al., 2015) were only able to learn basic image
statistics and some shapes, but they did not learn any object (Salimans et al., 2016). Recent works
address this problem by incorporating additional high-level information to guide the generator, such
as training the discriminator in a semi-supervised manner (Salimans et al., 2016), adding a second
training objective to direct the generator toward similar samples from the training set (Warde-Farley
& Bengio, 2016) or using artificial class labels by clustering in the representation space (Grinblat
et al., 2017).

We take a different approach to tackle this problem. We hypothesize that the rigidity of the nor-
mal convolution operator is partially responsible for the difficulty of GANs to learn on diverse
visual datasets. Most GANs generators upsample low resolution feature maps toward higher res-
olution using fixed convolutions (note that a transposed convolution is equivalent to a convolution)
or resize-convolution (Odena et al., 2016a). Such operations are unintuitive, because, pixel loca-
tions have different local contexts and belong to diverse object categories. Consequently, different
pixel locations should have different upsampling schemes. This shortcoming of normal convolu-
tion is especially problematic in the early upsampling layers where higher level information usually
associates with the object shapes and the context of images.

We propose the use of a novel adaptive convolution (Niklaus et al., 2017) architecture, called Adap-
tive Convolution Block, that replaces normal convolutions to address the aforementioned shortcom-
ing of GANs generators. Instead of learning a fixed convolution for the upsampling of all pixels

1



Under review as a conference paper at ICLR 2018

from the lower to the higher resolution feature map, an AdaConvBlock learns to generate the convo-
lution weights and biases of the upsampling operation adaptively based on the local feature map at
each pixel location. AdaConvBlock helps the generator to learn to generate upsampling algorithms
that take into account the local context. We believe that this kind of adaptive convolution is more
intuitive and more akin to the process when a human draws something: the same thought process is
used in the whole drawing but the style of each stroke should vary and depend on the local context
around each pixel position.

We conduct experiments to compare our adaptive convolution method to normal convolution in the
unsupervised setting. We progressively replace all convolutions of a GANs generator with Ada-
ConvBlocks from the lowest resolution to the highest resolution. Experiments on CIFAR-10 dataset
show that the modified adaptive convolution models have superior qualitative and quantitative per-
formance over the baseline architecture and just replacing convolution of the upsampling from the
lowest resolution feature map with adaptive convolution can have significant impacts on the base-
line model. Furthermore, our best models achieve state-of-the-art unsupervised performance on both
CIFAR-10 and STL-10 datasets. Our code and models will be released.

2 BACKGROUND

2.1 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (Goodfellow et al., 2014) is a framework where a generator G
that tries to mimic real data of a target distribution is pitted against a discriminator D that tries to
distinguish the generated samples from the target distribution. G is trained to increase the chance
that generated samples are classified as real data while D is trained to minimize it. The training
processes of D and G alternate and can be formulated as a minimax game:

min
G

max
D

V (D,G) = Ex∼qdata(x)[logD(x)] + Ez∼px(z)[log (1−D(G(z))] (1)

where qdata(x) is the real data distribution on Rn, px(z) is a commonly used distribution such as
N (0, I), z ∈ Rm is a random noise variable drawn from px(z), G : Rm → Rn is a generator
function that maps the random noise variable to the real data space, D : Rn → [0, 1] is a function
that outputs the probability of a data point in Rn belonging to the target real data distribution.
The training process of GANs takes turns to update the discriminator for a number of times before
updating the generator once. Ideally, the discriminator should be trained to convergence before
updating the generator. However, this is computationally infeasible and causes the D to overfit on
datasets with finite data.

In the framework of GANs,G andD can be any differentiable functions. For image generation, they
are usually formulated as convolutional neural networks. The generator G usually consist of a fully
connected layer to project the random variable to a small 3D volume followed by upsampling layers
using convolutions that progressively refine the volume to have the desired spatial dimensions while
the discriminator D is usually constructed as the reverse of the generator, using strided convolutions
to downsample the feature maps.

2.2 DIFFICULTIES IN TRAINING GANS

The difficulties of training GANs is well known. For example, the balance between the strength of
the generator and that of the discriminator is essential for successful training. If D is too strong,
log (1−D(G(z)) will be close to zero and there would be almost no gradient from where G could
learn to generate data. On the other hand, if D is too weak, it will not be able to provide a good
feedback for G to improve. Another prominent issue is mode collapse where G learns to map the
majority of the random distribution px(z) to a few regions in the real data space, resulting in near
duplicate images. Overall, the training of GANs is unstable and very sensitive to hyper-parameters.

Several works have been done to address the difficulties of training GANs. WGAN (Arjovsky et al.,
2017) pioneered the conditioning of D to be a Lipschitz function by using weight clipping. Dani-
helka et al. (2017) proposed an improved version, called WGAN-GP, that enforces this conditioning
by penalizing the gradient of D on the set of straight lines between real and generated samples.
Spectral Normalization GANs (Miyato et al., 2017) is one of the most recent works in this category.

2



Under review as a conference paper at ICLR 2018

Spectral Normalization controls the Lipschitz constant of the discriminator by dividing the weight
matrix of each layer by its own spectral norm, which is equal to its largest singular value. The largest
singular value of a matrix can be efficiently computed by an approximation algorithm (Miyato et al.,
2017). Spectral Normalization has been shown to make GANs robust to hyper-parameters choices
without incurring any significant overhead. For these reasons, we use spectral normalization to train
our architectures.

3 ADAPTIVE CONVOLUTION BLOCK FOR GENERATIVE ADVERSARIAL
NETWORKS

Although a lot of progress has been made in improving the training procedure, datasets with visually
diverse images still pose a challenge for GANs. GANs fail to produce good-looking samples even
on low dimension datasets like CIFAR-10 and STL-10. In this paper, we propose a novel Adaptive
Convolution Block (AdaConvBlock) as a replacement for normal convolutions in GANs generator
to tackle this issue. The AdaConvBlock can be thought of as a way to increase the capacity of the
generator, making it easier to learn the sophisticated multimodal distributions underlying the visually
diverse datasets. The details of our network architectures that use AdaConvBlocks are shown in
section 5.2. Note that the kind of AdaConvBlock we describe in this paper only replace a normal
convolution. In the case of a transposed convolution, an Adaptive Transposed Convolution Block
can be implemented by simply rearranging the input volume (in the same way when converting a
transposed convolution to a normal convolution) first, then apply an AdaConvBlock to the rearranged
volume. Due to implementation difficulties of this rearrangement operation in Tensorflow (Abadi
et al.), the deep learning framework we use, we only experiment with Adaptive Convolution Blocks
in this paper.

3.1 ADAPTIVE CONVOLUTION BLOCK

Consider a convolution operation with filter size Kfilter ×Kfilter and number of output channels
Cout on an feature map that has Cin input channels. At every location, a convolution requires a
weight matrix W of size Kfilter×Kfilter×Cin×Cout as the filters to be convolved with the local
feature map that has spatial dimension of size Kfilter ×Kfilter followed by adding a bias matrix b
of size Cout to each channels of the previous convolution.

For a normal convolution, all spatial locations in the input feature map will have the same weight
Wnormal and bias bnormal. The shared weight and bias matrices serve as the learned variables of a
normal convolution.

For an adaptive convolution, however, all spatial locations do not share the same weight and bias
variables. Rather, they share the variables that are used to generate the weight and bias for each pixel
location based on the local information. For each pixel (i, j), an adaptive convolution consists of two
normal convolutions to regress the adaptive weightW (i, j) and adaptive bias b(i, j) at each location
followed by the local convolution of W (i, j) with the local feature map and the addition of b(i, j)
to the previous local convolution. In this case, the learnable variables of an adaptive convolution are
the weights and bias matrices of the convolutions that are used to generate W (i, j) and b(i, j).

A naive AdaConvBlock learns four matrices Ww,w, Ww,b, Wb,w and Wb,b with the size of
Kadaptive × Kadaptive × Cin × Cadaptive, Cadaptive, Kadaptive × Kadaptive × Cout, Cout, in a
serial order. Ww,w, Ww,b are the weight and bias matrices of the convolution to regress the adaptive
weightW (i, j) for andWb,w, Wb,b are the weight and bias matrices of the convolution to regress the
adaptive bias b(i, j) for each pixel location. Kadaptive is the filter size of the convolution (i.e. the
size of the local window around the pixel location) in the input feature map to regress W (i, j) and
b(i, j) from. Cadaptive = Kfilter ×Kfilter × Cin × Cout is the number of output channels of the
convolution to regress W (i, j), which is equal to the size of the matrix Wnormal of a normal con-
volution. Note that Kadaptive controls the amount of local information used in an AdaConvBlock
and can be different from the regressed filter size Kfilter. Denote Fin as the input feature map,
Fout as the output feature map of a naive AdaConvBlock, the exact formulation of Fout from Fin is

3



Under review as a conference paper at ICLR 2018

described as below:

Wadaptive = ReLU(Fin ∗Ww,w + bw,b) (2)
badaptive = Fin ∗Wb,w + bb,b (3)

Fout = Fin ∗local W adaptive + badaptive (4)

where Wadaptive, badaptive are the 3D volumes consisting of all adaptive convolution weights
W (i, j) and biases b(i, j). Note that Wadaptive contains all the weights W (i, j) that have been
flattened into vectors. W adaptive denotes Wadaptive after the adaptive weight matrices are reshaped
back into the appropriate shape for convolution. ReLU denotes the ReLU activation function. ∗local
denotes the local convolution operator.

One drawback of a naive AdaConvBlock, however, is the extremely expensive operation of com-
puting adaptive convolution weights from the input volume (i.e. Fin ∗ Ww,w). The amount of
memory and computation used by this operation grow proportionally to Kadaptive × Kadaptive ×
Cin × Cadaptive = K2

filter × K2
adaptive × C2

in × Cout. We use depthwise separable convolu-
tion (Sifre & Mallat, 2014) in place of normal convolution to reduce computation cost as well
as memory usage of this operation. A depthwise separable convolution replaces a normal con-
volution with two convolutions: one convolution (called depthwise convolution) that acts sep-
arately on each channel followed immediately by a 1x1 convolution (called pointwise convolu-
tion) that mixes the output of the previous convolution into the number of output channels (Chol-
let, 2016). The first depthwise convolution has memory and computation costs proportional to
K2

adaptive × Cin × Cdepthwise while the second pointwise convolution has memory and compu-
tation costs proportional to Cdepthwise×K2

filter×C2
in×Cout with the depth multiplier Cdepthwise

being the number of output channels for each input channel of the depthwise convolution. For the
AdaConvBlocks in our architectures, cost of the pointwise convolution dominates cost of the depth-
wise convolution. By choosing Cdepthwise = 1, this separation of one big convolution into two
smaller convolutions cuts the amount of memory and computation cost of our models by roughly
K2

adaptive times. Equation 2 is rewritten as:

Wadaptive = ReLU(Fin ∗Ww,w,depthwise ∗Ww,w,pointwise + bw,b) (5)

where Ww,w,depthwise and Ww,w,pointwise are the weight matrices of the depthwise and pointwise
convolution that have size of K2

adaptive × Cin and K2
filter × C2

in × Cout, respectively.

Figure 1 illustrates the full structure of an AdaConvBlock. Note that we do not use Batch Normal-
ization (Ioffe & Szegedy, 2015) in our AdaConvBlock.

3.2 DESIGN CHOICES OF AN ADACONVBLOCK

In this subsection, we discuss some design choices for the Adaptive Convolution Block.

First, both the adaptive convolution weights and biases do not have to be regressed necessarily from
the input volume. Additional transformations can be applied to the input volume before regressing
the weights and biases. We tried a few transformations and found them to cripple the performance
of our network. For example, 3x3 dilated convolutions (Yu & Koltun, 2015) can be used to ex-
ponentially increase the receptive field to the regression of the weights and biases. The increase of
receptive field can make object shapes more coherent. However, in practice, we found using multiple
3x3 dilated convolutions made training more unstable. The same effect can be achieved to by in-
creasing Kadaptive of the adaptive convolution without this downside. Another idea we tried was to
add 1x1 convolutions before the regression to increase the nonlinearity of an AdaConvBlock. How-
ever, experiments showed that they were detrimental to the generator and hammered our model’s
performance.

Next, we considered the choice of activation functions and the lack of batch normalization in an Ada-
ConvBlock. To regress both convolution weights and biases, we did not apply batch normalization
as there were no reasons for the regressed weights and biases to follow any probability distribu-
tion. We applied a non-linearity after the convolution to regress the weights. Empirically, we found
the ReLu activation made AdaConvBlock work better than other activation functions, including the
identity activation (i.e. no activation). To regress the biases, we do not apply an activation function
because doing so results in unwanted effects of limiting the output of an AdaConvBlock in a range.

4



Under review as a conference paper at ICLR 2018

Figure 1: Diagram of an AdaConvBlock with local window size of Kadaptive.

Lastly, as described in section 3.1, to reduce the memory and computation cost, we used depthwise
separable convolutions with a depth multiplier equal to one in place of normal convolutions while
regressing adaptive convolution weights. The use of depthwise separable convolutions also had
another benefit in that it made the memory and computation cost almost insensitive to the parameter
Kadaptive and allowed us to increase the receptive field to the regression at almost no cost. The
choice of depth multiplier came from experiments. Empirically, we found increasing the depth
multiplier not only increased the memory and computation cost but also slowed down the training
progress. And overall, it did not improve our model’s performance.

4 RELATED WORKS

There have been several works that seek to improve GANs performance on datasets that have high
visual variability. Salimans et al. (2016) proposed a semi-supervised training procedure for GANs.
Instead of learning to only distinguish real and fake samples, the discriminator also learns to classify
which class the real data points belong to. Their method turns the discriminator into K + 1-way
classifier, with K classes of the real data and one class for the fake sample. Empirical results
show that this kind of formulation surprisingly improves the quality of generated images. Based on
the findings in this work, Warde-Farley & Bengio (2016) trained a denoising auto-encoder on the
feature of the discriminator penultimate layer. For each generated sample, the squared difference
between the discriminator feature and the reconstructed feature by the denoising auto-encoder for
the penultimate layer is minimized. This additional training objective has the effect of guiding
the generated samples toward regions in the feature space that correspond to higher probability
configurations. The procedure is referred to by the authors as denoising feature matching. Grinblat
et al. (2017) employed a simple but successful artificial class augmentation method for training
GANs by dividing the samples using k-means clustering on the representation learned by the last
hidden layer. Each cluster is treated as one artificial class. The networks are trained as an AC-
GAN (Odena et al., 2016b) using the artificial class labels. The generator uses both the random
noise variable z and the artificial class label to generate fake samples while the discriminator tries
to not only classify whether a sample is real or fake but to also construct the probability distribution
over the artificial class labels. The discriminator starts with one cluster for the unsupervised case.
Training progresses until a cluster is split into two when it has more samples than a threshold. Labels
of the old cluster are then replaced with those of the new ones on the whole dataset. After this step,
training is resumed with the new clusters.

The aforementioned methods have been successful to varifying degrees. However, the common
theme among all of them is that they all try to make use of additional high level information, whether
directly from the training labels or indirectly from the discriminator, to augment new training objec-
tives that can direct the generator toward better sample generation. Our approach is different as we
try to better the generator output by improving the architecture. Our method is complementary to
these existing methods and a combination has the potential to yield better results.

Our method is inspired by the work of Niklaus et al. (2017) that applies adaptive convolution in
video frame interpolation. The authors trained an encoder-decoder network to extract features on

5



Under review as a conference paper at ICLR 2018

Table 1: Architecture of the baseline generator. Mg = 4 for CIFAR-10 and Mg = 6 for STL-10.

z ∈ R128 ∼ N (0, I)
dense→Mg ×Mg × 128

neareast-neighbor 2x resize. 3x3, stride=1, 64 output channels conv. BatchNorm. ReLU
neareast-neighbor 2x resize. 3x3, stride=1, 32 output channels conv. BatchNorm. ReLU
neareast-neighbor 2x resize. 3x3, stride=1, 16 output channels conv. BatchNorm. ReLU

3x3, stride=1, 3 output channels conv. Tanh

two large image patches of the two video frames. The features are then fed into four subnetworks
to estimate four 1D kernels that are then used for the interpolation. Although the base idea of using
adaptive convolution is similar, there are differences between their work and ours that originates
from differences in the problems. For the video interpolation task, they only have to regress a small
number of outputs for each pixel location, while the size of our model, as well as outputs, grow
cubically with the size of our base channels. This constraint makes the efficient use of memory
more important in our work. Secondly, the filters of a video frame interpolation task are limited
in the range [0, 1] but that is not the case for our GANs convolution filters. Therefore, the design
paradigms for the two architectures are different.

5 EXPERIMENTS

We perform experiments on CIFAR-10 (Krizhevsky, 2009) and STL-10 (Coates et al., 2011) datasets
in a purely unsupervised setting. No labels or additional training objectives are used in the training
process. Spectral Normalization (Miyato et al., 2017) is applied to the discriminator to stabilize
training in all experiments. Zero padding is used for convolutions. All weights are initialized using
a truncated normal distribution with mean zero and standard deviation of 0.02. Biases are initial-
ized to zero. Following Miyato et al. (2017), we use Adam optimizer (Kingma & Ba, 2014) with
α = 0.0002, β1 = 0.5, beta2 = 0.999 and batch size of 64 in all experiments. The number of
discriminator updates per generator update is also fixed to one. Aligning with previous works, we
compute the mean and standard deviations of the Inception score (Salimans et al., 2016) over 10
groups of 5000 randomly generated images. These two metrics are reported every 5000 training
iterations and finally, the model with the highest mean score is selected for each architecture.

5.1 BASELINE

Our baseline architecture is based on the Spectral Norm GAN (Miyato et al., 2017) architecture. We
replace all transposed convolution in the generator network with resize-convolution as an upsam-
pling algorithm. The generator consists of six layers. The first layer is a Gaussian noise generator
N (0, I) followed immediately by a fully connected layer to project the noise vector into a 3D vol-
ume that has spatial shape of a square with side of Mg that depends on the dataset and depth of
”base channels” equal to 512. We reduce the base channels of the baseline generator from 512 to
128. The reason is that our architectures using AdaConvBlocks can only fit into GPU memory with
128 base channels. Table 1 show the architecture of the baseline generator. Note that this baseline
generator and the discriminator we use in this work are not balanced, which leads to a relatively low
Inception score.

The discriminator network is kept unchanged from the work of Miyato et al. (2017). We use this
discriminator for the baseline model as well as for all of our architectures.

5.2 OUR ARCHITECTURES

We progressively replace 3x3 convolutions from the third to the last layer of the baseline generator
in Table 1 with AdaConvBlocks. Note that the 3x3 convolution in the last layer is not part of an
upsampling step. However, in our experiments, we find that replacing this convolution also improves
the performance of our model slightly. The AdaConvBlocks that replace normal convolutions must
keep the filter size Kfilter and output channels Cout intact, leaving the only one parameter left

6



Under review as a conference paper at ICLR 2018

Table 2: Architecture of AdaGAN. Mg = 4 for CIFAR-10 and Mg = 6 for STL-10. Kadaptive for
each AdaConvBlock are not specified.

z ∈ R128 ∼ N (0, I)
dense→Mg ×Mg × 128

neareast-neighbor 2x resize. Kfilter = 3, Cout = 64 AdaConvBlock. BatchNorm. ReLU
neareast-neighbor 2x resize. Kfilter = 3, Cout = 32 AdaConvBlock. BatchNorm. ReLU
neareast-neighbor 2x resize. Kfilter = 3, Cout = 16 AdaConvBlock. BatchNorm. ReLU

Kfilter = 3, Cout = 3 AdaConvBlock. Tanh

that can vary is the size of the local window to regress the adaptive weights and biases Kadaptive.
For a generator with base channel of 512, our architectures that use AdaConvBlocks do not fit into
our GPU memory. The memory and computation cost of an AdaConvBlock grows cubically with
the number of input channels Cin and Cin of the AdaConvBlocks, which are determined by the
base channels. Therefore, we have to reduce the number of base channels from 512 to 128 for our
architecture. Consequently, we have to reduce the base channels of our baseline generator as well.

We name our architectures based on the number of AdaConvBlocks used to replace normal convolu-
tion in the baseline model. For example, AdaGAN-1 is the model that has the 3x3 convolution in the
third layer replaced with an AdaConvBlock, AdaGAN-2 is the model that has both convolutions in
the third and the fourth layers replaced with AdaConvBlocks and AdaGAN-3 is the model that has
all convolutions replaced except for the last layer. Additionally, we name AdaGAN as the model that
has all 3x3 convolutions replaced with AdaConvBlocks. Table 2 shows the architecture of AdaGAN
model. For AdaGAN-1, AdaGAN-2 and AdaGAN-3, their architectures can be derived easily from
table 1 and table 2.

The choice of Kadaptive is an important factor for the performance of our architectures. Ideally,
Kadaptive should be chosen separately for each layer. However, for simplicity, we fix Kadaptive

for all AdaConvBlocks in an architecture. We append Kadaptive ×Kadaptive to the name of every
architecture. For example, AdaGAN-1-3x3 is an AdaGAN-1 architecture that has Kadaptive set to
three, AdaGAN-5x5 is an AdaGAN architecture that has Kadaptive set to five.

5.3 CIFAR-10

To show the effectiveness of AdaConvBlocks, we compare the performance of the baseline genera-
tor with our architectures on the CIFAR-10 dataset. We use Kadaptive = 3 for all AdaConvBlock
in this experiment. We train all models for 200,000 iterations. Table 3 shows the Inception score of
the baseline generator versus our architectures. Experimental results show that the Inception score
increases with the number of AdaConvBlocks used in place of normal convolutions. Replacing
the convolution in the first upsampling layer (layer three) with an AdaConvBlock has the highest
impact, improving the mean Inception score from 6.55 to 7.30, a 0.75 points difference. The Ada-
ConvBlock in this upsampling layer helps increase the generator capacity significantly, allowing the
generator to counterbalance the discriminator strength and thus leads to much better training results.
The benefits of AdaConvBlocks weaken gracefully in the subsequent layers and become negligible
in the last layer. Our AdaGAN-3x3 architecture with 128 base channels beats Spectral Norm GAN
(Miyato et al., 2017), which use normal convolutions, by a large margin, even though the latter uses
a generator with 512 base channels and has arguably better balance. Therefore, the increases in
Inception scores of our models compared to the baseline model cannot be attributed to the effect
of balancing between the generator and discriminator alone and the flexibility induced by AdaCon-
vBlocks must have played a major role. This confirms our hypothesis that using normal convolution
in the upsampling layers limits the performance of the generator and adaptive convolution can be
used to alleviate this problem.

To test the effects of Kadaptive, we additionally train another AdaGAN-5x5 model (Kadaptive = 5).
This leads to a small increase in mean Inception score over the AdaGAN-3x3 model. Both of our
AdaGAN models achieve state-of-the-art performance on CIFAR-10 dataset. Table 4, second col-
umn, shows the unsupervised Inception scores of our AdaGAN models compared to other methods
on CIFAR-10. Figure 2 and 3 in appendix A show the samples generated by our AdaGAN models.

7



Under review as a conference paper at ICLR 2018

Table 3: Unsupervised Inception scores on CIFAR-10 of the baseline generator versus our architec-
tures.

Architecture Inception score
Baseline 6.55± 0.08
AdaGAN-1-3x3 7.30± 0.11
AdaGAN-2-3x3 7.74± 0.06
AdaGAN-3-3x3 7.85± 0.13
AdaGAN-3x3 7.96± 0.08

Table 4: Unsupervised Inception scores on CIFAR-10 and STL-10

Method CIFAR-10 STL-10
Real Data (Warde-Farley & Bengio, 2016) 11.24± 0.12 26.08± 0.26
DFM (Warde-Farley & Bengio, 2016) 7.72± 0.13 8.51± 0.13
Spectral Norm GAN Miyato et al. (2017) 7.42± 0.08 8.69± 0.09
Splitting GAN ResNet-A Grinblat et al. (2017) 7.90± 0.09 9.50± 0.13
AdaGAN-3x3 7.96± 0.08 9.19± 0.08
AdaGAN-5x5 8.06± 0.12 9.67± 0.10
AdaGAN-7x7 9.89± 0.20

5.4 STL-10

For STL-10 experiments, we train on the unlabeled set and downsample the images from 96× 96 to
48× 48, following Warde-Farley & Bengio (2016). As STL-10 has bigger image size than CIFAR-
10, a larger Kadaptive maybe helpful. Thus, we train an AdaGAN-7x7 model on this dataset as
well. Our architectures converge much slower on STL-10 therefore we train our models for 400000
iterations. The two AdaGAN-5x5 and AdaGAN-7x7 models achieve state-of-the-art performance
while the AdaGAN-3x3 model is just behind the work of Grinblat et al. (2017). Table 4, third
column, shows the unsupervised Inception scores of our models against other methods. Figure 4, 5
and 6 in appendix A show the samples generated by our models.

6 DISCUSSION

We have demonstrated that using adaptive convolutions to replace normal convolutions in a GANs
generator can improve the performance of a weak baseline model significantly on visually diverse
datasets. Our AdaGAN models were able to beat other state-of-the-art methods without using any
augmented training objectives. The samples generated by our models show that they seem to be able
to learn the global context pretty well and be able to learn the rough shapes of the objects in most
cases and the sample quality is quite reasonable on CIFAR-10 dataset. Furthermore, there are not
much visible convolution artifacts in the generated images. The success of our models suggests that
non-trivial performance improvement can be gained from modifying architectures for GANs.

The approach we take is different from other methods that try to inject high level information into the
discriminator. These existing methods and AdaGAN can complement each other. More experiments
need to be done, but we believe that our architectures can benefit from the augmented training
objectives from existing methods.

Our method is not without a downside. Even though we used depthwise separable convolution to
reduce the cost, the amount of memory and computation is still extremely high. More tricks could be
applied to alleviate this issue. For example, in a similar manner to Niklaus et al. (2017) work, both
the local convolutions and the convolution to regress the adaptive weights for the local convolutions
in our AdaConvBlock can be approximated by separate 1-D convolutions. This can reduce the cost
by more than 50%. Another idea is to exploit locality. We expect the adaptive convolution weights
and biases of a pixel location to be quite similar to its neighbors and can be interpolated in a certain
way. We will address this issue in our future work.

8



Under review as a conference paper at ICLR 2018

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2172–2180, 2016.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223, 2011.

Ivo Danihelka, Balaji Lakshminarayanan, Benigno Uria, Daan Wierstra, and Peter Dayan. Compari-
son of maximum likelihood and gan-based training of real nvps. arXiv preprint arXiv:1705.05263,
2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Guillermo L. Grinblat, Lucas C. Uzal, and Pablo M. Granitto. Class-splitting generative adversarial
networks, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. 08 2017.

Simon Niklaus, Long Mai, and Feng Liu. Video frame interpolation via adaptive separable convo-
lution. arXiv preprint arXiv:1708.01692, 2017.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 1(10):e3, 2016a.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier gans. arXiv preprint arXiv:1610.09585, 2016b.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234–2242, 2016.

Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for texture classification. arXiv preprint
arXiv:1403.1687, 2014.

9



Under review as a conference paper at ICLR 2018

David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with denoising
feature matching. 2016.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

10



Under review as a conference paper at ICLR 2018

A SAMPLES GENERATED BY OUR MODELS ON CIFAR-10 AND STL-10
DATASETS

Figure 2: Samples generated by AdaGAN-3x3 on CIFAR-10 dataset

Figure 3: Samples generated by AdaGAN-5x5 on CIFAR-10 dataset

11



Under review as a conference paper at ICLR 2018

Figure 4: Samples generated by AdaGAN-3x3 on STL-10 dataset

Figure 5: Samples generated by AdaGAN-5x5 on STL-10 dataset

12



Under review as a conference paper at ICLR 2018

Figure 6: Samples generated by AdaGAN-7x7 on STL-10 dataset

13


	Introduction
	Background
	Generative Adversarial Networks
	Difficulties in training GANs

	Adaptive Convolution Block for Generative Adversarial Networks
	Adaptive Convolution Block
	Design Choices of an AdaConvBlock

	Related works
	Experiments
	Baseline
	Our Architectures
	CIFAR-10
	STL-10

	Discussion
	Samples generated by our models on CIFAR-10 and STL-10 datasets

