
Under review as a conference paper at ICLR 2018

DNN REPRESENTATIONS AS CODEWORDS:
MANIPULATING STATISTICAL PROPERTIES VIA
PENALTY REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Performance of Deep Neural Network (DNN) heavily depends on the character-
istics of hidden layer representations. Unlike the codewords of channel coding,
however, the representations of learning cannot be directly designed or controlled.
Therefore, we develop a family of penalty regularizers where each one aims to
affect one of the representation’s statistical properties such as sparsity, variance,
or covariance. The regularizers are extended to perform class-wise regularization,
and the extension is found to provide an outstanding shaping capability. A variety
of statistical properties are investigated for ten different regularization strategies
including dropout and batch normalization, and several interesting findings are
reported. Using the family of regularizers, performance improvements are con-
firmed for MNIST, CIFAR-100, and CIFAR-10 classification problems. But more
importantly, our results suggest that understanding how to manipulate statistical
properties of representations can be an important step toward understanding DNN,
and that the role and effect of DNN regularizers need to be reconsidered.

1 INTRODUCTION

With a Deep Neural Network (DNN), information contained in the input data x is transformed into
multiple representations over multiple layers. Performance of machine learning tasks is known
to heavily depend on the choice of representations over p(x), but p(x) is almost always unknown
and the representations cannot be directly controlled to match an arbitrary design even if p(x) was
known. As of today, the best that can be done is to indirectly affect the representations by adding
constraints, modifying cost function, and tuning learning process, etc.

In Shannon’s information theory, channel coding theory deals with the problem of reliably sending
the maximum amount of information through a given channel p(y|x) (Cover & Thomas, 2012).
Because the channel is known and fixed, coding becomes a design problem where one needs to
design codebook, encoder, and decoder. Usually, the channel is used n times in a sequence to send
a codeword of length n (expressed as xn). A codebook is a collection of all codewords that can be
chosen and sent to the channel, and each message w with information of interest is mapped into one
of the codewords during the design phase.

Because channel coding is a design problem, the optimal solutions are well understood for some of
the important applications such as Gaussian channel and Binary Symmetric Channel (BSC). Gaus-
sian channel is the most important continuous alphabet channel problem. It assumes that the received
signal yn is a noisy version of xn, where the noise is independent of x and additive with an i.i.d.
Gaussian distribution over the n symbols. Surprisingly, when n → ∞, the optimal codebook turns
out to be a collection of codewords that are generated by randomly drawing numbers from a Gaus-
sian distribution. Then, a codeword’s n symbols form an i.i.d. Gaussian distribution (for instance,
see Chap. 9 of Cover & Thomas (2012)). BSC is one of the most popular discrete alphabet channel
problems, and x can take a value of 0 or 1. The received signal y is a corrupted version of x where it
is flipped with a fixed probability. For BSC, Hamming code is a well-known solution where redun-
dant bits are included in xn to resist the corruption (for instance, see Chap. 7 of Cover & Thomas

1

Under review as a conference paper at ICLR 2018

(2012)). The correction capability is dependent on the minimum Hamming distance among all pairs
of two different codewords.

It would be helpful if the elegant channel coding theories can be applied to the design and control
of DNN representation, but unfortunately the representation problem is clearly different from the
channel coding problem. First of all, a learning problem does not have a fixed and known channel
p(yn|xn). Secondly, we can design and control the DNN model to use, but we do not have the
luxury of explicitly designing codebook. Therefore, the representations can be formed in any way
that is possible.

Nonetheless, we can attempt to gain insights and ideas from the established coding theory. In this
work, we first recognize that the optimal solution to Gaussian channel problem has i.i.d. Gaussian
codewords. Although it is unclear if forcing representations of a layer to have an i.i.d. Gaussian
property will be helpful, we experiment the idea by expanding known penalty regularization strate-
gies to include L1, variance, and covariance. L1 and covariance (Cogswell et al., 2016) have been
studied before (individually), but with our best knowledge, variance of a unit (neuron) and using a
combination of them have not been considered in the literature. Secondly, we recognize that only
a single codeword is assigned to a message (label for learning problems) for a well designed code-
book. When this idea is applied to learning problems via penalty regularization, the penalty term
needs to be applied per-class such that we can shape the codeword of each label. Note that almost all
of the existing penalty regularization strategies have been applied to all classes together. Thirdly, we
recognize that Gaussian codebook and Hamming codebook are fundamentally different. A Gaus-
sian codebook uses continuous alphabets in an uncorrelated manner over n symbols, but Hamming
codebook uses only binary values (0 and 1). With the difference, it is inevitable for Gaussian code
to utilize long codewords (very large n) and probabilistically guarantee pair-wise distance, while it
is essential for Hamming code to utilize carefully designed vector-space structures (orthogonality,
null space, etc.) using relatively short codewords. Because we are often interested in a relatively
small number of neurons for representations, we consider a regularization strategy where each la-
bel’s activation for a unit is ‘hardened’ (by cw-VR regularizer that is introduced later) such that the
representation vector is closer to a binary codeword than an i.i.d. Gaussian codeword.

1.1 RELATED WORKS

Regularization
The classical regularizers apply L2 (Hoerl & Kennard, 1970) and L1 (Tibshirani, 1996) penalties
to the weights of models, and they are widely used for DNN as well. Wen et al. (2016) extended
L1 regularizer by using group lasso to regularize the structures of DNN (i.e., filters, channels, filter
shapes, and layer depth). Regularization has been applied to representations, too. Srivastava et al.
(2014) devised dropout that randomly applies activation masking over the neurons. While dropout
is applied in a multiplicative manner, Glorot et al. (2011) used L1 penalty regularization on the
activations to encourage sparse representations. XCov proposed by Cheung et al. (2014) minimizes
the covariance between autoencoding units and label encoding units of the same layer such that
representations can be disentangled. DeCov, developed by Cogswell et al. (2016), is also a penalty
regularizer and it minimizes the off-diagonals of a layer’s representation covariance matrix. DeCov
reduces co-adaptation of units by encouraging units to be decorrelated. It is called CR (Covariance
Regularizer) in this study for consistent naming. Statistics over mini-batch samples or in-layer
activations have been used for regularization, too. Batch normalization proposed by Ioffe & Szegedy
(2015) exploits mini-batch statistics to normalize activations. It was developed to accelerate training
speed by preventing internal covariate shift, but it was also found to be a useful regularizer. In
line with batch normalization, weight normalization, developed by Salimans & Kingma (2016),
uses mini-batch statistics to normalize weight vectors. Layer normalization proposed by Ba et al.
(2016) is a RNN version of batch normalization, where they compute the mean and variance used
for normalization from all of the summed inputs to the neurons in a layer on a single training case.
There are many other publications on DNN regularization techniques, but we still do not have a
sufficient understanding on how they really work. A recent work by Zhang et al. (2016) shows
that the traditional concept of controlling generalization error by regularizing the effective capacity
cannot be applied to DNN.

Class-wise Learning
True class information is available for supervised learning problems. Traditionally, the class in-

2

Under review as a conference paper at ICLR 2018

formation has been used only for evaluating the correctness of predictions and the relevant cost
function terms. Some of the recent works, however, have adopted the class-wise concept in the
learning algorithm itself. In those works, class information is used as a switch or for emphasizing
the discriminative aspects over different classes. As an example, Li et al. (2008) proposed a kernel
learning method using class-wise information to model the manifold structure. They modify locality
preserving projection to be class dependent. Jiang et al. (2011) added label consistent regularizers
for learning a discriminative dictionary. As for DNN, a recent work by Liao et al. (2016) used a
clustering based regularization that encourages parsimonious representations. In their work, similar
representations in sample, spatial, and channel dimensions are clustered and used for regularization
such that similar representations are encouraged to become even more similar. While their work can
be applied to unsupervised as well as supervised problems, our work utilizes a much simpler method
of directly using class labels during training to avoid k-means like clustering. Another recent work
by Belharbi et al. (2017) directly uses class labels to encourage similar representations per class as
in our work. Their work, however, is based on sum of pair-wise distances among the mini-batch
samples of the same labels, and therefore computationally more demanding. The cw-VR (class-
wise Variance Regularizer) and cw-CR (class-wise Covariance Regularizer) in this work are very
simple penalty regularizers that were designed for the purpose of controlling statistical properties of
representations.

2 THREE STATISTICAL PROPERTIES AND CLASS-WISE REGULARIZATION

For channel coding problems, we can characterize the statistical properties of optimal codewords
as discussed in Section 1. Our goal is to make DNN representation vectors to have such statistical
properties and analyze their effects. Because an explicit design and control of representation vector
is not possible for the learning problems, we utilize penalty regularizers to manipulate the statistical
properties instead.

2.1 THREE STATISTICAL PROPERTIES

Three of the most basic statistical properties are considered in this work - sparsity, variance, and
covariance. Sparsity over layer l’s representation vector hl has been extensively studied in the lit-
erature. For variance, we are referring to the variance of a unit’s activation values over mini-batch
samples. When the variance is forced to be very small, the activation value needs to be close to
the sample mean for all labels, and therefore the unit loses its discriminative power over multi-
ple labels. While this is undesirable, regularizing variance turns out to be meaningful because the
cross-entropy cost function prevents the variance becoming zero, and a healthy compromise can be
achieved between cross-entropy and variance terms. This is similar to the situation of classic weight
regularization, where the weights actually never become zero by regularization. For covariance, we
calculate pair-wise covariance over the unit activations of a layer. When covariance is evaluated to
be large for a pair of units (neurons) in the same layer, it indicates that the two are strongly cor-
related. This is undesirable if we are pursuing i.i.d. property over unit activations, and having a
regularizer to control the level of correlation can be useful.

2.2 CLASS-WISE REGULARIZATION

To pursue statistical properties for each class, we adopt the concept of class-wise learning.

For instance, it is undesirable if the variance becomes exactly zero for a unit’s activation as men-
tioned above. Variance of zero for a class, however, can be desirable because it simply states that
a consistent activation value will be observed over all samples with the same class label. Note that
overall variance over all labels can be still large while class-wise variance is zero - as long as inter-
class difference exists, the overall variance will not be zero. We combine this concept of class-wise
regularization to the three concepts of sparsity, variance, and covariance. Analytical formulations
can be found in the following section.

3

Under review as a conference paper at ICLR 2018

3 PENALTY LOSS FUNCTIONS

In this section, we provide the model for calculating basic statistics and formulate the penalty loss
functions that are used for regularization.

3.1 BASIC STATISTICS

For layer l, the output activation vector of a linear filter followed by ReLU is defined as hl =
max(W>

l hl−1 + bl, 0). Because we will be focusing on layer l for most of the explanations, we
drop the layer index and h is used to indicate hl instead. Then, hi is the ith element of h (i.e.
activation of ith unit), and wki is the (k, i) element of W.

To use statistical properties of representations, we define mean of unit i, µi, and covariance between
unit i and unit j, ci,j , using the N samples in each mini-batch.

µi =
1

N

∑
n

hi,n (1)

ci,j =
1

N

∑
n

(hi,n − µi)(hj,n − µj) (2)

Here, hi,n is the activation of unit i for nth sample in the mini-batch. From equation (2), variance
of i unit can be written as below.

vi = ci,i (3)

When class-wise statistics need to be considered, we choose a single label m and evaluate mean,
covariance, and variance using only the data samples with label m in the mini-batch.

µm
i =

1

|Sm|
∑

n∈Sm

hi,n (4)

cmi,j =
1

|Sm|
∑

n∈Sm

(hi,n − µm
i)(hj,n − µm

j) (5)

vmi = cmi,i (6)

Here, Sm is the set containing indexes of the samples whose label is m, and |Sm| is the cardinality
of the set Sm.

3.2 PENALTY LOSS FUNCTIONS

Using the notations in Section 3.1, the loss functions and their derivatives can be derived and sum-
marized as in Table 1. L1-weight and L2-weight are well-known, and they impose L1 and L2
penalties on the weights, respectively. The rest in the table apply penalties on the representation.
L1-rep is similar to L1-weight, but the penalty is applied to the representation h. Obviously, L2
can also be applied to the representation, but it is excluded in this study because it tends to perform
worse than L1 when applied to representation. VR (Variance Regularization) calculates variance
of each unit’s activation over mini-batch dataset and uses the calculated value as the penalty. CR
(Cross-covariance Regularization) uses off-diagonal terms of the mini-batch covariance matrix of
activations as the penalty term. As mentioned earlier, CR in this work is the same as DeCov pre-
sented by Cogswell et al. (2016), but we use the term CR for the consistency of naming. As in
DeCov, we subtract variance terms and consider cross-covariance terms only (see penalty loss func-
tion in Table 1). cw-VR and cw-CR are similar to VR and CR, respectively, except that the values
are calculated for each class using the mini-batch samples with the same class label. cw-L1-rep can
be defined, but its penalty loss function turns out to be the same as L1-rep’s loss function. Therefore,
cw-L1-rep is excluded in this study.

Interpretation of derivatives
While the penalty functions were chosen from the three distinct statistical properties and class-wise
concept, their derivatives show that some of them are closely related. For the derivatives of VR and

4

Under review as a conference paper at ICLR 2018

Table 1: Penalty loss functions of regularizers

Penalty loss function Derivatives

ΩL1-weight =
∑
k

∑
i

|wki|
∂ΩL1-weight

∂wki
= sign(wki)

ΩL2-weight =
∑
k

∑
i

w2
ki

∂ΩL2-weight

∂wki
= 2wki

ΩL1-rep =
∑
n

∑
i

|hi,n|
∂ΩL1-rep

∂hi,n
= sign(hi,n)

ΩV R =
∑
i

vi
∂ΩV R

∂hi,n
=

2

N
(hi,n − µi)

ΩCR =
∑
i

∑
j

(ci,j)
2 −

∑
i

(vi)
2 ∂ΩCR

∂hi,n
=

2

N

∑
j 6=i

ci,j(hj,n − µj)

Ωcw-V R =
∑
m

∑
i

vmi
∂Ωcw-V R

∂hi,n
=

2

|Sm|
(hi,n − µm

i), n ∈ Sm

Ωcw-CR =
∑
m

(
∑
i

∑
j

(ci,j)
2 −

∑
i

(vi)
2)

∂Ωcw-CR

∂hi,n
=

2

|Sm|
∑
j 6=i

cmi,j(hj,n − µm
j), n ∈ Sm

CR, it can be observed that they have similar structures. If VR’s derivative
∂ΩV R

∂hi,n
becomes zero

for all i, then CR’s derivative
∂ΩCR

∂hi,n
becomes zero as well. The vice versa does not hold, but the

effects of VR and CR can be expected to be similar or at least related to each other for the learning
process. In the same way, the relationship between cw-VR and cw-CR is the same as the relationship
between VR and CR. Therefore, we can expect cw-VR and cw-CR to have similar effects, too. On
the other hand, the derivative of L1-rep has a distinct formulation, and it can be expected to have a
distinct effect on learning.

There is another important effect that is not necessarily obvious from the derivative formulations.
For L1-weight and L2-weight, the derivatives are dependent on the weights wki only, and they
are independent of the activations hi,n. Therefore, the weights need to become smaller to reduce
the regularization penalty. For the other five representation regularizers, their derivatives are all
dependent on activation hi,n. So, a simple way to reduce the regularization penalties is to scale
the activations to small values (instead of satisfying the balances among the terms in the equation to
reach zero gradients and force the desired statistical properties). This scaling will not have any effect
on prediction output as long as all the elements of hl are scaled together to αhl - the last softmax
layer works as a normalization function for the output layer, and therefore the cross-entropy penalty
term is not affected by such a scaling. This means that there is a chance for the learning algorithm
to squash activations just so that representation regularization terms can be ignored. As we will
see later, indeed activation squashing happens by learning, but the desired statistical properties are
still sufficiently enforced. Nonetheless, it must be possible to design better penalty regularizers
that are immune to activation squashing, and such regularizers might be much more effective for
manipulating statistical properties of representations.

4 EXPERIMENTS - MNIST

In this section, we consider ten regularization strategies and compare them using the MNIST dataset
(LeCun et al., 1998). We use a Multilayer Perceptron (MLP) with five hidden fully connected layers
and an output layer. Each hidden layer has 100 units with Rectified Linear Unit (ReLU) activation
function, and the output layer consists of 10 softmax units. All experiments (in this work) were
carried out using TensorFlow 1.3.

5

Under review as a conference paper at ICLR 2018

Table 2: Error performance of popular regularizers (MNIST)

Layer Baseline Penalty on weight Implicit method
L1-weight L2-weight Dropout BN

All 3.06±0.15 2.90±0.08 2.96±0.09 4.08±0.06 2.69±0.06

Table 3: Error performance of representation regularizers (MNIST)

Layer All classes Class-wise
L1-rep VR CR cw-VR cw-CR

Output 2.61±0.04 2.67±0.15 2.62±0.07 2.56±0.02 2.55±0.08
Layer 5 2.61±0.11 2.70±0.03 2.67±0.04 2.63±0.05 2.61±0.06
Layer 4 2.75±0.05 2.89±0.11 2.69±0.13 2.67±0.12 2.71±0.04
Layer 3 3.35±0.08 3.16±0.09 3.11±0.13 3.22±0.06 3.22±0.06
Layer 2 3.40±0.11 3.15±0.21 3.01±0.10 3.14±0.10 3.24±0.11
Layer 1 4.31±0.14 2.98±0.09 3.13±0.09 3.25±0.04 3.14±0.03

Table 4: Error performance of representation regularizers - multiple layers (MNIST)
L1-rep VR CR cw-VR cw-CR

Output 2.61±0.04 2.67±0.15 2.62±0.07 2.56±0.02 2.55±0.08
Output, 5 2.48±0.12 2.67±0.11 2.43±0.08 2.46±0.07 2.55±0.10
Output, 5, 4 2.78±0.11 2.58±0.06 2.80±0.12 2.53±0.07 2.48±0.07
Output, 5, 4, 3 2.79±0.10 2.78±0.08 2.83±0.14 2.80±0.10 2.72±0.04
Output, 5, 4, 3, 2 3.19±0.10 2.91±0.13 2.77±0.07 2.90±0.10 2.75±0.07
All 3.26±0.09 2.86±0.07 2.80±0.08 2.83±0.07 2.85±0.12

4.1 PERFORMANCE RESULTS

For each regularization term, the level of regularization was determined by tuning the penalty loss
weight using a validation dataset and a grid search. Then, we trained each model five-times and
calculated the test error performance as the average and one standard deviation over the five perfor-
mance results. In Table 2 and Table 3, the results show that representation regularizers outperform
the popular regularizers and that the representation strategies perform better when applied to upper
layers of DNN. Interestingly, the best performance is achieved by applying representation regular-
ization to the output layer as shown in Table 3. This might be because the regularizer directly affects
only the regularizing layer and the layers below, or because manipulating statistical properties is
more effective for the higher layer representations that have stronger or codeword-like structures.
To better understand the effect of a layer, multiple layer results are shown in Table 4. The best per-
formance is achieved when output layer is regularized together with one or two upper hidden layers.
Among all the results in the three tables, CR performs best and achieves 2.43% of error.

4.2 STATISTICAL PROPERTIES OF 10 REGULARIZATION STRATEGIES

We use nine metrics to compare the statistical properties of the ten regularization strategies. Among
the nine metrics, first seven of them are calculated by directly evaluating the penalty loss functions
shown in Table 1. The raw evaluation values, however, are difficult to interpret because they have
different scales. So, we normalize the metrics as following (see the raw evaluation values shown in
Table 10 and Table 11). First, square-root is applied to L2-weight, VR, and CR because their units
are quadratic, and square-root of square-root is applied to cw-VR and cw-CR because their units are
quartic. Then, all the metrics of each regularizer are divided by the regularizer’s own

√
ΩL2-weight

such that all are normalized with respect to its 2-norm weight values. Finally, all the metrics are
normalized by baseline’s metrics and 100 is multiplied such that we can focus on the relative change
in percentage compared to the baseline’s metrics. The remaining two metrics are the average number
of activated classes per unit as the measure of sparsity and ratio of dead units, and they are explained
in Appendix C. ΩL1-weight and ΩL2-weight are calculated from the weights of all layers excluding
biases, and the others are calculated from layer 5’s activations using test dataset.

6

Under review as a conference paper at ICLR 2018

Table 5: Evaluation of statistical properties (layer 5) - popular strategies

Metric Baseline Penalty on weight Implicit method
L1-weight L2-weight Dropout BN

ΩL1-weight (all) 100.00 88.05 92.25 99.14 84.82
ΩL2-weight (all) 100.00 100.00 100.00 100.00 100.00
ΩL1-rep 100.00 115.28 110.26 36.11 16.94
ΩV R 100.00 113.97 109.58 61.18 27.69
ΩCR 100.00 111.55 107.51 39.35 5.80
Ωcw-V R 100.00 114.08 109.68 72.91 50.50
Ωcw-CR 100.00 112.68 108.55 78.49 20.54
Avg Act Class 5.24 5.54 5.35 4.60 2.48
Ratio Dead Unit 14% 5% 9% 0% 1%

Table 6: Evaluation of statistical properties (layer 5) - representation regularizers

Metric All classes Class-wise
L1-rep VR CR cw-VR cw-CR

ΩL1-weight (all) 93.08 96.42 95.83 86.85 84.14
ΩL2-weight (all) 100.00 100.00 100.00 100.00 100.00
ΩL1-rep 1.07 9.16 9.73 3.41 5.49
ΩV R 7.77 9.24 9.42 3.91 5.28
ΩCR 0.33 0.64 0.63 0.15 0.27
Ωcw-V R 19.85 28.12 29.61 11.25 14.27
Ωcw-CR 3.69 6.79 7.15 1.66 2.37
Avg Act Class 0.23 5.12 5.38 4.14 5.29
Ratio Dead Unit 77% 9% 5% 23% 7%

We can observe two distinct groups of regularizers by investigating Table 5 and Table 6. We can
observe that the representation regularizers have much smaller values for the representation metrics.
This is because the representation regularizers squash activations in the way described in Section 3.2.
As mentioned in Section 3.2, VR and cw-VR are related to CR and cw-CR, respectively. We can see
that their values of metrics are similar to each other. Despite this similarity of the five representation
regularization, L1-rep and cw-VR have unique characteristics. L1-rep obviously enforces sparsity
and causes much more dead units than the others. The regularizer cw-VR always shows the smallest
metric values among four strategies (VR, CR, cw-VR, and cw-CR). This can be an evidence of the
four regularizers’ close relationship. The metric values of dropout and batch normalization (BN) are
located somewhere between baseline and representation regularizers. They cause similar effects on
representation metrics as the representation regularizers, but much less effect are observed. It is also
interesting to note that both dropout and BN have only 0∼1% of dead units (neurons). Dropout and
BN are implicit methods in the sense that they do not target any particular statistical property, but
they certainly seem to have distinct effects compared to the other regularizers.

4.3 VISUALIZATION OF REPRESENTATIONS

Due to activation squashing, metrics of statistical properties can become misleading. Therefore, we
visualize the representation of Layer 5 to more intuitively understand the statistical properties that
are affected by the regularizers. Samples for three regularizers are shown in Figure 1 and Figure 2,
and all figures for the ten regularizers are shown in appendix (Figure 3 and Figure 4).

Histogram of a single unit
We first visualize the distribution of activation per unit in Figure 1 to observe sparsity and vari-
ance properties. Activation histograms were generated by using 10,000 test data, and each color
corresponds to a different class. Since activations are generated as the output of ReLU activation
function, many have zero value that can distort the histogram. We, therefore, excluded zeros from
activations when drawing the histogram plots. In Figure 1(a), it can be seen that baseline has a large
class-wise variance and inter-class overlaps. The histogram of cw-VR in (b), however, shows the
effect of separating the classes because class-wise variance is significantly reduced. For each class,

7

Under review as a conference paper at ICLR 2018

the activation is ‘hardened’. L1-rep in (c) can be confirmed to have only one class that is activated,
and this confirms the sparsity. As described in Table 6, Avg Act Class of L1-rep is close to zero,
so most of its histograms show very few active samples.

Figure 1: Histogram of a sample nueron’s activation values over test dataset. The sample was chosen
from h5. Compared to baseline, cw-VR clearly shows non-overlapping distributions for different
labels. L1-rep shows a similar distribution shape as in the baseline, but only a single label is activated
in this example. Best viewed in color.

Scatter plot of a pair of units
To show the relationship between two representation units, we randomly chose two units from a
representation vector h5 and drew a scatter plot of their activation values for the test dataset. As
shown in Figure 2, baseline shows a modest linearity, which is consistent with the high covariance
value. Since CR in (b) reduces cross-covariance per unit, it can be seen that overall linearity is sig-
nificantly reduced compared to the baseline and the randomly chosen pair of units becomes almost
independent. In the same way, cw-CR has reduced class-wise cross-covariance. Furthermore, its
class-wise variance is small and thus end up having small ball-shaped concentrations of points.

⠀愀⤀ 䈀愀猀攀氀椀渀攀 ⠀戀⤀ 䌀刀 ⠀挀⤀ 挀眀ⴀ䌀刀

Figure 2: Scatter plot of activation values of randomly chosen two units from h5. Compared to
baseline, CR has clearly less correlation indicating less co-adaptation. cw-CR also shows low co-
adaptation, but it has smaller ball shapes per label because of the low class-wise variance. Best
viewed in color.

5 EXPERIMENTS - CIFAR-10/100

While performance improvement is not the primary focus of this work, we provide additional test
results with performance evaluations and show that the representation regularizers are useful for
pushing the accuracy performance to the next level. In particular, we provide additional test results
for CIFAR-100 and CIFAR-10 datasets (Krizhevsky & Hinton, 2009). For CIFAR-100, we have
chosen a toy CNN architecture to confirm performance improvement of representation regulariz-
ers. Concurrently using two of the regularizers is experimented as well. For CIFAR-10, we have

8

Under review as a conference paper at ICLR 2018

Table 7: Error performance of regularizers (CIFAR-100)
Regularizer Train error Test error

Baseline None 25.50 56.02

Penalty on weight L1-weight 18.16 55.99
L2-weight 33.75 54.93

Implicit method

Dropout (fc) 28.02 55.28
Dropout (all) 79.28 80.08
BN (fc) 28.28 55.33
BN (all) 8.63 57.82

Penalty on
representation

Single

L1-rep 98.93 99.00
VR 27.02 53.66
CR 33.24 54.67
cw-VR 22.85 54.15
cw-CR 27.84 53.78

Combination

VR + CR 13.88 54.68
VR + cw-VR 19.43 56.12
VR + cw-CR 28.53 54.94
CR + cw-VR 21.11 53.30
CR + cw-CR 18.05 54.75
cw-VR + cw-CR 25.77 55.64
L1-rep + VR 98.93 99.00
L1-rep + CR 98.93 99.00
L1-rep + cw-VR 98.93 99.00
L1-rep + cw-CR 98.93 99.00

tested representation regularizers using Residual Network (ResNet) that is known as one of the best
performing deep neural networks for image data.

5.1 COMBINING MULTIPLE STRATEGIES: CIFAR-100

We use a toy CNN network for experimenting with CIFAR-100. The CNN network consists of
four convolution layers and a fully connected layer, all with 100 hidden units. ReLU is used as the
activation function. The second, third, and fourth convolution layers are followed by a max pooling
layer. The last 10,000 instances of 50,000 training data were used as the validation data. Using the
validation data, validation performance was evaluated for the regularizer weight values of {0.1, 0.01,
0.001, 0.0001}. The best weight value was found for each regularizer, and the test performance was
evaluated for the fixed weight values. For representation regularizers, regularization was applied to
the fully connected layer. The performance results are shown in Table 7. From the table, it can be
seen that the test error is improved from baseline 56.02% to 53.66% by using a single regularizer
(VR) and to 53.30% by using two regularizers (CR and cw-VR). Therefore, 2.72% of improvement is
achieved by the best performing regularizer combination. Aside from the performance improvement,
it is interesting to observe that L1-rep consistently fails to train for the CIFAR-100 data. With 100
labels, too much sparsity might hurt the performance. This is a plausible hypothesis considering
that we have only 100 neurons to encode 100 labels. A shared use of neurons over multiple classes
might be a better direction to pursue. In general, the relationship between the number of labels and
the desired statistical properties of representation remains a topic to be studied.

5.2 PERFORMANCE IMPROVEMENT OF RESNET-32

ResNet was first proposed by He et al. (2016). ResNet consists of multiple basic blocks that are
serially connected, and shortcut connections to force residuals to be calculated. We apply five reg-
ularization strategies without modifying the ResNet-32 architecture. Regularization was applied to
the output layer only. Experimental results in Table 8 show that performance is improved over the
state-of-the-art ResNet-32 model, and cw-VR shows the best performance. This indicates that rep-
resentation regularizers are compatible with ResNet, and most likely also with other state-of-the-art
models.

9

Under review as a conference paper at ICLR 2018

Table 8: Error performance of regularizers on ResNet-32 (CIFAR-10)
Model He et al. Ours

ResNet-32 7.51 7.39
ResNet-32 + L1-rep 7.27
ResNet-32 + VR 7.22
ResNet-32 + CR 7.27
ResNet-32 + cw-VR 7.17
ResNet-32 + cw-CR 7.21

6 CONCLUSION

In this work, we have investigated five different penalty regularizers for manipulating statistical
properties of DNN representations. The regularizers were conceived by examining optimal code-
words of well-known channel coding problems, and the three statistical properties of sparsity, vari-
ance, and covariance were integrated into the regularizers along with the concept of class-wise reg-
ularization. It was found that many statistical properties including cross-covariance, co-adaptation,
per-class variance, average number of active class per-unit, and the ratio of dead units can be ma-
nipulated. Each regularizer, however, tended to manipulate multiple properties at the same time,
making it difficult to manipulate each property individually. While manipulation was shown to be
possible and helpful for improving the performance of all three DNN classification problems that
were investigated, it is still unclear if any statistical property of representation is generally helpful
when strengthened. Due to the complicated nature of learning process where back-propagation af-
fects not only the signal of interest but also other signals and irrelevant noise, it still remains an
open question on how to establish procedures that generally improve learning of any deep learning
problems.

The contributions of this work can be summarized as follow. First, a complete set of very sim-
ple regularizers for controlling sparsity, variance, and covariance of representations was presented.
Among them, VR, cw-VR, and cw-CR have been designed and used for the first time and they work
very well. The visualizations clearly show that the new regularizers are effective for manipulating
statistical properties of representations in new ways. Secondly, by analyzing statistical properties
in a quantitative way, we have shown that none of the popular regualrizers works in a distinct way.
Even the well-known dropout does not control co-adaptation(covariance) only. In fact, sparsity and
class-wise variance are affected together by dropout, and therefore it is difficult to claim if indeed
reduction in co-adaptation is why dropout works well. Thirdly, we have provided partial results on
which statistical properties can be helpful or harmful for different learning tasks (tasks with more
labels, with more complexity, etc.). This part needs to be further investigated to see if general rules
can be derived.

ACKNOWLEDGMENTS

To be added.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Soufiane Belharbi, Clement Chatelain, Romain Herault, and Sebastien Adam. Neural networks
regularization through invariant features learning. arXiv preprint arXiv:1709.01867, 2017.

Brian Cheung, Jesse A Livezey, Arjun K Bansal, and Bruno A Olshausen. Discovering hidden
factors of variation in deep networks. arXiv preprint arXiv:1412.6583, 2014.

Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing over-
fitting in deep networks by decorrelating representations. 2016.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

10

Under review as a conference paper at ICLR 2018

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pp. 315–323, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Zhuolin Jiang, Zhe Lin, and Larry S Davis. Learning a discriminative dictionary for sparse coding
via label consistent k-svd. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pp. 1697–1704. IEEE, 2011.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jun-Bao Li, Jeng-Shyang Pan, and Shu-Chuan Chu. Kernel class-wise locality preserving projection.
Information Sciences, 178(7):1825–1835, 2008.

Renjie Liao, Alex Schwing, Richard Zemel, and Raquel Urtasun. Learning deep parsimonious
representations. In Advances in Neural Information Processing Systems, pp. 5076–5084, 2016.

Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks. In Advances in Neural Information Processing Systems,
pp. 901–909, 2016.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning
research, 15(1):1929–1958, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pp. 267–288, 1996.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

11

Under review as a conference paper at ICLR 2018

APPENDIX

A PERFORMANCE OF POPULAR REGULARIZERS WHEN APPLIED TO EACH
LAYER

Table 9: Error performance of popular regularizers - applied to each layer

Layer Baseline Penalty on weight Implicit method
L1-weight L2-weight Dropout BN

All

3.06±0.15

2.90±0.08 2.96±0.09 4.08±0.06 2.69±0.06
Output 3.02±0.15 2.96±0.06 2.99±0.18 2.97±0.08
Layer 5 2.98±0.05 2.99±0.13 2.80±0.08 3.04±0.09
Layer 4 2.98±0.08 2.98±0.09 2.67±0.05 2.84±0.15
Layer 3 3.04±0.09 3.03±0.18 2.67±0.16 2.94±0.13
Layer 2 2.91±0.05 2.76±0.16 2.70±0.08 2.84±0.16
Layer 1 2.93±0.05 2.52±0.10 3.07±0.07 2.58±0.07

B EVALUATION OF STATISTICAL PROPERTIES

Table 10: Evaluation of statistical properties (raw) - popular regularizers

Property Baseline
Penalty on weight Implicit method

L1-weight L2-weight Dropout BN

ΩL1-weight (all) 9795.03 7504.60 8220.21 9461.52 9488.60

ΩL2-weight (all) 607.46 459.85 502.71 576.60 792.24

ΩL1-rep 3.24× 106 3.25× 106 3.25× 106 1.14× 106 6.27× 105

ΩV R 865.69 851.24 860.34 307.64 86.59

ΩCR 58178.00 54803.10 55650.20 8551.84 255.31

Ωcw-V R 2398.03 2327.79 2377.46 610.58 265.46

Ωcw-CR 63726.20 58891.60 60610.20 21795.60 193.26

Table 11: Evaluation of statistical properties (raw) - representation regularizers

Property
All classes Class-wise

L1-rep VR CR cw-VR cw-CR

ΩL1-weight (all) 9975.62 9732.16 9826.06 9843.84 9772.89

ΩL2-weight (all) 727.22 645.03 665.57 813.20 853.98

ΩL1-rep 38183.20 3.06× 105 3.39× 105 1.28× 105 2.11× 105

ΩV R 6.26 7.85 8.43 1.78 3.40

ΩCR 0.80 2.55 2.55 0.19 0.64

Ωcw-V R 5.34 16.91 22.15 0.69 1.97

Ωcw-CR 0.17 1.53 2.00 8.83× 10−3 0.04

12

Under review as a conference paper at ICLR 2018

C METRICS

Activated class and dead unit
ReLU’s output becomes positive when the input has a positive value. In this work, we say a class
is activated for a nueron if the probability of the neuron’s output being positive is above a threshold
for the given class. We use the entire test dataset to check the probability, and threshold value of 0.9
is used for the evaluations. If many classes are activated for a neuron, it indicates that the neuron is
used for representations of many classes. On the other hand, if only a single class is activated for
a neuron, it indicates that the neuron is used for representations of only one class and kept zero for
all the other classes. When the number of activated class is zero for a neuron, it indicates that the
neuron does not carry any information and may be ignored. Such a neuron is called a dead unit.
The equations below show how to calculate if a class m is activated for a nueron i. I is an indicator
function, and Nu is the number of units in the layer.

Num Act InClass(i,m) =
∑

n∈Sm

I(hi,n > 0)

Act Class(i,m) = I(
Num Act(i,m)

|Sm|
> threshold)

Average number of activated classes
The number of activated classes can be calculated for each unit. Then, the average number of
activated classes can be calculated over all units in the same layer. WhenAvg Act Class is large for
a regularizer, it means the regularizer tends to encourage many units to be used for representations.
If the value is small, it indicates the regularizer makes only a small number of units to be coded in
positive values for the representation.

Num Act Class(i) =
∑
m

Act Class(i,m)

Avg Act Class =

∑
iNum Act Class(i)

Nu

Ratio of dead units
Typically, ’dead neuron’ is widely used to represent neurons that are not activated - output is zero all
the time over all classes. To extend the concept of ‘activated class’, we define All Class Dead(i)
andRatio Dead Unit as below. WhenRatio Dead Unit is large, it indicates many of the neurons
can be removed without affecting the representation.

All Class Dead(i) = I(
∑
m

Act Class(i,m) = 0)

Ratio Dead Unit =

∑
iAll Class Dead(i)

Nu

13

Under review as a conference paper at ICLR 2018

D VISUALIZATION OF REPRESENTATIONS

D.1 REPRESENTATION HISTOGRAMS OF 10 REGULARIZERS

(a) Baseline (f) L1-rep

(b) L1-weight (g) VR

(c) L2-weight (h) CR

(d) Dropout (i) cw-VR

(e) BN (j) cw-CR

Figure 3: Histograms of activation values for 10 regularizers. Best viewed in color.

14

Under review as a conference paper at ICLR 2018

D.2 REPRESENTATION SCATTER PLOTS OF 10 REGULARIZATION STRATEGIES

(a) Baseline (f) L1-rep

(b) L1-weight (g) VR

(c) L2-weight (h) CR

(d) Dropout (i) cw-VR

(e) BN (j) cw-CR

Figure 4: Scatter plots of activation values of two units (neurons) for 10 regularizers. Best viewed
in color.

15

	Introduction
	Related Works

	Three Statistical Properties and Class-Wise Regularization
	Three Statistical Properties
	Class-wise regularization

	Penalty Loss Functions
	Basic statistics
	Penalty loss functions

	Experiments - MNIST
	Performance results
	Statistical properties of 10 regularization strategies
	Visualization of representations

	Experiments - CiFAR-10/100
	Combining multiple strategies: CIFAR-100
	Performance improvement of ResNet-32

	Conclusion
	Performance of popular regularizers when applied to each layer
	Evaluation of statistical properties
	Metrics
	Visualization of representations
	Representation histograms of 10 regularizers
	Representation scatter plots of 10 regularization strategies

