
Published as a conference paper at ICLR 2021

RAPID NEURAL ARCHITECTURE SEARCH BY
LEARNING TO GENERATE GRAPHS FROM DATASETS

Hayeon Lee1∗, Eunyoung Hyung1∗, Sung Ju Hwang1,2
KAIST1, AITRICS2, South Korea
{hayeon926, eunyoung0301, sjhwang82}@kaist.ac.kr

ABSTRACT

Despite the success of recent Neural Architecture Search (NAS) methods on var-
ious tasks which have shown to output networks that largely outperform human-
designed networks, conventional NAS methods have mostly tackled the opti-
mization of searching for the network architecture for a single task (dataset),
which does not generalize well across multiple tasks (datasets). Moreover, since
such task-specific methods search for a neural architecture from scratch for ev-
ery given task, they incur a large computational cost, which is problematic when
the time and monetary budget are limited. In this paper, we propose an effi-
cient NAS framework that is trained once on a database consisting of datasets
and pretrained networks and can rapidly search for a neural architecture for a
novel dataset. The proposed MetaD2A (Meta Dataset-to-Architecture) model
can stochastically generate graphs (architectures) from a given set (dataset) via
a cross-modal latent space learned with amortized meta-learning. Moreover, we
also propose a meta-performance predictor to estimate and select the best archi-
tecture without direct training on target datasets. The experimental results demon-
strate that our model meta-learned on subsets of ImageNet-1K and architectures
from NAS-Bench 201 search space successfully generalizes to multiple unseen
datasets including CIFAR-10 and CIFAR-100, with an average search time of
33 GPU seconds. Even under MobileNetV3 search space, MetaD2A is 5.5K
times faster than NSGANetV2, a transferable NAS method, with comparable
performance. We believe that the MetaD2A proposes a new research direction
for rapid NAS as well as ways to utilize the knowledge from rich databases of
datasets and architectures accumulated over the past years. Code is available at
https://github.com/HayeonLee/MetaD2A.

1 INTRODUCTION

The rapid progress in the design of neural architectures has largely contributed to the success of deep
learning on many applications (Krizhevsky et al., 2012; Cho et al., 2014; He et al., 2016; Szegedy
et al.; Vaswani et al., 2017; Zhang et al., 2018). However, due to the vast search space, designing
a novel neural architecture requires a time-consuming trial-and-error search by human experts. To
tackle such inefficiency in the manual architecture design process, researchers have proposed vari-
ous Neural Architecture Search (NAS) methods that automatically search for optimal architectures,
achieving models with impressive performances on various tasks that outperform human-designed
counterparts (Baker et al., 2017; Zoph & Le, 2017; Kandasamy et al., 2018; Liu et al., 2018; Luo
et al., 2018; Pham et al., 2018; Liu et al., 2019; Xu et al., 2020; Chen et al., 2021).

Recently, large benchmarks for NAS (NAS-101, NAS-201) (Ying et al., 2019; Dong & Yang, 2020)
have been introduced, which provide databases of architectures and their performances on bench-
mark datasets. Yet, most conventional NAS methods cannot benefit from the availability of such
databases, due to their task-specific nature which requires repeatedly training the model from scratch
for each new dataset (See Figure 1 Left). Thus, searching for an architecture for a new task (dataset)
may require a large number of computations, which may be problematic when the time and mon-

∗These authors contributed equally to this work.

1

https://github.com/HayeonLee/MetaD2A

Published as a conference paper at ICLR 2021

Conventional NAS Approach

Training

NAS
Model

NAS
Model

NAS
Model

...

Search Cost O(N)

Target
Dataset 1

Target
Dataset 2

Target
Dataset N

Heavy Computation Cost

Training Training

Our Meta-Trained NAS Model

Our NAS Approach

...

Search Cost O(1)

Target
Dataset 1

Target
Dataset 2

Target
Dataset N

Rapid Search

No Retraining on Target

Target
Dataset

Search Space

Valid Zone

Source Database

Meta-Training

Our Meta-Learning Framework

Meta-Test

Figure 1: Left: Most conventional NAS approaches need to repeatedly train NAS model on each given
target dataset, which results in enormous total search time on multiple datasets. Middle: We propose a novel
NAS framework that generalizes to any new target dataset to generate specialized neural architecture without
additional NAS model training after only meta-training on the source database. Thus, our approach cut down the
search cost for training NAS model on multiple datasets from O(N) to O(1). Right: For unseen target dataset,
we utilize amortized meta-knowledge represented as set-dependent architecture generative representations.

etary budget are limited. How can we then exploit the vast knowledge of neural architectures that
have been already trained on a large number of datasets, to better generalize over an unseen task?

In this paper, we introduce amortized meta-learning for NAS, where the goal is to learn a NAS
model that generalizes well over the task distribution, rather than a single task, to utilize the accu-
mulated meta-knowledge to new target tasks. Specifically, we propose an efficient NAS framework
that is trained once from a database containing datasets and their corresponding neural architectures
and then generalizes to multiple datasets for searching neural architectures, by learning to generate
a neural architecture from a given dataset. The proposed MetaD2A (Meta Dataset-to-Architecture)
framework consists of a set encoder and a graph decoder, which are used to learn a cross-modal la-
tent space for datasets and neural architectures via amortized inference. For a new dataset, MetaD2A
stochastically generates neural architecture candidates from set-dependent latent representations,
which are encoded from a new dataset, and selects the final neural architecture based on their pre-
dicted accuracies by a performance predictor, which is also trained with amortized meta-learning.
The proposed meta-learning framework reduces the search cost from O(N) to O(1) for multiple
datasets due to no training on target datasets. After one-time building cost, our model only takes just
a few GPU seconds to search for neural architecture on an unseen dataset (See Figure 1).

We meta-learn the proposed MetaD2A on subsets of ImageNet-1K and neural architectures from
the NAS-Bench201 search space. Then we validate it to search for neural architectures on multiple
unseen datasets such as MNIST, SVHN, CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets.
In this experiment, our meta-learned model obtains a neural architecture within 33 GPU seconds
on average without direct training on a target dataset and largely outperforms all baseline NAS
models. Further, we compare our model with representative transferable NAS method (Lu et al.,
2020) on MobileNetV3 search space. We meta-learn our model on subsets of ImageNet-1K and
neural architectures from the MobileNetV3 search space. The meta-learned our model successfully
generalizes, achieving extremely fast search with competitive performance on four unseen datasets
such as CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets.

To summarize, our contribution in this work is threefold:

• We propose a novel NAS framework, MetaD2A, which rapidly searches for a neural archi-
tecture on a new dataset, by sampling architectures from latent embeddings of the given
dataset then selecting the best one based on their predicted performances.

• To this end, we propose to learn a cross-modal latent space of datasets and architectures, by
performing amortized meta-learning, using a set encoder and a graph decoder on subsets
of ImageNet-1K.

• The meta-learned our model successfully searches for neural architectures on multiple un-
seen datasets and achieves state-of-the-art performance on them in NAS-Bench201 search
space, especially searching for architectures within 33 GPU seconds on average.

2

Published as a conference paper at ICLR 2021

Deployment
{𝜽∗, 𝝓∗, 𝝎∗}

Meta-training MetaD2A NAS Model

Set-dependent
Predictor

Arch.
Decoding

Meta-test (Searching)

MetaD2A
{𝜽∗, 𝝓∗,𝝎∗}

Aircraft
...

MetaD2A
{𝜽∗, 𝝓∗,𝝎∗}

CIFAR10

Unseen
Target Dataset

Neural
Arch.

Source
Dataset

Set Encoding

...

Task

Task
𝟏

Latent Space

Set-dependent representations for graph generation

...

Graph N

Graph 1

Graph 2

No Retraining
on Target

...

Task 𝟏 ℒ𝝎ℒ𝜽,𝝓

Figure 2: Overview of MetaD2A The proposed generator with θ and φ meta-learns the set-dependent graph
representations on the meta-training tasks, where each task contains a subset of ImageNet-1K and high-quality
architecture for the subset. The proposed predictor with ω meta-learns to predict performance, considering
the dataset as well as the graph. In the meta-test (searching) phase, the meta-learned MetaD2A generalizes to
output set-specialized neural architecture for new target datasets without additional NAS model training.

2 RELATED WORK

Neural Architecture Search (NAS) NAS is an automated architecture search process which aims
to overcome the suboptimality of manual architecture designs when exploring the extensive search
space. NAS methods can be roughly categorized into reinforcement learning-based methods (Zoph
& Le, 2017; Zoph et al., 2018; Pham et al., 2018), evolutionary algorithm-based methods (Real et al.,
2019; Lu et al., 2020), and gradient-based methods (Liu et al., 2019; Cai et al., 2019; Luo et al.,
2018; Dong & Yang, 2019b; Chen et al., 2021; Xu et al., 2020; Fang et al., 2020). Among existing
approaches, perhaps the most relevant approach to ours is NAO (Luo et al., 2018), which maps DAGs
onto a continuous latent embedding space. However, while NAO performs graph reconstruction for
a single task, ours generates data-dependent Directed Acyclic Graphs (DAGs) across multiple tasks.
Another important open problem in NAS is reducing the tremendous computational cost resulting
from the large search space (Cai et al., 2019; Liu et al., 2018; Pham et al., 2018; Liu et al., 2019;
Chen et al., 2021). GDAS (Dong & Yang, 2019b) tackles this by optimizing sampled sub-graphs of
DAG. PC-DARTS (Xu et al., 2020) reduces GPU overhead and search time by partially selecting
channel connections. However, due to the task-specific nature of those methods, they should be
retrained from the scratch for each new unseen task repeatedly and each will take a few GPU hours.
The accuracy-predictor-based transferable NAS called NSGANetV2 (Lu et al., 2020) alleviates this
issue by adapting the ImageNet-1K pre-trained network to multiple target datasets, however, this
method is still expensive due to adapting procedure on each dataset.

Meta-learning Meta-learning (learning to learn) aims to train a model to generalize over a distri-
bution of tasks, such that it can rapidly adapt to a new task (Vinyals et al., 2016; Snell et al., 2017;
Finn et al., 2017; Nichol et al., 2018; Lee et al., 2019b; Hou et al., 2019). Recently, LEO (Rusu et al.,
2019) proposed a scalable meta-learning framework which learns the latent generative representa-
tions of model parameters for a given data in a low-dimensional space for few-shot classification.
Similarly to LEO (Rusu et al., 2019), our method learns a low-dimensional latent embedding space,
but we learn a cross-modal space for both datasets and models for task-dependent model generation.

Neural Architecture Search with Meta-Learning Recent NAS methods with gradient-based
meta-learning (Elsken et al., 2020; Lian et al., 2019; Shaw et al., 2019) have shown promising
results on adapting to different tasks. However, they are only applicable on small scale tasks such
as few-shot classification tasks (Elsken et al., 2020; Lian et al., 2019) and require high-computation
time, due to the multiple unrolling gradient steps for one meta-update of each task. While some
attempt to bypass the bottleneck with a first-order approximation (Lian et al., 2019; Shaw et al.,
2019) or parallel computations with GPUs (Shaw et al., 2019), but their scalability is intrinsically
limited due to gradient updates over a large number of tasks. To tackle such a scalability issue, we
perform amortized inference over the multiple tasks by encoding a dataset into the low-dimensional
latent vector and exploit fast GNN propagation instead of the expensive gradient update.

3 METHOD

Our goal is to output a high-performing neural architecture for a given dataset rapidly by learning
the prior knowledge obtained from the rich database consisting of datasets and their corresponding

3

Published as a conference paper at ICLR 2021

neural architectures. To this end, we propose Meta Dataset-to-Architecture (MetaD2A) framework
which learns the cross-modal latent space of datasets and their neural architectures. Further, we
introduce a meta-performance predictor, which predicts accuracies of given architectures without
training the predictor on an unseen target dataset. Overview of the proposed approach is illustrated
in Figure 1.

3.1 META-TRAINING NAS MODEL

To formally define the problem, let us assume that we have a source database of Nτ number of
tasks, where each task τ = {D,G, s} consists of a dataset D, a neural architecture represented as a
Directed Acyclic Graph (DAG) G and an accuracy s obtained from the neural architecture G trained
onD. In the meta-training phase, the both dataset-to-architecture generator and meta-predictor learn
to generalize over task distribution p(τ) using the source database. We describe how to empirically
construct source database in Section 4.1.1.

3.1.1 LEARNING TO GENERATE GRAPHS FROM DATASETS

We propose a dataset-to-architecture generator which takes a dataset and then generates high-quality
architecture candidates for the set. We want the generator to generate even novel architectures, which
are not contained in the source database, at meta-test. Thus, the generator learns the continuous
cross-modal latent space Z of datasets and neural architectures from the source database. For each
task τ , the generator encodes datasetD as a vector z through the set encoder qφ(z|D) parameterized
by φ and then decodes a new graph G̃ from z which are sampled from the prior p(z) by using the
graph decoder pθ(G|z) parameterized by θ. Then, our goal is that G̃ generated from D to be the true
G which is pair of D. We meta-learn the generator using set-amortized inference, by maximizing
the approximated evidence lower bound (ELBO) as follows:

max
φ,θ

∑
τ∼p(τ)

Lτφ,θ
(
D,G

)
(1)

where
Lτφ,θ

(
D,G

)
= Ez∼qφ(z|D)

[
log pθ

(
G|z
)]
− λ · LτKL

[
qφ
(
z|D

)
||p
(
z
)]

(2)

Each dimension of the prior p(z) factorizes into N (0, 1). LτKL is the KL divergence between two
multivariate Gaussian distributions which has a simple closed form (Kingma & Welling, 2014) and
λ is the scalar weighting value. Using the reparameterization trick on z, we optimize the above
objective by stochastic gradient variational Bayes (Kingma & Welling, 2014). We use a set encoder
described in Section 3.1.3 and we adopt a Graph Neural Network (GNN)-based decoder for directed
acyclic graph (DAG)s (Zhang et al., 2019), which allows message passing to happen only along the
topological order of the DAGs. For detailed descriptions for the generator, see Section A of Suppl.

3.1.2 META-PERFORMANCE PREDICTOR

While many performance predictor for NAS have been proposed (Luo et al., 2018; Cai et al., 2020;
Lu et al., 2020; Zhou et al., 2020; Tang et al., 2020), those performance predictors repeatedly col-
lect architecture-accuracy database for each new dataset, which results in huge total cost on many
datasets. Thus, the proposed predictor fω(s|D,G) takes a dataset as well as graph as an input to
support multiple datasets, while the existing performance predictor takes a graph only. Then, the
proposed predictor meta-learns set-dependent performance proxy generalized over the task distri-
bution p(τ) in the meta-training stage. This allows the meta-learned predictor to accurately predict
performance on unseen datasets without additional training. The proposed predictor fω consists of
a dataset encoder and a graph encoder, followed by two linear layers with relu. For dataset encod-
ing, we use the set encoder of Section 3.1.3 which takes D as an input. We adopt direct acyclic
graph encoder (Zhang et al., 2019) for DAG G (Please refer to Section B of Suppl.). We concate-
nate the outputs of both graph encoder and the set encoder, and feed them to two linear layers with
relu to predict accuracy. We train the predictor fω to minimize the MSE loss Lτω(s,D,G) between
the predicted accuracy and the true accuracy s of the model on each task sampled from the source
database:

min
ω

∑
τ∼p(τ)

Lτω(s,D,G) =
∑

τ∼p(τ)

(s− fω(D,G))2 (3)

4

Published as a conference paper at ICLR 2021

3.1.3 SET ENCODER

The efficacy of the proposed framework is dependent on how accurately set encoder captures the
distribution of the target dataset and extracts information related with the goal of the generator and
the predictor. To compress the entire instances from a dataset D into a single latent code z, the set
encoder should process input sets of any size and summarize consistent information agnostically to
the order of the instances (permutation-invariance). Existing set encoders such as DeepSet (Zaheer
et al., 2017), SetTransformer (Lee et al., 2019a), and StatisticsPooling (Lee et al., 2020) fulfill those
requirements and might be used. However, DeepSet and SetTransformer are non-hierarchical pool-
ings, thus cannot accurately model individual classes in the given dataset. Moreover, DeepSet and
StatisticsPooling resort to simple averaging of the instance-wise representations.

Therefore, we introduce a novel set encoder which stacks two permutation-invariant modules with
attention-based learnable parameters. The lower-level intra-class encoder captures the class proto-
types that reflect label information, and the high-level inter-class encoder considers the relationship
between class prototypes and aggregates them into a latent vector. The proposed structure of the
set encoder models high-order interactions between the set elements allowing the generator and
predictor to effectively extract useful information to achieve each goal.

Specifically, for a given dataset D = {X,Y }, where X = {Xc}Cc=1 and Y = {Yc}Cc=1 are
the set of instances and target labels of C classes respectively. We randomly sample instances
{x|x ∈ Bc} ∈ Rbc×dx of class c, where x is a dx dimensional feature vector, Bc ⊂ Xc and
||Bc|| = bc. We input the sampled instances into the IntraSetPool, the intra-class encoder, to encode
class prototype vc ∈ R1×dvc for each class c = 1, ..., C. Then we further feed the class-specific
set representations {vc}Cc=1 into the InterSetPool, the inter-class encoder, to generate the dataset
representation he ∈ R1×dhe as follows:

vc = IntraSetPool
(
{x|x ∈ Bc}

)
, he = InterSetPool

(
{vc}Cc=1

)
(4)

Both the set poolings are stacked attention-based blocks borrowed from Lee et al. (2019a). Note that
while Lee et al. (2019a) is an attention-based set encoder, it ignores class label information of given
dataset, which may lead to poor performance. Please see Section C of the Suppl. for more details.

3.2 META-TEST (SEARCHING)

In the meta-test stage, for an unseen dataset D̂, we can obtain n set-dependent DAGs {Ĝi}ni=1, with
the meta-trained generator parameterized byφ∗ and θ∗, by feeding D̂ as an input. Through such set-
level amortized inference, our method can easily generate neural architecture(s) for the novel dataset.
The latent code z ∈ R1×dz can be sampled from a dataset-conditioned Gaussian distribution with
diagonal covariance where NNµ,NNσ are single linear layers:

z ∼ qφ(z|D) = N (µ,σ2) where µ,σ = NNµ(he),NNσ(he) (5)

In the meta-test, the predictor fω∗(ŝi|D̂, Ĝi) predicts accuracies {ŝi}ni=1 for a given unseen dataset
D̂ and each generated architecture of {Ĝi}ni=1 and then select the neural architecture having the
highest predicted accuracy among {ŝi}ni=1.

4 EXPERIMENT

We conduct extensive experiments to validate MetaD2A framework. First, we compare our model
with conventional NAS methods on NAS-Bench-201 search space in Section 4.1. Second, we com-
pare our model with transferable NAS method under a large search space in Section 4.2. Third, we
compare our model with other Meta-NAS approaches on few-shot classification tasks in Section 4.3.
Finally, we analyze the effectiveness of our framework in Section 4.4.

4.1 NAS-BENCH-201 SEARCH SPACE

4.1.1 EXPERIMENT SETUP

We learn our model on source database consisting of subsets of ImageNet-1K and neural architec-
tures of NAS-Bench-201 (Dong & Yang, 2020) and (meta-)test our model by searching for architec-
tures on 6 benchmark datasets without additional NAS model training.

5

Published as a conference paper at ICLR 2021

NAS-Bench-201 search space contains cell-based neural architectures, where each cell is repre-
sented as directed ayclic graph (DAG) consisting of the 4 nodes and the 6 edge connections. For
each edge connection, NAS models select one of 5 operation candidates such as zerorize, skip con-
nection, 1-by-1 convolution, 3-by-3 convolution, and 3-by-3 average pooling.

Source Database To meta-learn our model, we practically collect multiple tasks where each task
consists of (dataset, architecture, accuracy). We compile ImageNet-1K (Deng et al., 2009) as mul-
tiple sub-sets by randomly sampling 20 classes with an average of 26K images for each sub-sets
and assign them to each task. All images are downsampled by 32×32 size. We search for the set-
specific architecture of each sampled dataset using random search among high-quality architectures
which are included top-5000 performance architecture group on ImageNet-16-120 or GDAS (Dong
& Yang, 2019b). For the predictor, we additionally collect 2,920 tasks through random sampling. We
obtain its accuracy by training the architecture on dataset of each task. We collect Nτ =1,310/4,230
meta-training tasks for the generator/predictor and 400/400 meta-validation tasks for them, respec-
tively. Meta-training time is 12.7/8.4 GPU hours for the generator/the predictor and note that meta-
training phase is needed only once for all experiments of NAS-Bench-201 search space.

Meta-Test Datasets We apply our model trained from source database to 6 benchmark datasets such
as 1) CIFAR-10 (Krizhevsky et al., 2009), 2) CIFAR-100 (Krizhevsky et al., 2009), 3) MNIST (Le-
Cun & Cortes, 2010), 4) SVHN (Netzer et al., 2011), 5) Aircraft (Maji et al., 2013), and 6) Oxford-
IIIT Pets (Parkhi et al., 2012). On CIFAR10 and CIFAR100, the generator generates 500 neural
architectures and we select 30 architectures based on accuracies predicted by the predictor. Follow-
ing SETN (Dong & Yang, 2019a), we retrieve the accuracies of N architecture candidates from the
NAS-bench-201 and report the highest final accuracy for each run. While N = 1000 in SETN, we
set a smaller number of samples (N = 30) for MetaD2A. We report the mean accuracies over 10
runs of the search process by retrieving accuracies of searched architectures from NAS-Bench-201.
On MNIST, SVHN, Aircraft, and Oxford-IIIT Pets, the generator generates 50 architectures and
select the best one with the highest predicted accuracy. we report the accuracy averaging over 3 runs
with different seeds. For fair comparison, the searched architectures from our model are trained on
each target datasets from the scratch. Note that once trained MetaD2A can be used for more datasets
without additional training. Our model is performed with a single Nvidia 2080ti GPU.

4.1.2 RESULTS ON UNSEEN DATASETS

Table 1 shows that our model meta-learned on the source database can successfully generalize to 6
unseen datasets such as MNIST, SVHN, CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets by
outperforming all baselines. Since the meta-learned MetaD2A can output set-specialized architec-
tures on target datasets through inference process with no training cost, the search speed is extremely
fast. As shown in Table 1, the search time of MetaD2A averaging on 6 benchmark datasets is within
33 GPU second. This is impressive results in that it is at least 147× (maximum: 12169×) faster than
conventional set-specific NAS approaches which need training NAS models on each target dataset.
Such rapid search of REA, RS, REINFORCE and BOHB is only possible where all of the accu-
racies are pre-computed like NAS-Bench201 so that it can retrieve instantly on the target dataset,
therefore, it is difficult to apply them to other non-benchmark datasets. Especially, we observe that
MetaD2A which is learned over multiple tasks benefit to search set-dependent neural architectures
for fine-grained datasets such as Aircraft and Oxford-IIIT Pets.

4.2 MOBILENETV3 SEARCH SPACE

4.2.1 EXPERIMENT SETUP

We apply our meta-trained model on four unseen datasets, comparing with transferable NAS (NS-
GANetV2 (Lu et al., 2020)) under the same search space of MobileNetV3, where it contains more
than 1019 architectures. Each CNN architecture consists of five sequential blocks and the targets
of searching are the number of layers, the number of channels, kernel size, and input resolutions.
For a fair comparison, we also exploit the supernet for the parameters as NSGANetV2 does. We
collectNτ = 3, 018/153, 408 meta-training tasks for the generator/predictor and 646/32, 872 meta-
validation tasks, respectively as a source database from the ImageNet-1K dataset and architectures
of MobileNetV3 search space. Meta-training time is 2.21/1.41 GPU days for the generator/the
predictor. Note that the meta-training phase is needed only once on the source database.

6

Published as a conference paper at ICLR 2021

Table 1: Performance on Unseen Datasets (Meta-Test) MetaD2A conducts amortized inference on unseen
target datasets after meta-training on source database consisting of subsets of ImageNet-1K and architectures
of NAS-Bench-201 search space. Meta-training time is 12.7/8.4 GPU hours for the generator/the predictor. For
fair comparison, the parameters of searched architectures are trained on each dataset from scratch instead of
transferring parameters from ImageNet. T is the time to construct precomputed architecture database for each
target. We report accuracies with 95% confidence intervals.

Target Dataset NAS Method NAS Training-free Params Search Time Speed Up Search Cost Accuracy
on Target (M) (GPU Sec) ($) (%)

CIFAR-10

ResNet (He et al., 2016) 0.86 N/A N/A N/A 93.97±0.00

REA (Real et al., 2019) - 0.02+T - - 93.92±0.30

RS (Bergstra & Bengio, 2012) - 0.01+T - - 93.70±0.36

REINFORCE (Williams, 1992) - 0.12+T - - 93.85±0.37

BOHB (Falkner et al., 2018) - 3.59+T - - 93.61±0.52

RSPS (Li & Talwalkar, 2019) - 10200 147× 4.13 84.07±3.61

SETN (Dong & Yang, 2019a) - 30200 437× 12.25 87.64±0.00

GDAS (Dong & Yang, 2019b) - 25077 363× 10.17 93.61±0.09

PC-DARTS (Xu et al., 2020) 1.17 10395 150× 4.21 93.66±0.17

DrNAS (Chen et al., 2021) 1.53 21760 315× 8.82 94.36±0.00

MetaD2A (Ours) X 1.11 69 1× 0.028 94.37±0.03

CIFAR-100

ResNet (He et al., 2016) 0.86 N/A N/A N/A 70.86±0.00

REA (Real et al., 2019) - 0.02+T - - 71.84±0.99

RS (Bergstra & Bengio, 2012) - 0.01+T - - 71.04±1.07

REINFORCE (Williams, 1992) - 0.12+T - - 71.71±1.09

BOHB (Falkner et al., 2018) - 3.59+T - - 70.85±1.28

RSPS (Li & Talwalkar, 2019) - 18841 196× 7.64 52.31±5.77

SETN (Dong & Yang, 2019a) - 58808 612× 23.85 59.09±0.24

GDAS (Dong & Yang, 2019b) - 51580 537× 20.91 70.70±0.30

PC-DARTS (Xu et al., 2020) 0.26 19951 207× 8.09 66.64±2.34

DrNAS (Chen et al., 2021) 1.20 34529 359× 14.00 73.51±0.00

MetaD2A (Ours) X 1.07 96 1× 0.039 73.51±0.00

MNIST

ResNet (He et al., 2016) 0.86 N/A N/A N/A 99.67±0.01

RSPS (Li & Talwalkar, 2019) 0.25 22457 3208× 9.10 99.63±0.02

SETN (Dong & Yang, 2019a) 0.56 69656 9950× 28.24 99.69±0.04

GDAS (Dong & Yang, 2019b) 0.82 60186 8598× 24.40 99.64±0.04

PC-DARTS (Xu et al., 2020) 0.62 24857 3551× 10.08 99.66±0.04

DrNAS (Chen et al., 2021) 1.53 44131 6304× 17.89 99.59±0.02

MetaD2A (Ours) X 0.61 7 1× 0.002 99.71±0.08

SVHN

ResNet (He et al., 2016) 0.86 N/A N/A N/A 96.13±0.19

RSPS (Li & Talwalkar, 2019) 0.48 27962 3994× 11.34 96.17±0.12

SETN (Dong & Yang, 2019a) 0.48 85189 12169× 34.54 96.02±0.12

GDAS (Dong & Yang, 2019b) 0.24 71595 10227× 10.17 95.57±0.57

PC-DARTS (Xu et al., 2020) 0.47 31124 4446× 12.62 95.40±0.67

DrNAS (Chen et al., 2021) 1.53 52791 7541× 21.40 96.30±0.05

MetaD2A (Ours) X 0.86 7 1× 0.004 96.34±0.37

Aircraft

ResNet (He et al., 2016) 0.86 N/A N/A N/A 47.01±1.16

RSPS (Li & Talwalkar, 2019) 0.22 18697 1869× 7.58 42.19±3.88

SETN (Dong & Yang, 2019a) 0.44 18564 1856× 7.52 44.84±3.96

GDAS (Dong & Yang, 2019b) 0.62 18508 1850× 7.50 53.52±0.48

PC-DARTS (Xu et al., 2020) 0.32 3524 352× 1.42 26.33±3.40

DrNAS (Chen et al., 2021) 1.03 34529 3452× 13.14 46.08±7.00

MetaD2A (Ours) X 0.83 10 1× 0.004 58.43±1.18

Oxford-IIIT Pets

ResNet (He et al., 2016) 0.86 N/A N/A N/A 25.58±3.43

RSPS (Li & Talwalkar, 2019) 0.32 3360 420× 1.36 22.91±1.65

SETN (Dong & Yang, 2019a) 0.32 8625 1078× 3.49 25.17±1.68

GDAS (Dong & Yang, 2019b) 0.83 6965 870× 2.82 24.02±2.75

PC-DARTS (Xu et al., 2020) 0.44 2844 355× 1.15 25.31±1.38

DrNAS (Chen et al., 2021) 0.44 6019 752× 2.44 26.73±2.61

MetaD2A (Ours) X 0.83 8 1× 0.003 41.50±4.39

97.5

97.6

97.7

97.8

97.9

98

98.1

260 280 300 320

A
C
C
(%

)

FLOPS(M)

CIFAR10
NSGANetV2 MetaD2A

85.3

85.8

86.3

86.8

87.3

250 300 350 400

A
C
C
(%

)

FLOPS(M)

AIRCRAFT
NSGANetV2 MetaD2A

86.7

86.9

87.1

87.3

265 300 335

A
C
C
(%

)

FLOPS(M)

CIFAR100
NSGANetV2 MetaD2A

94.55

94.95

95.35

256 272 288

A
C
C
(%

)

FLOPS(M)

Oxford-IIIT-Pets
NSGANetV2 MetaD2A

Figure 3: Performance on Unseen Datasets (Meta-Test) We show accuracy over flop of both MetaD2A
and a transferable NAS referred as to NSGANetV2 (Lu et al., 2020) after meta-training MetaD2A on source
database consisting of subsets of ImageNet-1K and architectures in MobileNetV3 search space. Note that each
plot point is searched within 125 GPU seconds by MetaD2A.

7

Published as a conference paper at ICLR 2021

4.2.2 RESULTS ON UNSEEN DATASETS

We search and evaluate the architecture multiple times with both NSGANetV2 and ours on four
unseen datasets such as CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets with different ran-
dom seeds. Search times of MetaD2A for CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets
are within 57, 195, 77, and 170 GPU seconds on average with a single Nvidia RTX 2080ti GPU
respectively, while NSGANetV2 needs 1 GPU day with 8 1080ti GPUs on each dataset, which is
5,523 times slower than MetaD2A. Besides the huge speed up, Figure 3 shows that our model can
search for a comparable architecture to the NSGANetV2 over flops without a performance drop.
Interestingly, even we use naive flop filtering and NSGANetV2 uses an objective function for flop
constraints, MetaD2A performs consistently comparably to NSGANetV2 over the different flops.
Overall, the results demonstrate that our model also can generalize to unseen datasets not only un-
der the NAS-Bench-201 space but also under a larger MobileNetV3 space with its meta-knowledge.

4.3 COMPARISON WITH META-NAS APPROACHES

Method NAS Params MiniImageNet
(K) 5way 1shot 5way 5shot

MAML (Finn et al., 2017) 32.9 48.70 63.11
MAML++ (Antoniou et al., 2018) 32.9 52.15 68.32

AutoMeta (Kim et al., 2018) X 28 49.58 65.09
BASE (Shaw et al., 2019) X 1200 - 66.20
T-NAS++ (Lian et al., 2019) X 26.5 54.11 69.59
MetaNAS (Elsken et al., 2020) X 30 49.7 62.1

MetaD2A (Ours) X 28.9 54.71 70.59

Table 2: Performance on Few-shot Classification Task

We further compare our method against
Meta-NAS methods (Kim et al., 2018;
Elsken et al., 2020; Lian et al., 2019; Shaw
et al., 2019) on few-shot classification tasks,
which are the main setting existing Meta-
NAS methods have been consider. Follow-
ing (Elsken et al., 2020; Lian et al., 2019),
we adopt bi-level optimization (e.g., MAML
framework) to meta-learn initial weights of
neural architectures searched by our model on a meta-training set of mini-imagenet. As shown in
the Table 2, the few-shot classification results on MiniImageNet further clearly show the MetaD2A’s
effectiveness over existing Meta-NAS methods, as well as the conventional meta-learning methods
without NAS (Finn et al., 2017; Antoniou et al., 2018).

4.4 EFFECTIVENESS OF METAD2A

Now, we verify the efficacy of each component of MetaD2A with further analysis.

Model Target Dataset
G P CIFAR10 CIFAR100 Aircraft

Random Sampling 93.06±0.55 69.94±1.21 38.15±0.99

Generator only X 93.96±0.22 71.54±0.63 53.45±3.27

Predictor only X 93.70±0.32 72.33±0.88 53.39±3.13

MetaD2A X X 94.37±0.03 73.51±0.00 58.43±1.18

Table 3: Ablation Study of MetaD2A on Unseen Datasets

Ablation Study on MetaD2A We train
different variations of our model on the
subsets of ImageNet-1K, and test on CI-
FAR10, CIFAR100, and Aircraft in Ta-
ble 3 with the same experimental setup
as the main experiments in Table 1. The
MetaD2A generator without the perfor-
mance predictor (Generator only) outper-
forms the simple random architecture sampler (Random Sampling), especially by 15.3% on Air-
craft, which demonstrates the effectiveness of MetaD2A over the random sampler. Also, we observe
that combining the meta-performance predictor to the random architecture sampler (Predictor only)
enhances the accuracy of the final architecture on all datasets. Finally, MetaD2A combined with
the performance predictor (MetaD2A) outperforms all baselines, especially by 20.28% on Aircraft,
suggesting that our MetaD2A can output architectures that are more relevant to the given task.

Effectiveness of Set-to-Architecture Generator

MNIST

SVHN

CIFAR10

CIFAR100

AIRCRAFT

PETS

NAS-Bench-201 Search Space

Figure 4: T-SNE vis. of Latent Space

CIFAR10 AccuracyTh
e

N
u

m
b

er
 o

f
N

et
w

o
rk

s

CIFAR100 AccuracyTh
e

N
u

m
b

er
 o

f
N

et
w

o
rk

s

Figure 5: The Quality of Generated Architectures
We first visualize cross-modal latent embeddings {z} of unseen datasets encoded by the meta-

8

Published as a conference paper at ICLR 2021

learned generator with T-SNE in Figure 4. Each marker indicates {z} of the sampled subsets of
each dataset with different seeds. We observe that the generator classifies well embeddings {z}
by datasets in the latent space while clusters z of the subset of the same dataset. Furthermore, we
investigate the quality of generated architectures from those embeddings {z}. In the Figure 5, the
generator sample 2000 architecture candidates from the embeddings encoded each target dataset
and computes the validate accuracy of those architectures. The proposed generator generates more
high-performing architectures than the simple random architecture sampler for each target dataset.
These results are consistent with Table 3, where the generator (Generator only) enhances the per-
formance compared with the simple random architecture sampler (Random Sampling) consistently
on CIFAR10 and CIFAR100. The meta-learned generator allows us to effective and efficient search
by excluding the poor-performing architectures of broad search space. We believe the generator
replaces the random sampling stage of other NAS methods. We leave to valid it as the future work.

Search Space Validity Uniqueness Novelty

NAS-Bench-201 1.0000 0.3519 0.6731
MobileNetV3 0.9831 1.0000 1.0000

Table 4: Analysis of Generated Architectures

Could the Generator Create Novel Architectures?
Since the generator maps set-architecture pairs in the
continuous latent space, it can generate novel ar-
chitectures in the meta-test, which are not contained
in the source database. To validate it, we evaluate
generated 10,000 neural architecture samples of both
search space with the measures Validity, Uniqueness, and Novelty following (Zhang et al., 2019)
in Table 4. Each is defined as how often the model can generate valid neural architectures from
the prior distribution, the proportion of unique graphs out of the valid generations, and the propor-
tion of valid generations that are not included in the training set, respectively. For NAS-Bench-201
search space and MobileNetV3 search space, respectively, the results show the meta-learned gener-
ator can generate 67.31%/100% new graphs that do not belong to the training set and can generate
35.19%/100% various graphs, not picking always-the-same architecture seen of the source database.

Predictor Input Type Pearson
Model Data Graph Corr. Coeff.

Graph Encoder (GE) Only X 0.6439
DeepSet (Zaheer et al., 2017) + GE X X 0.7286
SetTransformer (Lee et al., 2019a) + GE X X 0.7744
Statistical Pooling (Lee et al., 2020) + GE X X 0.7796

The Proposed Set Encoder + GE (Ours) X X 0.8085

Table 5: Effectiveness of Set Encoding to Accurately Pre-
dict the Accuracy of Multiple Datasets

Effectiveness of Meta-Predictor We first
demonstrate the necessity of set encod-
ing to handle multiple datasets with a
single predictor. In Table 5, we meta-
train all models on the source database
of NAS-Bench-201 search space and mea-
sure Pearson correlation coefficient on the
validation tasks (400 unseen tasks) of the
source database. Pearson correlation co-
efficient is the linear correlation between the actual performance and the predicted performance
(higher the better). Using both the dataset and the computational graph of the target architecture
as inputs, instead of using graphs only (Graph Encoder Only), clearly leads to better performance
to support multiple datasets. Moreover, the predictor with the proposed set encoder clearly shows a
higher correlation than other set encoders (DeepSet (Zaheer et al., 2017), SetTransformer (Lee et al.,
2019a), and Statistical Pooling (Lee et al., 2020)).

5 CONCLUSION

We proposed a novel NAS framework, MetaD2A (Meta Dataset-to-Architecture), that can output a
neural architecture for an unseen dataset. The MetaD2A generator learns a dataset-to-architecture
transformation over a database of datasets and neural architectures by encoding each dataset using
a set encoder and generating each neural architecture with a graph decoder. While the model can
generate a novel architecture given a new dataset in an amortized inference, we further learn a
meta-performance predictor to select the best architecture for the dataset among multiple sampled
architectures. The experimental results show that our method shows competitive performance with
conventional NAS methods on various datasets with very small search time as it generalizes well
across datasets. We believe that our work is a meaningful step for building a practical NAS system
for real-world scenarios, where we need to handle diverse datasets while minimizing the search cost.

Acknowledgements This work was conducted by Center for Applied Research in Artificial Intel-
ligence (CARAI) grant funded by DAPA and ADD (UD190031RD).

9

Published as a conference paper at ICLR 2021

REFERENCES

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. In In International Conference on Learning Representations
(ICLR), 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. The Journal
of Machine Learning Research, 13(1):281–305, 2012.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations (ICLR), 2019.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/pdf/1908.09791.pdf.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2014.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchi-
cal Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

Xuanyi Dong and Yi Yang. One-shot neural architecture search via self-evaluated template network.
In Proceedings of the IEEE International Conference on Computer Vision (CVPR), 2019a.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Pro-
ceedings of the IEEE Conference on computer vision and pattern recognition (CVPR), 2019b.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations (ICLR), 2020.

Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning of neural
architectures for few-shot learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), 2020.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter opti-
mization at scale. arXiv preprint arXiv:1807.01774, 2018.

Jiemin Fang, Yuzhu Sun, Kangjian Peng, Qian Zhang, Yuan Li, Wenyu Liu, and Xinggang Wang.
Fast neural network adaptation via parameter remapping and architecture search. arXiv preprint
arXiv:2001.02525, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (ICML), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan, and Xilin Chen. Cross attention network
for few-shot classification. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

10

https://arxiv.org/pdf/1908.09791.pdf

Published as a conference paper at ICLR 2021

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. International Conference on Machine Learning (ICML), 2018.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In Advances in
neural information processing systems (NeurIPS), 2018.

Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha, Jung Kwon Lee, Youngduck Choi,
Yongseok Choi, Dong-Yeon Cho, and Jiwon Kim. Auto-meta: Automated gradient based meta
learner search. arXiv preprint arXiv:1806.06927, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (NIPS), 2012.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and Sung Ju
Hwang. Learning to balance: Bayesian meta-learning for imbalanced and out-of-distribution
tasks. In International Conference on Learning Representations (ICLR), 2020.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning (ICML), 2019a.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019b.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, pp. 367–377. PMLR, 2019.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In In
International Conference on Learning Representations (ICLR), 2019.

Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang Banzhaf, and Vishnu Naresh Boddeti. Ns-
ganetv2: Evolutionary multi-objective surrogate-assisted neural architecture search. In European
Conference on Computer Vision, pp. 35–51. Springer, 2020.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems (NeurIPS), 2018.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Published as a conference paper at ICLR 2021

O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Cats and dogs. In IEEE Conference on
Computer Vision and Pattern Recognition, 2012.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In International Conference on Machine Learning (ICML), 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence
(AAAI), 2019.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. 2019.

Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai. Meta architecture search. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in neural information processing systems (NIPS), 2017.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.

Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian,
and Chang Xu. A semi-supervised assessor of neural architectures. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1810–1819, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems (NIPS), 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations (ICLR), 2020.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning (ICML), pp. 7105–7114, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems
(NIPS), 2017.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and
Wanli Ouyang. Econas: Finding proxies for economical neural architecture search. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11396–
11404, 2020.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In In Interna-
tional Conference on Learning Representations (ICLR), 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), 2018.

12

Published as a conference paper at ICLR 2021

A DETAILS OF THE GENERATOR

A.1 GRAPH DECODING

To generate the ith node vi, we compute the operation type ovi ∈ R1×no over no operations based
on the current graph state hG := hvi−1 and then predict whether the edge exists between the node
vi and other existing nodes. Following (Zhang et al., 2019), when we compute the edge probability
e{vj ,vi}, we consider nodes

{
vj |j = i − 1, ..., 1

}
in the reverse order to reflect information from

nodes close to vi to the root node when deciding whether edge connection. Note that the proposed
process guarantees the generation of directed acyclic graph since directed edge is always created
from existing nodes to a new node.

The graph decoder starts from an initial hidden state hv0 = NNinit(z), where NNinit is an MLP
followed by tanh. For ith node vi according to topological order, we compute the probability of
each operation type ovi ∈ R1×no over no operations, given the current graph state as the last hidden
node hG := hvi . That is, ovi = NNnode(hG), where NNnode is an MLP followed by softmax. When
the predicted vi type is the end-of-graph, we stop the decoding process and connect all leaf nodes to
vi. Otherwise we update hidden state h

(t)
vi at time step t as follows:

h(t+1)
vi = UPDATE(i,m(t)

vi)

where m(t)
vi =

∑
u∈Vin

vi

AGGREGATE(h(t)
u) (6)

The function UPDATE is a gated recurrent unit (GRU) (Cho et al., 2014), i is the order of vi,
and m(t)

vi is the incoming message to vi. The function AGGREGATE consists of mapping and
gating functions with MLPs, where Vinvi is a set of predecessors with incoming edges to vi. For all
previously processed nodes

{
vj |j = i−1, ..., 1

}
, we decide whether to link an edge from vj to vi by

sampling the edge based on edge connection probability e{vj ,vi} = NNedge(hj ,hi) , where NNedge
is a MLP followed by sigmoid. We update hvi by Eq. (6) whenever a new edge is connected to
vi. For meta-test, we select the operation with the max probability for each node and edges with
e{vj ,vi} > 0.5.

A.2 META-TRAINING OBJECTIVE

We meta-learn the model using Eq. (1). The expectation of the log-likelihood
Ez∼qφ(z|D)

[
log pθ

(
G|z
)]

of (2) can be rewritten with negative cross-entropy loss −LτCE for nodes
and binary cross-entropy loss −LτBCE for edges, and we slightly modify it using the generated
set-dependent graph G̃ and the ground truth graph G as the input as follows:

−
∑
i∈V

{
LτCE

(
õi, oi

)
+
∑
j∈Vi

LτBCE
(
ẽ{j,i}, e{j,i}

)}
(7)

We substitute the log-likelihood term of Eq. (2) such as Eq. (7) and learn the proposed generator by
maximizing the objective (1) to learn φ,θ, which are shared across all tasks.

B GRAPH ENCODING OF THE SET-DEPENDENT PREDICTOR

For a given graph candidate G, we sequentially perform message passing for nodes from the pre-
decessors following the topological order of the DAG G. We iteratively update hidden states h

(t)
vi

using the Eq. (8) by feeding in its predecessors’ hidden states {u ∈ Vinvi }.

h(t+1)
vi = UPDATE(yvi ,m

(t)
vi)

where m(t)
vi =

∑
u∈Vin

vi

AGGREGATE(h(t)
u) (8)

For starting node v0 which the set of predecessors is the empty, we output the zero vector as the
hidden state of v0. We use the last hidden states of the ending node as the output of the graph

13

Published as a conference paper at ICLR 2021

encoder hf . Additionally, we exploit Bi-directional encoding (Zhang et al., 2019) which reverses
the node orders to perform the encoding process. In this case, the final node becomes the starting
point. Thus, the backward graph encoder outputs hb, which is the last hidden states of the starting
node. We concatenate the outputs hf of the forward graph encoder and hb of the backward graph
encoder as the final output of the Bi-directional graph encoding.

C BUILDING BLOCKS OF THE SET ENCODER

We use Set Attention Block (SAB) and Pooling by Multi-head Attention (PMA) (Lee et al., 2019a),
where the former learns the features for each element in the set using self-attention while the latter
pools the input features into k representative vectors. Set Attention Block (SAB) is an attention-
based block, which makes the features of all of the instances in the set reflect the relations between
itself and others such as:

SAB(X) = LN(H + MLP(H))

where H = LN(X + MH(X,X,X))
(9)

where LN and MLP is the layer normalization (Ba et al., 2016) and the multilayer perceptron respec-
tively, and H ∈ RnBc×dH is computed with multi-head attention MH(Q,K,V) (Vaswani et al.,
2017) which queries, keys, and values are elements of input setX .

Features encoded from the SAB layers can be pooled by PMA on learnable seed vectors S ∈ Rk×dS

to produce k vectors by slightly modifyingH calculation of Eq. (9):

PMA(X) = LN(H + MLP(H))

where H = LN(X + MH(S,MLP(X),MLP(X)))
(10)

While k can be any size (i.e. k=1,2,10,16), we set k = 1 for generating the single latent vector. For
extracting consistent information not depending the order and the size of input elements, encoding
functions should be constructed by stacking permutation-equivariant layers E, which satisfies below
condition for any permutation π on a setX (Zaheer et al., 2017):

E({x|x ∈ πX}) = πE({x|x ∈X}) (11)

Since all of the components in SAB and PMA are row-wise computation functions, SAB and PMA
is permutation equivarint by definition Eq. (11).

D SEARCH SPACE

Following the NAS-Bench-201 (Dong & Yang, 2020), We explore the search space consisting of
15,625 possible cell-based neural architectures for all experiments. Macro skeleton is stacked with
one stem cell, three stages consisting of 5 cells for each, and a residual block (He et al., 2016)
between stages. The stem cell consists of 3-by-3 convolution with 16 channels and cells of the first,
second and third stages have 16, 32 and 64, respectively. Residual blocks have convolution layer
with the stride 2 for down-sampling. A fully connected layer is attached to the macro skeleton for
classification. Each cell is DAG which consists of the fixed 4 nodes and the fixed 6 edge connections.
For each edge connection, NAS models select one of 5 operation candidates such as zerorize, skip
connection, 1-by-1 convolution, 3-by-3 convolution, and 3-by-3 average pooling. To effectively
encode the operation information as the node features, we represent edges of graphs in NAS-Bench-
201 as nodes, and nodes of them as edges. Additionally, we add a starting node and an ending node
to the cell during training. All nodes which have no predecessors (suceessors) are connected to the
starting (ending) node, which we delete after generating the full neural architectures.

E EXPERIMENTAL SETUP

E.1 DATASET

1) CIFAR-10 (Krizhevsky et al., 2009): This dataset is a popular benchmark dataset for NAS, which
consists of 32×32 colour images from 10 general object classes. The training set consists of 50K
images, 5K for each class, and the test set consists of 10K images, 1K for each class. 2) CIFAR-
100 (Krizhevsky et al., 2009): This dataset consists of colored images from 100 fine-grained general

14

Published as a conference paper at ICLR 2021

object classes. Each class has 500/100 images for training and test, respectively. 3) MNIST (LeCun
& Cortes, 2010): This is a standard image classification dataset which contains 70K 28×28 grey
colored images that describe 10 digits. We upsample the images to 32×32 pixels to satisfy the
minimum required pixel size of the NAS-Bench 201 due to the residual blocks in the macro skeleton.
We use the training/test split from the original dataset, where 60K images are used for training and
10K are used for test. 4) SVHN (Netzer et al., 2011): This dataset consists of 32×32 color images
where each has a digit with a natural scene background. The number of classes is 10 denoting from
digit 1 to 10 and the number of training/test images is 73257/26032, respectively. 5) Aircraft (Maji
et al., 2013) This is fine-grained classification benchmark dataset containing 10K images from 30
different aircraft classes. We resize all images into 32×32. 6) Oxford-IIIT Pets (Parkhi et al., 2012)
This dataset is for fine-grained classification which has 37 breeds of pets with roughly 200 instances
for each class. There is no split file provided, so we use the 85% of the dataset for training and the
other 15% are as a test set. We also resize all images into 32×32. For CIFAR10 and CIFAR100, we
used the training, validation, and test splits from the NAS-Bench-201, and use random validation/test
splits for MNIST, SVHN, Aircraft, and Oxford-IIIT Pets by splitting the test set into two subsets
of the same size. The validation set is used to update the searching algorithms as a supervision signal
and the test set is used to evaluate the performance of the searched architectures.

E.2 BASELINES

We now briefly describe the baseline models and our MetaD2A model. 1) ResNet (He et al., 2016)
This is a convolutional network which connects the output of previous layer as input to the current
layer. It has achieved impressive performance on many challenging image tasks. We use ResNet56
in all experiments. 2) REA (Real et al., 2019) This is an evolutional-based search method by us-
ing aging based tournament selection, showing evolution can work in NAS. 3) RS (Bergstra &
Bengio, 2012) This is based on random search and we randomly samples architectures until the
total time of training and evaluation reaches the budget. 4) REINFORCE (Williams, 1992) This
is a RL-based NAS. We reward the model with the validation accuracy after 12 epochs of train-
ing. 5) BOHB (Falkner et al., 2018) This combines the strengths of tree-structured parzen estimator
based baysian optimization and hyperband, performing better than standard baysian optimization
methods. 5) RSPS (Li & Talwalkar, 2019) This method is a combination of random search and
weight sharing, which trains randomly sampled sub-graphs from weight shared DAG of the search
space. The method then selects the best performing sub-graph among the sampled ones as the final
neural architecture. 6) SETN (Dong & Yang, 2019a) SETN is an one-shot NAS method, which
selectively samples competitive child candidates by learning to evaluate the quality of the candi-
dates based on the validation loss. 7) GDAS (Dong & Yang, 2019b) This is a Gumbel-Softmax
based differentiable neural architecture sampler, which is trained to minimize the validation loss
with the architecture sampled from DAGs. 8) PC-DARTS (Xu et al., 2020) This is a gradient-
based NAS which partially samples channels to apply operations, to improve the efficiency of
NAS in terms of memory usage and search time compared to DARTS. We exploit the code at
https://github.com/yuhuixu1993/PC-DARTS. 9) DrNAS (Chen et al., 2021) This is
a NAS approach that introduces Dirichlet distribution to approximate the architecture distribution,
to enhance the generalization performance of differentiable architecture search. We use the code at
https://github.com/xiangning-chen/DrNAS. We report the results on CIFAR10 and
CIFAR100 in this paper using the provided code from the authors on the split set of NAS-Bench
201 while their reported results in the paper of the authors are 94.37 and 73.51, respectively on ran-
dom training/test splits on CIFAR10 and CIFAR100. 10) MetaD2A (Ours) This is our meta-NAS
framework described in section 3, which can stochastically generate task-dependent computational
graphs from a given dataset, and use the performance predictor to select the best performing candi-
dates. We follow the same settings of NAS-Bench-201 (Dong & Yang, 2020) for all baselines and
use the code at https://github.com/D-X-Y/AutoDL-Projects except for 8), 9) and
10).

15

https://github.com/yuhuixu1993/PC-DARTS
https://github.com/xiangning-chen/DrNAS
https://github.com/D-X-Y/AutoDL-Projects

Published as a conference paper at ICLR 2021

E.3 IMPLEMENTATION DETAILS

Hyperparameter Value

The number of inputs of class b 20
Dimension of vc dvc 56
Dimension of he dhe 56
Dimension of S dS 56
Dimension of z dz 56

Dimension of hvi for generator 56
Dimension of hvi for predictor 512

The number of operators no 5
Learning rate 1e-4

Batch size 32
KL-divergence weighting value λ 5e-3

Training epoch 400

Table 6: Hyperparameter setting of MetaD2A on NAS-Bench-201 Search Space

We use embedding features as inputs of the proposed set encoder instead of raw images, where the
embedding features are generated by ResNet18 (He et al., 2016) pretrained with ImageNet-1K (Deng
et al., 2009). We adopt the teacher forcing training strategy (Jin et al., 2018), which performs the
current decoding process after correcting the decoded graph as the true graph until the previous
step. This strategy is only used during meta-training and we progress subsequent generation based
on the currently decoded graph part without the true graph information in the meta-test. We use
mini-batch gradient descent to train the model with Eq. (1). The values of hyperparameters which
we used for both MetaD2A generator and predictor in this paper are described in Table 6. To train
searched neural architectures for all datasets, we follow the hyperparameter setting of NAS-Bench-
201 (Dong & Yang, 2020), which is used for training searched neural architectures on CIFAR10 and
CIFAR100. While we report accuracy after training 50 epoch for MNIST, the accuracy of 200 epoch
are reported for all datasets except MNIST.

16

	Introduction
	Related Work
	Method
	Meta-Training NAS model
	Learning to generate graphs from datasets
	Meta-Performance Predictor
	Set Encoder

	Meta-Test (Searching)

	Experiment
	NAS-Bench-201 Search Space
	Experiment Setup
	Results on Unseen Datasets

	MobileNetV3 Search Space
	Experiment Setup
	Results on Unseen Datasets

	Comparison with Meta-NAS Approaches
	Effectiveness of MetaD2A

	Conclusion
	Details of The Generator
	Graph Decoding
	Meta-Training Objective

	Graph Encoding of the Set-dependent Predictor
	Building Blocks of the Set Encoder
	Search Space
	Experimental Setup
	Dataset
	Baselines
	Implementation Details

