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ABSTRACT

Historical context integration presents a fundamental challenge for Vision-
Language Models (VLMs) in sequential decision-making tasks. Current VLMs
process visual inputs independently, which creates critical limitations for down-
stream applications that require temporal understanding. Direct incorporation of
historical frames into Transformer inputs produces quadratic attention complexity
and excessive memory consumption. Existing approaches suffer from significant
drawbacks: computational inflation or substantial information loss through tem-
poral compression. To address these challenges, we introduce Dynamic Context
Adapter (DCA), a novel context injection approach for pretrained VLMs. Our
method employs fixed-size, dynamically compressed memory to preserve historical
semantics without frame concatenation. DCA bridges static VLMs and recurrent
policies and enables memory capabilities in pretrained models while maintaining
computational efficiency. DCA achieves over 25% reduction in attention FLOPs
and 13% memory savings while improving performance on long-horizon tasks.

1 INTRODUCTION
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[Instruction] Go out of the 
room you’re in. Turn left. 
Go past the dining room 
and into the living room. 
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Figure 1: Context Concatenation vs. Dynamic Context Adaptation. (Left) Traditional concatena-
tion appends historical frames to current input, producing quadratic computational complexity and
token length constraints. (Right) Our proposed DCA method decouples historical context from the
LLM backbone through lightweight adapters. The Dynamic Context Compression module processes
historical frames and distributes compressed representations across multiple VLM layers, maintaining
constant input length while achieving about ∼ 1.3 trillion fewer FLOPs and 13% memory reduction.

Sequential decision-making in partially observable environments demands agents to integrate rich
historical context across extended temporal horizons. In Vision-and-Language Navigation (VLN),
agents must synthesize information from multiple past observations to navigate complex multi-room
environments where current visual input alone provides insufficient context for decision-making.
Long-horizon instructions such as “pass through the bedroom, locate the study, and pick up the
book on the desk" require agents to chain subgoals while preserving spatial dependencies across
rooms and corridors. Under partial observability, an agent’s onboard camera captures only a limited
field of view at each timestep, making historical context essential for inferring occluded landmarks,
retracing steps, and maintaining spatial awareness. While Transformer-based Vision-Language
Models (VLMs) (Vaswani et al., 2017b; Kim et al., 2021; Liu et al., 2023a; Li et al., 2023; Alayrac
et al., 2022; Bai et al., 2023; Chen et al., 2024b) have achieved remarkable success in single-
frame visual reasoning tasks such as Image Captioning (Hossain et al., 2019) and Visual Question

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Answering (Antol et al., 2015), their adaptation to sequential tasks reveals fundamental limitations.
Recent approaches in Vision-and-Language Action (Ma et al., 2024) and Navigation (Wu et al., 2024)
tasks, including OpenVLA (Kim et al., 2024), RT-1 (Brohan et al., 2022), RT-2 (Brohan et al., 2023),
Navid (Zhang et al., 2024), UniNavid (Zhang et al., 2025a), and NavGPT2 (Zhou et al., 2024a), have
demonstrated the potential of VLMs in embodied scenarios. However, these methods struggle to
efficiently integrate the extensive historical visual context necessary for long-horizon reasoning.

Existing strategies for integrating historical context into VLM backbones can be grouped into three
main categories. (1) Token concatenation approaches are widely used in integrating historical context
in Transformer-based models (Zhang et al., 2023a; 2024; Chen et al., 2021; Guhur et al., 2021;
Lin et al., 2023). (2) Recurrent compression methods employ RNNs or LSTMs to compress the
entire frame history into a single state vector (Krantz et al., 2020; Hong et al., 2020). (3) Previous
studies also evaluate methods that maintain an external mapping and memory frameworks by external
topological or semantic maps (Zhang et al., 2025b; An et al., 2023a;b; Chen et al., 2022a). Although
these methods demonstrate effective performance, all three classes face certain limitations when
applied to large-scale pretrained VLMs in environments that require context. Token concatenation
disrupts the downstream token order and floods the model with redundant information. Recurrent
compression lacks the capacity to represent fine temporal structure, leading to information loss over
extended sequences. External memory methods depend on manually constructed maps that may not
generalize across different environments. These limitations collectively highlight the necessity for a
more efficient and effective methodology to integrate long historical context into pretrained VLMs.

Motivated by these challenges, in this study, we focus on eliminating memory bottlenecks and
reducing computational complexity while preserving the original model architecture to maintain
effectiveness. We draw insight from recent advances in parameter-efficient fine-tuning (PEFT) for
large language models (LLMs) (Hu et al., 2022; Zhang et al., 2023b; Kim et al., 2025), which
insert small trainable modules into frozen backbones with minimal overhead. This motivates our
investigation of whether a similarly lightweight adapter paradigm can fuse rich historical visual
information into VLMs while preserving their efficiency and pretrained knowledge. To this end, we
propose the Dynamic Context Adapter (DCA), which compresses arbitrary sequences of past frame
embeddings into a fixed set of learnable context vectors. DCA eliminates the memory bottleneck
associated with naive token concatenation while capturing rich temporal semantics. To enable the
model to consult its memory at every depth without altering original parameters or structure, these
compressed representations are adapted to the LLM outputs through lightweight adapter modules and
injected into each layer of the pretrained VLM. Our method delivers three key advantages. First,
DCA ensures computational efficiency by maintaining constant input token length regardless of past
frame quantity, achieving linear complexity growth with extended context. Second, DCA preserves
fine-grained contextual details through dynamic compression of critical information into fixed context
vectors. This approach avoids temporal detail loss common in recurrent models while removing
redundant features. Third, DCA retains the original input and fully preserves the priors of the
pretrained VLM, which enables maintaining its learned knowledge to the greatest extent possible.

To validate our approach, we analyze how DCA addresses the challenge of preserving rich temporal
context in VLMs without architectural disruption and how it overcomes memory bottlenecks while
maintaining fine-grained historical information for effective long-horizon VLN tasks. We evaluate
DCA on the standard navigation benchmark and compare it against both RGB-only baselines and
existing context-integration approaches. Our findings suggest that DCA resolves the core tension be-
tween capturing comprehensive visual history and maintaining computational tractability in partially
observable environments. The experimental results demonstrate that DCA matches or exceeds prior
methods in Success Rate while reducing attention FLOPs by over 25% and cutting peak memory
consumption by 15% on long-horizon VLN tasks. Our contributions can be summarized as follows:

• We introduce DCA, an efficient and lightweight framework that addresses the core limitation
of VLMs in sequential tasks by enabling dynamic compression and integration of historical
visual context without disrupting pretrained model architecture or inflating input sequences.

• We demonstrate that DCA overcomes the fundamental challenge of information loss in
recurrent-based approaches and memory explosion issues in concatenation methods, en-
abling VLMs to maintain rich temporal understanding across extended navigation episodes.

• We validate that DCA enables effective utilization of historical context for long-horizon
reasoning in partially observable environments, achieving superior navigation performance.
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2 RELATED WORKS

Pretrained Vision-Language Models. Large-scale VLMs (Kim et al., 2021; Alayrac et al., 2022; Liu
et al., 2023a; Grattafiori et al., 2024; Touvron et al., 2023; Karamcheti et al., 2024; Abdin et al., 2024;
Li et al., 2024; Zhang et al., 2023a; Bai et al., 2023; Chen et al., 2024b) have achieved impressive
multimodal general-purpose reasoning capabilities. For example, ViLT (Kim et al., 2021) introduced
a minimalist vision-language Transformer that forgoes region-based visual features for end-to-end
image-text encoding. Likewise, LLaVA (Liu et al., 2023a) fine-tunes a pre-trained vision encoder
together with a fine-tuned version of LLaMA (GenAI, 2023) using GPT-4 (Achiam et al., 2023) gen-
erated instruction follow-up data, producing a powerful multimodal assistant capable of open-ended
visual dialogue. These models are typically designed for textual modality or static image-text pairs,
and do not accommodate video or historical visual contexts essential for navigation and temporally
extended reasoning tasks. LLaMA-VID (Li et al., 2024) extends the LLaMA (GenAI, 2023) for
video-text tasks but primarily addresses the problem with naive inefficient token concatenation.

Navigation with Pretrained Large Models. Several recent works have explored applying foundation
models to embodied VLN tasks. Intuitive approaches involve directly leveraging pretrained large
language models as planners (Xu et al., 2023; Shah et al., 2023; Zhou et al., 2024b; Long et al., 2024;
Chen et al., 2024a; 2025; Weerakoon et al., 2024), while other groups of works have shown great
success in incorporating VLMs as navigation backbones (Zhou et al., 2024a; Lin et al., 2025; Pan
et al., 2024; Liu et al., 2025; Zheng et al., 2024; Zhang et al., 2025a). NaVid (Zhang et al., 2024)
fine-tunes a video-based VLM backbone to predict next-step actions by concatenating raw frame
tokens, including both current and historical observations. The following work Uni-NaVid (Zhang
et al., 2025a) unifies multiple navigation tasks in a video-based VLM backbone, processing long video
streams end-to-end. Zhou et al. (2024a) augments LLMs with policy networks for VLN by input
concatenation. While leveraging powerful pre-trained representations, they suffer from quadratic
scaling with frame concatenation and lack mechanisms to distill and recall prior observations. DCA
uses lightweight adapters to effectively decouple history context from LLM input, maintaining
constant-length inputs while efficiently retrieving relevant historical information across layers.

Historical Context in Navigation. Traditional recurrent models maintained implicit memory via
LSTM or GRU hidden states that carry over past perceptions (Anderson et al., 2018; Tan et al.,
2019; Fried et al., 2018; Krantz et al., 2020; Song et al., 2024b; Hong et al., 2020; Krantz & Lee,
2022; He et al., 2024), but more recent approaches use Transformer-based architectures to capture
longer-range dependencies (Majumdar et al., 2020; Zhang et al., 2025a; Song et al., 2024a; Lin et al.,
2023; Guhur et al., 2021; Chen et al., 2021; Zhang et al., 2024). These methods integrate historical
context by either maintaining recurrent hidden states or concatenating history frames as additional
input during prediction, which may result in information loss. Other works have proposed building
structured memory representations of the environment (Liu et al., 2023b; An et al., 2023a;b; Deng
et al., 2020; Wang et al., 2023; 2024; Savinov et al., 2018; Chen et al., 2022b;a; Zhang et al., 2025b).
Our work uses Transformer-based pretrained VLMs as backbones, but instead of adding additional
input tokens, we introduce an efficient method to adapt context into LLM layers. Previous works were
designed for static vision-language alignment tasks such as few-shot prompting or pretraining with
fixed image-text pairs (Mañas et al., 2022; Radford et al., 2021). In contrast to these prior methods
that perform one-time modality bridging, our model operates within a Partially Observable Markov
Decision Process (POMDP) and must continuously compress an expanding observation history.

3 COMPUTATIONAL BARRIERS TO HISTORICAL CONTEXT INTEGRATION

Table 1: Complexity comparison (dominant terms). T=history frames,
p=pooled tokens/frame, S=text length, C/q=memory/mapped tokens.

Method FLOPs (Visual Integration) Self-Attn Context

Concat-No-Adapt Õ
(
(S + Tp)2d

)
S + Tp (first layer)

Mapping-only (Mañas et al., 2022) Õ(q Tp d) S + q (first layer)
DCA (ours) Õ(C Tp d) + Õ(k S C d) S (all layers), cross-attn to C

The fundamental challenge
in historical context integra-
tion lies in balancing tem-
poral richness with compu-
tational feasibility. Examin-
ing the limitations of exist-
ing approaches reveals the
computational barriers that prevent effective long-horizon reasoning in VLMs. Table 1 presents
our analysis of computational costs across different integration strategies. Current methods face
fundamental scalability issues that render them impractical for extended temporal contexts. Concat-
No-Adapt concatenates all historical visual tokens and produces prohibitive LLM self-attention
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cost of Õ
(
(S + Tp)2d

)
that scales quadratically with history length. Mapping-only (Mañas et al.,

2022) maps Tp tokens into q tokens at cost Õ(q · Tp · d), followed by first-layer self-attention over
(S + q) tokens. However, this approach inflates input context and restricts integration to a single
layer. In contrast, our DCA addresses these limitations through efficient architectural design. The
cross-attention mechanism in our compression module (detailed in Eq. (1) in Section 4.2.1) requires
only Õ(C · Tp · d) FLOPs and O(Tp + C) memory tokens and achieves linear scaling in history
length. Our multi-layer integration adds Õ(k · S · C · d) FLOPs while maintaining constant visual
sequence length for self-attentions, avoiding quadratic explosion that plagues concatenation methods.

The following analysis reveals that existing methods face fundamental limitations in handling
extended historical contexts: concatenation methods encounter quadratic computational explosion,
while compression methods sacrifice temporal detail or impose architectural constraints. These
computational barriers provide the foundation for our DCA, which we detail in the following section.

Proposition 3.1 (Asymptotic scaling in T ) Given fixed parameters (C, S, k, d) and increasing his-
tory length T , our approach scales as Õ(C · Tp · d) (compression) +Õ(k · S · C · d) (injection)
and exhibits linear complexity in T . Concat-No-Adapt scales quadratically in (S + Tp), while
mapping-only achieves linear compression Õ(q · Tp · d) but inflates first-layer context to (S + q).

Corollary 3.2 (Practical implications) When history length is substantial (T ≫ 1) and compres-
sion ratio satisfies C ≪ Tp, our method delivers superior computational efficiency relative to
concatenation approaches in both FLOPs and memory utilization. Compared to mapping-only meth-
ods operating under equivalent token budgets (q = C), our approach maintains constant first-layer
context while enabling stable multi-layer conditioning through gated cross-attention mechanisms.

4 EFFICIENT HISTORY CONTEXT ADAPTATION METHODOLOGY

4.1 PROBLEM FORMULATION

We formulate efficient historical context integration as a computational optimization problem within
the framework of VLN. The primary challenge lies in enabling VLMs to process extended temporal
sequences while maintaining computational tractability as well as preserving pretrained knowledge.

POMDP Formulation with Efficiency Constraints. We model the task as a Partially Observable
Markov Decision Process (POMDP) where computational efficiency becomes a primary constraint.
At timestep t, the agent receives a natural language instruction Lt and a visual observation sequence
X = {X1, X2, . . . , Xt}, where X1:t−1 denotes historical frames and xt the current frame. Based
on these inputs, the agent selects a low-level action at ∈ A that transitions it into a new state with
observation Xt+1. The observation space comprises monocular RGB images, and the action space
includes qualitative action types and quantitative action arguments as established in VLN-CE (Krantz
et al., 2020). VLN-CE environments feature complex visual occlusions and challenging long-horizon
navigation goals where agents must recall and integrate multiple past observational frames for each
critical decision. The efficiency challenge emerges from the requirement to process sequences of
length t that can extend to hundreds of frames in long-horizon scenarios. Conventional approaches
face computational explosion as sequence length grows, making efficient context integration essential
for practical deployment. This computational bottleneck motivates our investigation into developing
a scalable context adapter that preserves rich historical information while maintaining efficiency.

Efficient VLM Architecture Selection. To maximize efficiency while demonstrating effectiveness,
we employ a compact pretrained VLM backbone. Following recent advances in efficient VLM
deployment (Zhang et al., 2024; 2025a;b; Kim et al., 2024), we adopt PrismaticVLM (Karamcheti
et al., 2024) as our foundation. We select the phi-2+3b variant with only 3B parameters, which
incorporates a ViT-based CLIP (Dosovitskiy et al., 2020; Radford et al., 2021) visual encoder, a
lightweight Phi-2 (Abdin et al., 2024) language model, and multi-layer cross-modal projection. This
architecture choice demonstrates that our efficiency gains extend beyond large-scale VLM models.

Efficient Context Processing Pipeline. Given visual observations X , we encode each frame into
visual tokens and project them into a shared embedding space with language tokens. This process
yields X ′ = {X ′

1:t−1, X
′
t}. Instructions Lt are tokenized to produce L′

t. For action prediction at
timestep t, we process current frame tokens X ′

t and instruction tokens L′
t through the LLM while

utilizing encoded historical frames X ′
1:t−1 as inputs for efficient contextual embedding adaptation in

LLM layers. This formulation establishes the computational constraints that our DCA must satisfy.
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down the hall until you get to a large 

room on the left with a pool table. Walk 
toward the pool table and straight. Wait 

Navigation Instruction  ￼LtCurrent Frame  ￼Xt

Action Head

Predicted Action  ￼at
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Final Embedding

zk = zk + λzcontext
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zk
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Figure 2: Model Architecture Overview. In each timestep t, the model receives inputs, including
initial compression vector, history observations, current observations, and navigation instruction.
We compress the historical context through a Memory Compressing Module, pass it to the Memory
Integration Module, and adapt the resulting memory into the layer outputs of the LLM backbone.

4.2 DYNAMIC CONTEXT ADAPTATION (DCA) FOR EFFICIENT HISTORICAL INTEGRATION

Our DCA addresses the computational bottleneck of historical context integration through a two-
stage architectural design that maintains linear complexity while preserving temporal richness. The
core innovation lies in decoupling historical context processing from the main VLM backbone,
which enables efficient memory management without sacrificing representational capacity. Given
that navigation environments constitute POMDPs, agents must integrate previous observations for
informed decision-making. However, naive concatenation of past tokens causes input sequence
explosion and incurs super-linear self-attention costs (detailed in Section 4.3). DCA resolves this
efficiency-accuracy trade-off by dynamically compressing historical context into a compact set of
learnable memory vectors that adapt into LLM layers while preserving upstream pretrained semantics.

Fig. 2 illustrates our efficient dual-pipeline architecture. The standard VLM pathway processes Xt

through a shared visual encoder and tokenizes instruction Lt via the Phi tokenizer. Both inputs
pass through the pretrained VLM to produce decoder embedding zt, which an action head decodes
into next-step action at following standard next-token prediction. The efficiency-focused context
adaptation pathway operates in parallel: a fixed-size learnable compression vector Minit queries
past embeddings X1:t−1 through our Memory Compression Module, producing compressed memory
M1:t−1. Our Memory Integration Module then attends over M1:t−1 with current decoder queries to
extract context-enhanced outputs that can adapt into LLM layers without inflating input sequences.

4.2.1 EFFICIENT DYNAMIC CONTEXT VECTOR COMPRESSING

Our compression strategy achieves computational efficiency by transforming variable-length his-
torical sequences into fixed-size representations while preserving critical temporal information.
This design eliminates quadratic scaling in concatenation methods and enables practical deploy-
ment in resource-constrained scenarios. We initialize a learnable compression vector Minit =
nn.Embedding(C, d).weight ∈ RC×d for each timestep t, where C denotes memory token
count and d represents embedding dimension. Historical frames X1:t−1 are encoded via the vision
encoder (Dosovitskiy et al., 2020; Radford et al., 2021) and concatenated to form encoded features
F1:t−1 = ∥t−1

t=1ViT-CLIP(Xi) ∈ R(t−1)×P×d, where P denotes image patch count. To reduce spatial
redundancy, we apply grid pooling operator G : RP×d → Rp×d (with p≪ P ) following established
practices (Zhang et al., 2024; Li et al., 2024). This yields F1:t−1 = G(F1:t−1) ∈ R(t−1)×p×d.
Our Memory Compression Module employs multi-layer cross-attention between Minit and pooled
features. We project Minit as queries and history features as keys and values: QM = MinitWQ,
KF = F1:t−1WK , VF = F1:t−1WV . The compressed computation achieves O(C · p) complexity:

M1:t−1 = ScpsVF ∈ RC×d, where Scps = Softmax(QMKT
F ) ∈ RC×p (1)

5
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4.2.2 EFFICIENT CONTEXT ADAPTATION FOR LLM INTEGRATION

Our context adaptation strategy achieves computational efficiency by integrating compressed historical
information directly into LLM layers without inflating input sequences or disrupting the original
architecture. This approach maintains constant computational overhead regardless of history length
while enabling multi-layer conditioning that enhances temporal understanding. The integration
process operates on standard encoder-only multi-layer language models. For each layer k with input
zk−1 ∈ RS×d, where S represents sequence length, the standard layer output zk is formulated as:

zk = Atten
(
Qk−1, Kk−1, Vk−1

)
, Qk−1,Kk−1, Vk−1 = zk−1W

k−1
Q , zk−1W

k−1
K , zk−1W

k−1
V .

(2)
Our Memory Integration Module enables efficient historical context adaptation into each Transformer
layer. This module integrates the compressed context vector from Eq. (1) through lightweight cross-
attention that maintains linear complexity. The module projects compressed historical context into
key-value representations: KM = M1:t−1W

M
K and VM = M1:t−1W

M
V . The context-enhanced

output computation achieves efficiency by attending the original layer output zk to compressed
historical vectors rather than processing full sequence history, which can be expressed as follows:

zcontext
k = SintgVM , where Sintg = Softmax(Qk−1K

T
M ), (3)

where Sintg denotes the attention score of the integration module. The final layer output combines the
context-enhanced representation with the original output through learnable scalar weighting as:

zk+1 ← zk+1 + λzcontext
k+1 . (4)

This design maintains computational efficiency by processing only C compressed memory tokens
per layer rather than the full history sequence of length t, achieving favorable O(S · C) for efficient
context integration compared to the prohibitive O(S · t · p) for the naive concatenation approaches.

4.3 ON THE LINEAR SCALABILITY TO EXTENDED HISTORICAL CONTEXT

The efficiency of historical context integration becomes critical when processing extended temporal
sequences. We analyze the complexity characteristics of our approach compared to standard concate-
nation methods to demonstrate the efficiency advantages that enable practical deployment. Consider
the attention sublayer of a typical Transformer decoder with textual context length Ntext and visual
token length tNv at timestep t, where Nv represents tokens per frame and t− 1 denotes history frame
count. Standard LLMs process total context length Ntext + tNv directly, where (t− 1)Nv ≫ Ntext

in long-horizon scenarios. This approach incurs quadratic complexity O((Ntext + tNv)
2) for self-

attention operations, creating severe memory and computational overhead as history length increases.

Our compression mechanism transforms this computational bottleneck through efficient architectural
design. The proposed Memory Compression Module (Fig. 2) compresses history frames to fixed
length C with complexityO((t− 1)NvC). This enables the LLM to process only Ntext +Nv tokens
directly while integrating compressed information via cross-attention at complexity O((Ntext +
Nv)C) per layer. Together, for an L-layer model, the total inference cost can be expressed as follows:

O( L(Ntext +Nv)
2︸ ︷︷ ︸

LLM context self-attention

+ L(Ntext +Nv)C︸ ︷︷ ︸
Memory integration (each layer)

+ (t− 1)NvC︸ ︷︷ ︸
Memory compression

) (5)

This design achieves linear scaling with history length (t− 1)Nv compared to the quadratic baseline
complexity O(L(Ntext + tNv)

2) that grows substantially through concatenation. The linear scaling
characteristic enables efficient processing of long-horizon tasks with extensive visual history while
maintaining computational tractability and consistent performance across varying sequence lengths.

5 EXPERIMENTAL RESULTS

In this section, we validate the efficiency and effectiveness of the proposed context adapter through
organized experiments on three topics: (1) Efficiency: compute overhead (FLOPs), training resource
requirements, and inference latency compared against approaches that incorporate history by concate-
nating past frames as additional tokens; (2) Effectiveness: how well the method utilizes pretrained
VLM semantics while maintaining navigation performance across various history lengths, and (3)
Design Insights: the specific design choices that contribute most to the gains and how they interact.
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Figure 3: Computational efficiency analysis of context-adaptation methods. Left: FLOP requirements
as history length increases. Right: Peak GPU memory consumption across varying history lengths.

5.1 EXPERIMENTAL SETUP

Baselines. For a fair comparison, we evaluate methods that implement end-to-end learning with
low-level action primitives in the VLN-CE environments. (1) Seq2Seq (Krantz et al., 2020): A
recurrent sequence-to-sequence architecture that directly maps RGBD observations to navigation
actions. The RGB-Seq2Seq variant processes RGB inputs exclusively. (2) CMA (Krantz et al.,
2020): Implements cross-modal attention between instructions and RGBD observations for action
prediction. Note that RGB-CMA denotes the RGB-only configuration. (3) NaVid (Zhang et al.,
2024): Employs a frozen VLM backbone to formulate navigation as next-token prediction over
RGB sequences. This method concatenates historical observations as additional language tokens
and applies auxiliary training objectives. NaVid-IL represents the imitation learning configuration.
For efficiency experiments, we establish two controlled baselines that share our VLM backbone and
training protocol: (1) No-Adapt: Processes historical frames as additional VLM input tokens without
compression or adaptation mechanisms. (2) Recurrent-Adapt: Replaces our Memory Compression
Module with an LSTM that sequentially processes past frame embeddings into fixed-size context
representations while maintaining the identical backbone architecture as well as the training pipeline.

Simulation Environment. The models are trained on R2R (Anderson et al., 2018) dataset under con-
tinuous setting as in VLN-CE (Krantz et al., 2020), where the agent is required to navigate in unseen
continuous environments by predicting discrete actions, VLN-CE contains 146304 episodes across 60
scenes, adapted from Tan et al. (2019). Similar to prior settings (Anderson et al., 2018; Krantz et al.,
2020), we leverage several representative metrics for evaluating the navigation performace: success
rate (SR), success rate weighted by the ratio between the shortest path length and the predicted path
length (SPL), oracle success rate (OSR), trajectory length (TL), as well as navigation error (NE).

Implementation Details. Our method utilizes pre-trained VLM from PrismaticVLM (Karamcheti
et al., 2024). Following Kim et al. (2024); Zhang et al. (2024; 2025a), we froze the vision encoder
and finetune the LLM and projection layers. Models are trained by FSDP sharding strategy under
Imitation Learning (IL) by the oracle trajectories across 8 NVIDIA L40 with 48GB memory each.
The loss is computed by a standard SoftMax IL loss. Memory Compressing Module and Memory
Integration Module both implement multi-head multi-layer attention introduced in work proposed
by Vaswani et al. (2017a). We set λ = 1 mentioned in Eq. (4) and C = 128 defined in Section. 4.2.1.

5.2 ANALYSIS ON MODEL EFFICIENCIES

Computational Efficiency Analysis. Table 2 presents a comparison of inference throughput across
methods. Our DCA approach demonstrates substantial efficiency gains compared to the No-Adapt
baseline: average inference time decreases from 3.21s to 2.71s per step, FLOPs reduce from 4.77T to
4.23T, and peak GPU memory usage drops from 37.84 GB to 34.31 GB. These improvements directly
result from our efficient dual-pipeline architecture that decouples historical context processing from
the main VLM backbone. To analyze scalability characteristics, Fig. 3 illustrates computational
overhead as history length δ increases across methods. While all approaches exhibit approximately
linear growth due to feed-forward network dominance independent of δ, critical efficiency distinctions
emerge with extended sequences. At initialization (δ = 0), all methods demonstrate comparable
FLOP requirements. However, as history length increases, the No-Adapt baseline (red curve) exhibits
the steepest computational growth. At δ = 30, DCA achieves over 25% reduction in additional
FLOPs relative to No-Adapt, validating our architectural efficiency claims. The Recurrent-Adapt
baseline presents an interesting contrast: it demonstrates the most favorable FLOP scaling due to
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Instruction: Turn right and walk straight until you 
are standing in a bedroom door, then stop.

t = 8 t = 16 t = 30 t = 43

t = 53
t = 61

t = 67

Figure 4: Averaged attentions of the Memory Compression Module across navigation timesteps for
unseen evaluation episode 37 in VLN-CE, with the corresponding visual observations indicated.
minimal per-timestep recurrent update costs. However, this apparent efficiency advantage comes at
the expense of representational capacity, ultimately limiting navigation performance. This trade-off
illustrates the fundamental challenge our method addresses: achieving both computational efficiency
and representational richness for effective historical context integration. Our results demonstrate that
DCA can effectively resolve this efficiency-accuracy tension through efficient architectural design
rather than sacrificing either computational tractability or its temporal understanding capabilities.

Table 2: Inference Throughput Comparisons.
Method
(Input: RGB) # Params Step Inf.

Time
FLOPs

(T)

Mem.
Peak
(GB)

Navid-IL 7B 2.86 4.89 48.61
No-Adapt 3B 3.21 4.77 37.84
Recurrent-Adapt 3B 2.50 4.14 35.65
DCA (Ours) 3B 2.71 4.23 34.31

Memory Efficiency. Fig. 3 (b) presents GPU
memory consumption patterns during training
as history length δ varies. All methods exhibit
modest memory growth with increasing δ, as
model weights dominate total memory usage.
At baseline (δ = 0), Recurrent-Adapt shows the
lowest memory requirements, while No-Adapt
and DCA present nearly identical consumption.
This similarity confirms that our DCA module introduces minimal architectural overhead. However, a
significant efficiency gap emerges for δ ≥ 1: DCA consistently uses approximately 30% less memory
than No-Adapt. This reduction directly results from our compressed context representation strategy,
which processes fixed-size memory vectors rather than expanding token sequences. The memory
efficiency advantage becomes increasingly pronounced with longer histories, demonstrating the
practical benefits of our compression-based approach for resource-constrained deployment scenarios.

5.3 EVALUATIONS ON VLN PERFORMANCE
Table 3: Evaluations on VLN-CE R2R Val-Unseen. ∗: Meth-
ods use high-level action space. †: Methods apply the way-
point predictor proposed in Hong et al. (2022). ‡: Methods
use extra visual data than MP3D scenes Chang et al. (2017).

# Method Observation VLN-CE R2R Val-Unseen
Pan. S.RGB Depth Odo. TL NE↓ OS↑ SR↑ SPL↑

1 HPN+DN∗ Krantz et al. (2021) ✓ ✓ ✓ 7.62 6.31 40.0 36.0 34.0
2 CMA∗† Hong et al. (2022) ✓ ✓ ✓ 10.90 6.20 52.0 41.0 36.0
3 RecurrentVLN∗† Hong et al. (2022) ✓ ✓ ✓ 12.23 5.74 53.0 44.0 39.0
4 Sim2Sim∗ Krantz & Lee (2022) ✓ ✓ ✓ 10.69 6.07 52.0 43.0 36.0
5 HAMT∗†‡ Chen et al. (2021) ✓ ✓ ✓ – 4.80 – 55.0 51.0
6 LAW Raychaudhuri et al. (2021) ✓ ✓ ✓ 8.89 6.83 44.0 35.0 31.0
7 Seq2Seq Krantz et al. (2020) ✓ ✓ 9.30 7.77 37.0 25.0 22.0
8 CMA Krantz et al. (2020) ✓ ✓ 8.64 7.37 40.0 32.0 30.0
9 NaVid Zhang et al. (2024) ✓ 7.63 5.47 49.1 37.4 35.9

10 NaVid-IL Zhang et al. (2024) ✓ – 7.10 20.6 14.4 12.4
11 RGB-Seq2Seq Krantz et al. (2020) ✓ 4.86 10.10 8.10 0.00 0.00
12 RGB-CMA Krantz et al. (2020) ✓ 6.28 9.55 10.80 5.00 4.43
13 DCA (No-Adapt) ✓ 3.91 7.12 8.86 7.23 7.00
14 DCA (Recurrent-Adapt) ✓ 8.44 9.56 7.14 6.59 5.44
15 DCA ✓ 6.73 6.77 25.3 13.7 12.9

Table 3 presents navigation perfor-
mance on VLN-CE R2R Val-Unseen
split. Methods are organized by in-
put modality: approaches using addi-
tional sensors beyond RGB (#1-#8)
appear above the first horizontal line,
while RGB-only methods (#9-#15)
are grouped below. NaVid variants
receive separate categorization due to
auxiliary co-training protocols. DCA
shows substantial performance im-
provements under the low-level action
VLN-CE framework. Compared to re-
current baselines RGB-Seq2Seq and
RGB-CMA, DCA achieves relative
success rate improvements of 13.7%
and 8.7%, respectively. Against
Recurrent-Adapt, which shares our backbone and adaptation framework, DCA delivers 7.11%
SR improvement, validating dynamic compression effectiveness over recurrent approaches. DCA
outperforms concatenation-based approaches: it surpasses No-Adapt by 6.47% in SR while matching
NaVid-IL performance despite using a smaller backbone (3B vs. 7B parameters) and standard training
rather than auxiliary co-training. The competitive Oracle Success (OS) Rate demonstrates effective
instruction comprehension. These results establish DCA’s superior efficiency-performance trade-offs.
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Figure 5: Attention heat map of the Memory Compression Module with initial compression vectors
as queries and encoded historical frames as keys, indexed by timesteps. Please note that the initial 30
timesteps are truncated for improved visualization clarity across three representative episodes.

5.4 VISUALIZATIONS OF DYNAMIC CONTEXT COMPRESSION

To understand our compression efficiency mechanisms, we analyze attention patterns within the
Memory Compression Module to identify which historical frames contribute most significantly to
navigation decisions. This reveals how our method achieves computational efficiency through selec-
tive temporal prioritization rather than uniform compression. Fig. 4 presents attention visualization
for our compression module. Following Eq. (1), we compute per-head attention scores Scps across
the trajectory at final navigation step T = 68. These scores weight frame features from t = 0 to
t = 67 during compression. Aggregating scores across heads produces a per-timestep attention profile
demonstrating temporal selection priorities. The analysis reveals selective focus on semantically
relevant observations, validating our compression approach. Early observations without visible targets
(bedroom door) receive negligible attention weights, reflecting limited utility for decision-making
at T = 68. Conversely, frames containing critical visual cues exhibit pronounced attention peaks:
the target door at t = 53 and t = 61, and bedroom interior at t = 67 show substantially elevated
weights. Fig. 5 confirms concentrated focus on later frames where goal locations become visible.
These patterns confirm our method’s ability to identify and prioritize critical contextual features
while efficiently discarding temporally irrelevant information, achieving efficiency through intelligent
temporal filtering rather than indiscriminate reduction. Additional analyses appear in Appendix B.
5.5 ABLATION STUDIES

Table 4: The ablative investigation on feature adaptation,
context compression, and compression vector length.

VLN-CE R2R Val-Unseen
Type TL NE↓ OS↑ SR↑ SPL↑

Feature
Fusing

FiLM Adapting 2.32 11.4 6.25 5.47 5.26
λ = 0.5 7.34 7.21 14.6 10.12 9.66
λ = 0.8 6.59 7.01 17.8 11.4 9.54

Context
Compression

Instruction Attention 7.23 6.90 8.86 7.23 6.99
C = 24 12.1 12.3 8.12 6.94 5.12
C = 48 10.5 11.4 10.27 6.88 5.64
C = 64 8.30 8.64 17.6 9.23 8.77

Ours Full Setting 6.73 6.77 25.3 13.7 12.9

Table 4 analyzes design choices of our
method. We compare our default con-
text injection via Eq. (3), which adds
compressed context with learnable co-
efficient λ, against FiLM-based fusion
applying zk+1 ← zk+1+(α zcontext

k+1 +β)
with zero-initialized parameters α and
β following Kim et al. (2025). FiLM
fusion shows substantial SR and SPL
drops because additional scaling param-
eters hinder stable context integration.
Varying λ (0.5, 0.8) shows larger values
consistently improve success and SPL, confirming the importance of weighted historical context.
For compression designs, we augment the compression module with cross-attention over instruction
embeddings, hypothesizing context relevance correlates with instruction semantics. This variant un-
derperforms direct compression due to data quality issues in R2R where instructions and trajectories
are misaligned. Additionally, we examine the effect of memory capacity by varying memory tokens
C (24, 48, 64). Performance improvements correlate with increased C values. This finding indicates
that greater capacity captures richer temporal patterns, though excessive increases risk overfitting.

6 CONCLUSION

In this study, we introduced DCA, a lightweight framework that efficiently integrates historical
context into pretrained VLMs without inflating input token lengths. Our proposed approach employed
a Memory Compression Module to distill past frame embeddings into fixed-size learnable memory
vectors and a Memory Integration Module to adapt these compressed representations into each Trans-
former layer. This design preserved the pretrained VLM architecture while achieving linear scaling
with extended context lengths. Our extensive evaluations on downstream VLN tasks demonstrated
that DCA can achieve superior efficiency-performance trade-offs compared to existing approaches.
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7 REPRODUCIBILITY

We made our code publicly accessible in https://anonymous.4open.science/r/
diffuser_navigator-0670/README.md.

8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, including {R2R Anderson et al. (2018)}, were sourced in
compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care to
avoid any biases or discriminatory outcomes in our research process. No personally identifiable infor-
mation was used, and no experiments were conducted that could raise privacy or security concerns.
We are committed to maintaining transparency and integrity throughout the research process.
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A TRAINING DCA

A.1 TRAINING PARAMETERS

We present the full list of the hyper-parameters used in our experiments in Table. 5.

Table 5: Hyper-parameters used in our experiments.

Hyper-parameter Value

Optimizer AdamW
Base learning rate 2.5× 10−5

Learning-rate scheduler CosSchedule + Warmup
Warmup steps 10% of total steps
FSDP Sharding Strategy FULL_SHARD
Epochs 24
Batch size (Global) 32
Total training steps 360,000
Dropout rate 0.1
Initial Compression Vector Length C 128
Adaptation Coeficcient λ 1.0
Number of Layers in Compression Module 8
Number of Layers in Adaptation Module 8
Number of Attention Heads in Compression Module 4
Number of Attention Heads in Adaptation Module 4
Hidden embedding size 2560
Gradient clipping norm 1.0
Mixed-precision training bFP16
Random seed Same as VLN-CE Krantz et al. (2020)

A.2 DATASET & SAMPLING

Timestep T

…

Oracle Action
Left

Oracle Action
Left

Oracle Action
Forward

Sampled
Oracle Action

Right
Oracle Action

Right

t=1 t=2 t=3 t=4 t=5

Oracle Trajectory a

Oracle Trajectory b

Oracle Trajectory c Sampled

Sampled

Sampled Batch

Figure 6: Illustration of Data Sampling of DCA Training.
During training, we collect 15, 000 oracle trajectories from VLN-CE Krantz et al. (2020) augmented
training split Tan et al. (2019). Considering the fact that oracle navigation action distributions are not
originally balanced in the oracle trajectory (e.g. there is only 1 <STOP> action in each individual
oracle trajectory, but 50 other actions according to Krantz et al. (2020)), to ensure effective training
and a better in-sample correlations. During training, given n collected oracle trajectories with
observations and ground-truth actions, we sample a single timestep from each of these trajectories,
resulting in n timesteps as a batch input to our model, we also record their history observations as
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context input, this process is illustrated in Fig. 6. We sample action a in each trajectory according
to the following categorical probability distribution π, which reasonably scales the original data
occurrence probability for each action:

π(a) =


0.10, a = stop,

0.40, a = forward,

0.25, a = left,

0.25, a = right,

a ∼ Categorical
(
π
)
.

B ADDITIONAL QUALITATIVE RESULTS

Our qualitative analysis employs a series of representative navigation episodes shown in Fig. 7, Fig. 8,
Fig. 9 and Fig. 10. In each case, the left panel presents a top-down map overlaid with the agent’s
executed trajectory, blue lines are the agent actual trajectory, where the dotted green lines are the
expected trajectory. On the right panel displays a histogram of attention weights assigned by the
compression module at the final decision step. Larger bars in the attention histogram correspond to
higher attention scores for the associated past frames. This inspection reveals that the compression
module consistently concentrates on frames containing task, relevant cues such as doorways, corridor
intersections and target landmarks. Even when an episode spans over ten meters of travel, the method
highlights only a handful of critical observations rather than processing every frame equally. Such
selective focus confirms that our adapter can distill essential information from long visual histories
without concatenating the entire sequence.

Instruction: Exit the closet and walk to your right out of the bedroom. Walk to your left past the kitchen and 
into the living area. Wait in the living room just to the left of the grey area rug.

Navigation Video

Top-down Map

Figure 7: Trajectory Summery of Episode 38.

C LIMITATIONS & FUTURE WORKS

While the our method delivers notable efficiency gains alongside competitive navigation results,
demonstrating impressive performance-efficiency trade-offs. However, compressing visual histories of
varying length into a fixed-size memory vector may obscure subtle temporal cues on long trajectories,
which can undermine performance on tasks requiring precise step by step reasoning. Additionally,
our experiments focus on a relatively small VLM backbone, so the adapter’s behavior on more recent,
large scale models remains an open question. Moreover, the current design assumes a Transformer
architecture in which visual and linguistic features occupy a shared representation space; extending
the method to architectures with fundamentally different structures or to other modalities would
demand a substantial redesign of both adapter components and the compression workflow.
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Instruction: Walk down the tiled floor passed the kitchen counter. Continue possed the living room area and 
into the hallway ahead. Continue walking ahead towards the front door of the home with wall art hanging up.

Navigation Video

Top-down Map

Figure 8: Trajectory Summery of Episode 137.

Instruction: Go straight past the bed and into the hallway. Enter the bedroom straight ahead and wait there.

Navigation Video

Top-down Map

Figure 9: Trajectory Summery of Episode 368.

We hope our approach opens several avenues for future researches on leveraging pre-trained VLMs
into downstream tasks. Integrating richer spatial priors into the compression stage, exploring adaptive
memory capacities that vary with environment complexity, and extending DCA to other sequential
multimodal tasks, such as video question answering or long-horizon robotic manipulation, represent
promising directions to further harness historical context in large-scale pretrained models.

D RELATION TO FEATURE-MAPPING ADAPTERS

Mapping-based adapters—such as MAPL (Mañas et al., 2022) which learn a transformer mapping
from visual tokens to LLM-consumable embeddings, which aggregate many visual tokens into a
few query tokens, offer efficient frame-/short-window token reduction injected at the first LLM
layer. In contrast, our memory compression performs query-guided, history-spanning cross-attention
over all past frames, producing C memory tokens M1:t−1 ∈ RC×d that are gated and integrated
at multiple top layers. Formally, let pooled per-frame features be F ∈ R(t−1)·p×d, and learnable
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Instruction: Walk into the kitchen and go to the left once you pass the counters. Go straight into the small 
room with the sink. Stop next to the door.

Navigation Video

Top-down Map

Figure 10: Trajectory Summery of Episode 361.

queries QM ∈ RC×d; then
M1:t−1 = softmax

(QMKT
F√

d

)
VF , (6)

where (KF , VF )∈R(t−1)·p×d are key/value projections of F . The integration at LLM layers ℓ ∈ L
adopts a gated cross-attention:

Hℓ ← (1− λℓ)Hℓ + λℓ XAttn(Hℓ, M1:t−1), λℓ ∈ [0, 1], (7)

with either fixed or learnable λℓ. We next state equivalence conditions clarifying when memory
compression degenerates to mapping-only.

Proposition D.1 (Degenerate equivalence to mapping-only) Assume: (i) no temporal adaptivity
(the attention weights in equation 6 are independent of time and computed on a single frame or a
fixed small window), (ii) single-layer injection (λℓ = 0 for all but the first LLM layer), and (iii) the
number of memory tokens C equals the number of mapped tokens q used by a mapping network. Then
equation 6–equation 7 are functionally equivalent to a mapping-then-first-layer-injection scheme
(MAPL/QPMapper-type) up to a reparameterization of the query projections. Conversely, if any of
(i)–(iii) is violated—in particular, if attention is temporally adaptive over full history or if multi-layer
gated integration is used—the equivalence does not hold.

Proof sketch When (i)–(iii) hold, equation 6 reduces to a query-guided convex combination of within-
window tokens, identical in form to attention-based token resampling. With equation 7 restricted to
the first layer and constant λ, the overall computation matches mapping-only injection. Temporal
adaptivity couples attention to history-dependent features; multi-layer gating composes multiple
residual cross-attentions, which cannot, in general, be folded into a single first-layer injection. □
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