
Visual Robot Pose Tracking through Counter-Hypothetical
Nonparametric Belief Propagation

Fig. 1: Nonparametric belief propagation is a distributed graph algorithm that uses observed sensor data (e.g. camera images) to infer continuous poster distributions (e.g.
articulated robot pose tracks) in noisy, unstructured environments. Due to its computational constraints, belief propagation often converges to faulty and incorrect estimates due
to its discrete sample-based approximation of continuous state spaces. This paper investigates the potential for Counter-Hypothetical reasoning to be introduced within the belief
propagation algorithm to overcome faulty estimates and produce the most likely posterior samples in real-world, continuous pose estimation and tracking tasks.
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Abstract— For safe and efficient collaborative environments,
co-located robots must be able to visually estimate and track the
movements of surrounding robots. Nonparametric belief prop-
agation provides a probabilistic framework for autonomous
systems to reason about uncertainty and multiple hypotheses
at once, as well as leverage portions of the robot that are
better observed. Due to its computational constraints on the
sample size, belief propagation often causes the filter to converge
to incorrect estimates, because the particles are ineffectively
representing the true belief. Our work seeks to maintain
particle diversity by re-initializing the particles from a variety of
proposal distributions as needed. We extend promising work of
adaptive particle reinvigoration from a single distribution in the
particle filter domain, which introduced Counter-Hypothetical
reasoning to independently estimate when the filter was in
failure mode. Our proposed framework explores the usefulness
of this reasoning within belief propagation to manage sampling
from multiple distributions and propagating its information
through the standard graphical model. We present preliminary
qualitative results for this method on tracking 21 links on a
humanoid robot, Digit.

I. INTRODUCTION

As we deploy robots into collaborative and unstructured
environments, their fidelity in visual state estimation and
tracking will become increasingly vital. Future autonomous
systems must track the pose of other robots or humans in
their workspace, the state of which will be of a high dimen-
sion and usually exclusively estimated through perception.
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Visual robot pose tracking is an appropriate task for validat-
ing and testing the efficacy of varying frameworks in high
dimensional state tracking, because proprioceptive sensors
can provide ground truth labels in spite of heavy occlusions.
This domain also circumvents some open computer vision
problems, such as intra-class variance or lack of known
models, which allows research to focus on the underlying
reasoning of tracking systems.

Probabilistic filters are a popular mechanism for pose
estimation and tracking of such highly articulated objects.
Bayesian filters leverage prior information of the object’s
pose when it becomes less observable. Their uncertainty
estimation also aids in overcoming noisy or occluded ob-
servations. In such occluded viewpoints, a factor graph
representation of the object is particularly useful. Belief
propagation allows for components of the object that are
better observed to inform the pose of less viewable parts.
More specifically, nonparametric belief propagation enables
the consideration of several hypotheses simultaneously when
multiple poses could be plausible in the given observation,
due to its ability to represent multi-modal belief distributions.

Unfortunately, exhaustively sampling across the state
space is intractable. Render and compare methods typical in
the likelihood function of pose estimation and tracking, as
well as the quadratic computational burden of belief propaga-
tion with respect to sample size, limit particle-based methods
to a relatively small number of samples at each node. This
constraint leads to the filter inefficiently representing the
true distribution in its belief, because particle deprivation in



regions of likely pose causes the filter to explore implausible
regions of the state space. Previous methods [1], [2] address
the issue of particle diversity by augmenting the particle set
by sampling from additional random distributions. Though
Monte Carlo localization has had extensive work of adaptive
particle reinvigoration [3], [4], [5], there has yet to be an
exploration of this task in belief propagation, or insight
on useful techniques to adaptively reinvigorate from several
candidate distributions.

This paper presents a preliminary framework for com-
bating particle deprivation in belief propagation through
adaptive particle reinvigorating at each node from multi-
ple random candidate distributions. Our work expands on
Counter-Hypothetical particle filters, which presented the
idea of independently quantifying the doubt associated with
each sample to inform the rate of adaptive particle reinvigo-
ration from a single random distribution in the domain of
rigid object tracking. We similarly implement a Counter-
Hypothetical likelihood function to produce a confidence
score that a given hypothesis of an individual link of the
robot significantly wrong based on the observation. Our
work demonstrates how this estimation can be leveraged
throughout the graphical structure to inform the amount of
particles at each node that should be reinitialized from a
uniform random distribution, or sampled off of a hypothesis
pose of a neighboring node.

II. RELATED WORK

A. Robot Pose Estimation and Tracking

Works for visual robot pose estimation have explored
localizing joints [6] or keypoints [7] within the image,
and leveraging knowledge of the kinematic structure and
camera parameters to determine the pose of the robot. Other
methods have examined rendering each individual hypothesis
for a given link, and comparing against the observation for
iterative improvement. This can be done in a probabilistic
fashion with belief propagation[8], or through passing the
observation and rendered hypothetical robot pose through
a neural network [9]. Most datasets in this domain have
no obstacles, and very little self-occlusion. Our work also
uses render and compare for robot pose tracking, but we
specifically focus on how to reliably track pose despite
occlusions.

B. Belief Propagation for Articulated Objects

For tracking articulated objects in continuous state spaces,
nonparametric belief propagation (NBP) methods [10], [11]
have been proposed. In contrast to traditional sum-product
belief propagation [12], which requires exact integral com-
putations, NBP algorithms approximate continuous poste-
rior distributions using graph-based message passing with
discrete sample sets. NBP algorithms have been applied
successfully to visual parts-based face localization tasks [11]
as well as human hand tracking tasks [13]. Moreover, NBP
methods have been shown to be effective in challenging
human pose estimation and tracking problems [14]. Notably,
the parts-based representation used by NBP algorithms in

pose estimation tasks can be more efficient than alternative
filtering algorithms, such as particle filters, for articulated
objects with high-dimensional state spaces [2]. For an ar-
ticulated object of interest, these approaches encode the
known articulation constraints in a factor graph represen-
tation then use local message passing operations to infer
the posterior distribution over each part’s pose given access
to some observed sensor data (e.g. images from a camera).
While traditional NBP algorithms require substantial domain
knowledge to encode an object’s articulation constraints,
recent work has demonstrated the potential for deep learning
to be integrated with the factor-graph representation used
by the NBP algorithms for learning these inter-part relation-
ships [15], [16].

C. Particle Diversity

Sample diversity in particle-based inference spans several
domains and works. Example works from Monte Carlo
Localization sample a portion of the next particle set from
a distribution auxillary to the particle set distribution. The
adaptive rate of this reinvigoration was first calculated
by a user-determined upper-bound threshold of acceptable
weights [3], which was then dynamically set by comparing
against historic average weightings over time [17]. More re-
cently, a fixed portion of new particles have been augmented
to the particle set by sampling off of output from a CNN [5].
We expand Counter-Hypothetical particle filters [18], which
argue the invalidity of directly measuring doubt as the ab-
sence of likelihood due to the potential presence of ignorance
and ambiguity in the sensor model. To this end, we similarly
inform the rate of particle reinvigoration at a given time step
based any glaring inconsistencies between the observation
and potential hypotheses.

Additionally from the tracking domain, simulated anneal-
ing function cyclically softens the shape of the likelihood
function to allow for more exploration of the state space
at intermittent iterations of the filter [19], [20]. However,
annealing adds another component of hand-tuning for its
scheduling, and will not recover belief when a large region
of the state space near the true state is deprived of samples.
Specifically for belief propagation, reinitializing particles
from sampling off of a set of proposal distributions, as
opposed to one, has been proposed [1] and implemented
for improved performance in pose estimation for highly
articulated objects [2]. We build off of this idea by combining
it with adaptive particle reinvigoration, in order to determine
the rate each distribution should be drawn from online.

III. METHODOLOGY

Given a sequence of t RGB-D images z1:t, we seek to
localize the 6D pose, xst, of an link s at time t. The
marginal belief distribution of Xs at time t, belt(Xs), can
be approximated by

belt(Xs) ∝ ϕs(Xs, Zs)
∏

r∈ρ(s)

m̂t
rs(Xs) (1)



where ϕs(Xs, Zs) is the unary potential of the latent state
Xs and its corresponding observable state, Zs. m̂t

rs(Xs)
represents the message passed from r to s, where r is a
neighboring node of s as indicated with r ∈ ρ(s). The
messaged passed from r to s at is defined as:

m̂t
rs(Xs) =

∑
Xr∈Xr

ϕt(Xr, Zr)ψr,s(Xr, Xs)
∏

u∈ρ(r)\s

m̂ur(X)

(2)

These equations demonstrates the chain of message pass-
ing coming into a given node through belief propagation.
Specifically with nonparametric belief propagation, the belief
distribution of belt(Xs) is represented by a set of particles
Xs:

Xs = {(x1s, π1
s), (x

2
s, π

2
s), . . . , (x

N
s , π

N
s )} (3)

where xis is the ith sample of the particle set, and πi
s is

its corresponding normalized importance weighting, given
from Equation 1, and N is the number of particles at the
given node. In traditional nonparametric belief propagation,
the next set of particles would be sampled off of the current
set, and the probability of a given particle being selected
would be based on its importance weighting. However, this
causes mode collapse in the underlying belief distribution,
and can push the filter into failure mode. In practice, Xs for
the next iteration is often a combination of samples from the
current set, Xprop

s , as well as randomized particles sampled of
a set of sampled off of other candidate proposal distributions,
Xaug

s . With Xs = Xprop
s

⋃
Xaug

s , the ratio from which to
sample off of each distribution needs to be addressed.

From the Counter-Hypothetical Particle Filter, we estimate
αs, the ratio of samples from Xprop for the particle set at
the s node:

αs =

∑N
i=1 L(xit)∑N

i=1 C(xit) +
∑N

i=1 L(xit)
(4)

where L(xit) is the unnormalized likelihood weighting for
the given particle, and C(xit) is the unnormalized weighting
from the Counter-Hypothetical likelihood. Note that the
ratio of particles sampled from distributions other than the
previous particle, comprising Xaug , set would be 1−α. This
formulation is incomplete for adaptive particle reinvigoration
within belief propagation, as the there are multiple candidate
distributions from which the samples can be reset. They may
be reinitialized form a random uniform distribution, similar
to initialization, which we’ll denote Xrand. Otherwise, they
may be sampled off of a particle from a neighboring node,
as described in [1], [2], denoted here as Xpair. To extend
the notation of particle reinvigoration to this case, we find
Xaug = Xrand

⋃
Xpair, leaving us to determine the ratio

between Xrand and Xpair.
We then introduce β, which is the ratio of augmented

particles sampled off of neighboring samples, Xpair
s . Intu-

itively, this ratio should be in accordance with our confidence

that the neighboring nodes are containing plausible samples.
Therefore, it is based on the α scores of each of the
neighboring nodes:

βs = (1− αs) ∗
1

M

∑
r∈ρ(s)

αr (5)

For the particles reinvigorated in Xpair, the frequency each
neighboring node’s pairwise distribution is sampled off of is
proportional to its α score relative to the other neighbors.

Lastly, the ratio of particles to be sampled from a uniform
random distribution is defined as γ. This is then calculated
from the other ratios and the fact that they must sum to 1:

γs = 1− αs − βs (6)

The size of Xprop
s , Xpair

s , and Xrand
s are then αsN , βsN ,

γsN respectively. Note αsN , βsN , and γsN are all integers
that would be rounded to sum to N .

With this formalization, the filter is able to maintain the
Bayesian prior in nodes where there is little evidence that the
current particles are wrong. Additionally, samples that appear
to be wrong at a given node can be sampled off of their
neighboring nodes when those exhibit promise, so it more
quickly produces valid configurations. When the current node
and neighboring nodes do not seem correct, the filter remains
in the global localization stage for more iterations.

IV. EXPERIMENTS

To analyze the ability of Counter-Hypothetical belief
propagation to overcome poor initialization and maintain
particle diversity, we validate its performance on tracking
the pose of Digit, a humanoid from Agility Robotics [21].
We collected 60 sequences of 15 seconds capturing Digit
moving within a workspace. Though several sequences were
fully observable similar to other benchmark datasets, most
of our sequences were heavily occluded, as seen in Fig. 3.
Though we currently only present qualitative results on an
unoccluded sequence, this collection is a stepping stone to
a benchmarked dataset for testing performance on tracking
complex and occluded movements. A series of fidicual
markers are attached to Digit’s torso to continually track the
6D pose of the torso. This data, along with the recorded
encoder readings at each joint allow for full pose annotation
at each time step and quantitative results for later work.

Our implementation of belief propagation seeks to track
the 6D pose of Digit’s 21 links. The pairwise potential for
the algorithm measures the compatibility between a particle
in a given node with the particles in its neighboring nodes.
The compatibility measurement rewards closeness between
the appropriate end points of neighboring links, as well as
relative rotation transformations within the joint’s known
limits and axes. We currently use simple render and compare
method to estimate the uncertainty associated with each sam-
ple based on the observation. For each hypothesis of a given
link, it is rendered based on the camera’s known parameters,
providing a synthetic depth image for the hypothesis, as well
as a segmentation of the hypothesis. The captured depth



Fig. 3: Examples of collected sequences. (Left) We staged stationary occlusions in
front of the robot, the ladder in particular has similar coloring and structure to some
of the links of Digit. (Right) We have several sequences with dynamic obstacles quickly
crossing the scene, as depicted with a black box, to test tracking.

image is masked to the segmentation, and compared against
the rendered synthetic depth image. The unary likelihood of
each particle is the ratio of pixels in the segmentation that
have little difference between the synthetic rendered depth
image and captured depth image for the corresponding pixel.

The Counter-Hypothetical likelihood function is also the
masked rendered and captured depth images, similar to the
likelihood function. Whereas the traditional unary likelihood
is an inlier function, the Counter-Hypothetical likelihood
function measures the ratio of pixels with depths lying
outside of the margin of error. However, the Counter-
Hypothetical likelihood function is not merely a function
with a zero-sum relationship with the likelihood function.
When the captured depth image has a distance shorter than
the rendered depth image, that can be explained away by
an occlusion of the link. This mismatch is not necessarily a
signal misalignment, and can be caused by ignorance or am-
biguity in the observation. Instead, the Counter-Hypothetical
likelihood function only measures mismatch depths when the
captured depth image has a longer distance than the rendered
depth image. In this case, there is unambiguous misalignment

Fig. 4: Qualitative results: (Left) Examples of the RGB portion of the input data for
the filter. (Right) Visualizing the belief at each time frame. (Top) At the beginning of
the sequence, the initial belief is very random and incorrect. (Bottom) Towards the end
of the sequence, it has begun to converge to a valid configuration, with less particle
reinvigoration needed in the underlying distribution.

that cannot be explained by occlusion, and might be a red
flag that the hypothetical link pose is significantly wrong.

For implementation details, these likelihood functions
rely on segmentation masks provided by the YOLOv8 net-
work [22]. We finetuned pretrained weights for the network
on synthetic renderings of Digit which gave automatically
generated ground truth masks. Each node had 50 particles.

V. RESULTS AND FUTURE WORK

An example qualitative result is provided in Figure 4.
The belief distribution at the beginning of a sequence is
very noisy before it has converged, and does not contain
a valid configuration. Over time, our method is able to
converge to a reasonable pose. We find that the high rates of
reinvigoration at the beginning of the sequence are dampened
as the maximum likelihood estimates of each node begin to
become more plausible.

These estimates are still noisy, and we look to tweak
the likelihoods and filter hyperparameters. There is also
enough data across the 60 sequences to partition the data
into training and testing, so that the traditional likelihood
and Counter-Hypothetical likelihood can be trained end-to-
end. We also will look to see if the Counter-Hypothetical
likelihood function can be better learned by leveraging the
global structure of the factor graph.
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