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ABSTRACT

Style transfer usually refers to the task of applying color and texture information
from a specific style image to a given content image while preserving the structure
of the latter. Here we tackle the more generic problem of semantic style transfer:
given two unpaired collections of images, we aim to learn a mapping between the
corpus-level style of each collection, while preserving semantic content shared
across the two domains. We introduce XGAN, a dual adversarial autoencoder,
which captures a shared representation of the common domain semantic content
in an unsupervised way, while jointly learning the domain-to-domain image trans-
lations in both directions. We exploit ideas from the domain adaptation literature
and define a semantic consistency loss which encourages the model to preserve se-
mantics in the learned embedding space. We report promising qualitative results
for the task of face-to-cartoon translation. The cartoon dataset we collected for
this purpose will also be released as a new benchmark for semantic style transfer.

1 INTRODUCTION

Image-to-image translation – learning to map images from one domain to another – covers several
classical computer vision tasks such as style transfer (rendering an image in the style of a given
input (Gatys et al., 2016)), colorization (mapping grayscale images to color images (Zhang et al.,
2016)), super-resolution (increasing the resolution of an input image (Ledig et al., 2016)), or se-
mantic segmentation (inferring pixelwise semantic labeling of a scene (Long et al., 2015)). In many
cases, one can rely on supervision in the form of labels or paired samples. This assumption holds
for instance for colorization, where ground-truth pairs are easily obtained by generating grayscale
images from colored inputs.

Figure 1: On the left, we depict a high-level motivational example for semantic style transfer, the
task of adapting an image to the visual appearance of an other domain without altering its semantic
content. The proposed XGAN applied on the face-to-cartoon task preserves important face semantics
such as hair style or face shape (right).

In this work, we consider the task of semantic style transfer: learning to map an image from one
domain into the style of another domain without altering its semantic content (see Figure 1). In that
sense, our goal is akin to style transfer: We aim to transfer style while keeping content consistent.
The key differences with traditional techniques are that (i) we work with image collections instead
of having a single style image, and (ii) we aim to retain higher-level semantic content in the feature
space rather than pixel-level structure. In particular, we experiment on the task of translating faces to
cartoons while preserving their various facial attributes (hair color, eye color, etc.). Note that without
loss of generality, a photo of a face can be mapped to many valid cartoons, and vice versa. Semantic
style transfer is therefore a many-to-many mapping problem, for which obtaining labeled examples
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is ambiguous and costly. Although this paper specifically focuses on the face-to-cartoon setting,
many other examples fall under this category: mapping landscape pictures to paintings (where the
different scene objects and their composition describe the input semantics), transforming sketches
to images, or even cross-domain tasks such as generating images from text. In this setting, we only
rely on two unlabeled training image collections or corpora, one for each domain, with no known
image pairings across domains. Hence, we are faced with a double domain shift, first in terms of
global domain appearance, and second in terms of the content distribution of the two collections.

Recent work (Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017; Bousmalis et al., 2017) report good
performance using GAN-based models for unsupervised image-to-image translation when the two
input domains share similar pixel-level structure (e.g., horses and zebras) but fail for more general
transformations (e.g., dogs and cats). Perhaps the best known recent example is CycleGAN (Zhu
et al., 2017). Given two image domains D1 and D2, the model is trained with a pixel-level cycle-
consistency loss which ensures that the mapping g1→2 fromD1 toD2 followed by its inverse, g2→1,
yields the identity function; i.e., g1→2 ◦ g2→1 = id. However, we argue that such a pixel-level
constraint is not sufficient in our case; the category of transformations we are interested in requires
a constraint in semantic space even though the transformation occurs in the pixel space.

To this end, we propose XGAN (“Cross-GAN”), a dual adversarial autoencoder which learns a shared
semantic representation of the two input domains in an unsupervised way, while jointly learning both
domain-to-domain translations. In other words, the domain-to-domain translation g1→2 consists of
an encoder e1 taking inputs in D1, followed by a decoder d2 with outputs in D2 (and likewise for
g2→1) such that e1 and e2, as well as d1 and d2, are partially shared. The main novelty lies in how we
constrain the shared embedding using techniques from the domain adaptation literature, as well as a
novel semantic consistency loss. The latter ensures that the domain-to-domain translations preserve
the semantic representation, i.e., that e1 ≈ e2◦g1→2 and e2 ≈ e1◦g2→1. Therefore, it acts as a form
of self-supervision which alleviates the need for paired examples and preserves semantic feature-
level information rather than pixel-level content. In the following section, we review relevant recent
work before discussing the XGAN model in more detail in Section 3. In Section 4, we introduce
CARTOONSET, our dataset of cartoon faces for research on semantic style transfer, which we are
currently in the process of making publicly available. Finally, in Section 5 we report experimental
results of XGAN on the face-to-cartoon task, and discuss various ablation experiments.

2 RELATED WORK

Recent literature suggests two main directions for tackling the semantic style transfer task: tradi-
tional style transfer and pixel-level domain adaptation. The first approach is inadequate as it only
transfers texture information from a single style image, and therefore does not capture the style of
an entire corpus. The latter category also fails in practice as it assumes pixel-level similarity which
does not allow for significant structural change of the input. Instead, we draw inspiration from the
domain adaptation and feature-level image-to-image translation literature.

Style Transfer. Style transfer traditionally refers to the task of transferring the texture of a specific
style image while preserving the pixel-level structure of an input content image (Gatys et al., 2016;
Johnson et al., 2016). Recently, (Li & Wand, 2016; Liao et al., 2017) proposed to compare the
style and generated image via a dense local patch-based matching approach in the feature space,
as opposed to global feature matching, allowing for transformations between visually dissimilar
domains. Still, these models only perform image-specific transfer rather than learning a global
corpus-level style, and do not provide a meaningful joint semantic domain representation.

Domain adaptation. XGAN relies on learning a shared semantic representation of both domains
in an unsupervised setting. For this purpose, we make use of the domain-adversarial training
scheme (Ganin et al., 2016). Moreover, recent domain adaptation work (Bousmalis et al., 2016;
Shrivastava et al., 2017; Bousmalis et al., 2017) can be framed as semantic style transfer as they
tackle the problem of mapping synthetic images, easy to generate, to natural images, which are
more difficult to obtain. The generated samples are then used to train a model that can be applied to
natural images. Contrary to our work however, they only consider pixel-level transformations.
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Image-to-Image translation. Recent work (Kim et al., 2017; Zhu et al., 2017; Yi et al., 2017)
tackle the unsupervised pixel-level image-to-image translation task by learning both cross-domain
mappings jointly, each as a separate generative network, via a cycle-consistency loss which ensures
that applying each mapping followed by its reverse yields the identity function. This intuitive form
of self-supervision leads to good results for pixel-level transformations, but often fails to capture
significant structural changes Zhu et al. (2017). In comparison, our proposed semantic consistency
loss acts at the feature-level, allowing for more flexible transformations. Orthogonal to this work
is UNIT (Liu et al., 2017). While also trained with pixel-level cycle-consistency, it consists of a
coupled VAEGAN Larsen et al. (2015); Liu & Tuzel (2016) with a shared embedding bottleneck,
similar to XGAN. However, UNIT assumes that sharing high-level layers in the architecture is suf-
ficient to learn a joint representation of both domains, while XGAN’s objective explicitly introduces
the semantic consistency component.

The Domain Transfer Network (DTN) (Taigman et al., 2016; Wolf et al., 2017) is closest to our
work. DTN is a single autoencoder trained to map images from a source to a target domain with
self-supervised semantic-consistency feedback. It was also successfully applied to the problem of
feature-level image-to-image translation, in particular to the face-to-cartoon problem. Contrary to
XGAN however, the DTN encoder is pretrained and fixed, and is assumed to produce meaningful
embeddings for both the face and the cartoon domains. This assumption is very restrictive, as off-
the-shelf models pretrained on natural images do not necessarily generalize to other domains. In
fact, while the reported results are convincing, we show in Section 5 that using a fixed encoder does
not generalize well in the presence of large domain shift between the two input domains.

3 PROPOSED MODEL

Let D1 and D2 be two domains that differ in terms of visual appearance but share common seman-
tic content. Note that while it is easier to think of domain semantics as a high-level notion, as for
instance semantic attributes, we do not require such annotations in practice, but instead consider
learning a feature-level representation that automatically captures these semantics without supervi-
sion. Our goal is thus to learn in an unsupervised fashion, i.e., without paired examples, a joint
domain-invariant embedding that is semantically-consistent and meaningful for both domains; i.e.,
semantically similar inputs in both domains will be embedded nearby in the learned semantic space.

Architecture-wise, XGAN is a dual autoencoder on domainsD1 andD2 (Figure 2(A)). We denote by
e1 the encoder and by d1 the decoder for domain D1; likewise e2 and d2 for D2. For simplicity, we
also denote by g1→2 = d2 ◦ e1 the transformation from D1 to D2; likewise g2→1 for D2 to D1.

The training objective can be decomposed into five main components:

the reconstruction loss, Lrec, encourages the learned embedding to encode meaningful knowledge
for each domain; the domain-adversarial loss, Ldann, pushes embeddings from D1 and D2 to lie
in the same subspace, bridging the domain gap at the semantic level; the semantic consistency
loss, Lsem, ensures that input semantics are preserved after domain translation; Lgan is a simple
generative adversarial (GAN) objective, encouraging the model to generate more realistic samples,
and finally, Lteach is an optional teacher loss that distills prior knowledge from a fixed pretrained
teacher embedding, when available. The total loss function is defined as:

LXGAN = Lrec + ωdannLdann + ωsemLsem + ωganLgan + ωteachLteach, (1)

where the ω hyper-parameters control the contributions from each of the individual objectives. An
overview of the model is given in Figure 2, and we discuss each objective in more detail in the rest
of this section.

Reconstruction loss. Lrec encourages the model to encode enough information on each domain
for the input to be reconstructed by the autoencoder. More specifically Lrec = Lrec,1 + Lrec,2 is
the sum of reconstruction losses for each domain.

Lrec,1 = Ex∼pD1
(‖x− d1(e1(x))‖2) , and likewise for Lrec,2 (2)

Domain-adversarial loss. Ldann is the domain-adversarial loss between D1 and D2, as intro-
duced in Ganin et al. (2016). It encourages the embeddings learned by e1 and e2 to lie in the same
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Figure 2: The XGAN architecture (A) is trained via an objective that encourages the model to learn
a meaningful joint embedding (B1) (Lrec and Ldann), which should be preserved through domain
translation (B2) (Lsem), while producing output samples of good quality (B3) (Lgan and Lteach)

subspace. In particular, it guarantees the soundness of the cross-domain transformations g1→2 and
g2→1. More formally, this is achieved by training a binary classifier, cdann, on top of the embedding
layer to categorize encoded images from both domains as coming from either D1 or D2 (see Figure
2(B1)). cdann is trained to maximize its classification accuracy Ldann while the encoders e1 and
e2 simultaneously strive to minimize it, i.e., to confuse the domain-adversarial classifier. Denoting
model parameters by θ and a classification loss function by ` (e.g., cross-entropy), we have:

min
θe1 ,θe2

max
θdann

Ldann, where Ldann = EpD1
`(1, cdann(e1(x))) + EpD2

` (2, cdann(e2(x))) (3)

Semantic consistency loss, Lsem. Our key contribution is a semantic consistency feedback loop
that acts as self-supervision for the cross-domain translations g1→2 and g2→1. It reinforces the
action of the domain-adversarial loss Ldann by mapping the embedding of an input image and the
embedding of its translated counterpart to the same point. Intuitively, we want the semantics of
input x ∈ D1 to be preserved when translated to the other domain, g1→2(x) ∈ D2, and similarly
for the reverse mapping. However this consistency property is hard to assess at the pixel-level as we
do not have paired data and pixel-level metrics are suboptimal for image comparison. Instead, we
introduce a feature-level semantic consistency loss, which encourages the network to preserve the
learned embedding during domain translation. Formally, Lsem = Lsem,1→2 + Lsem,2→1, where:

Lsem,1→2 = Ex∼pD1
‖e1(x)− e2(g1→2(x))‖, where ‖ · ‖ is a distance between vectors. (4)

Lsem,2→1 is defined in the same way for the transformation from D2 to D1.

GAN objective, Lgan. Although the key aim of XGAN is to learn a joint meaningful and semanti-
cally consistent embedding, we find that generating realistic image transformations has a crucial pos-
itive effect as the produced samples are fed back through the encoders when computing the semantic
consistency loss: Making the transformed distribution p(g2→1(D2)) as close as possible to the origi-
nal domain p(D1) ensures that the encoder e1 does not have to cope with an additional domain shift.
Therefore, with the purpose of improving sample quality, we define Lgan = Lgan,1→2 +Lgan,2→1,
where Lgan,1→2 is a state-of-the-art GAN objective (Goodfellow et al., 2014) where the generator
g1→2 is paired against the discriminator D1→2 (and likewise for g2→1 and D2→1). The models are
trained jointly in an adversarial scheme where D1→2 strives to distinguish generated samples from
real samples in D2, while the generator aims to produce samples that confuse the discriminator, i.e.,

min
θg1→2

max
θD1→2

Lgan,1→2, where (5)

Lgan,1→2 = Ex∼pD2
(log(D1→2(x))) + Ex∼pD1

(log(1−D1→2(g1→2(x)))) (6)

Once again Lgan,2→1 is the symmetric version for the transformation from D2 to D1.

Teacher loss, Lteach. We introduce an optional component to easily incorporate prior knowledge
in the model when available, i.e., when working in a semi-supervised framework. Lteach encourages
the learned embeddings to lie in a region of the subspace defined by the output of the representation
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layer of a teacher network T . In other words, it distills knowledge from a pretrained teacher and con-
strains the embeddings to a more meaningful subregion (relative to the task on which T was trained),
which can be seen as a form of regularization of the learned embedding. Lteach is asymmetric by
definition. It should not be used for both domains simultaneously as each term would potentially
push the learned embedding in two different directions. Assuming it is applied to domain D1, leads
to the following definition:

Lteach = Ex∼pD1
‖T (x)− e1(x)‖, where ‖ · ‖ is a distance between vectors.

3.1 ARCHITECTURE AND TRAINING PROCEDURE

We use a simple mirrored convolutional architecture for the autoencoder. It consists of 5 convo-
lutional blocks for each encoder, the two last ones being shared across domains, and likewise for
the decoders (5 deconvolutional blocks with the two first ones shared). This encourages the model
to learn shared representations at different levels of the architecture rather than only in the middle
layer. For the teacher network, we use the highest convolutional layer of FaceNet (Schroff et al.,
2015), a state-of-the-art model pretrained for the task of face recognition. Note that FaceNet was
trained on natural images only, i.e., it does not contain any prior knowledge of the cartoon domain.
A more detailed description is given in Appendix 7.1.

The XGAN training objective is obtained by minimizing Equation (1). In particular, the two ad-
versarial losses (Lgan and Ldann) leads to minmax optimization problems that require careful op-
timization. For the GAN loss Lgan, we use a standard adversarial training scheme Goodfellow
et al. (2014). Note that in order to ease training, we only use one of the discriminators in practice,
namely D1→2 which corresponds to the face-to-cartoon path, our target application. We first update
the parameters of the generators g1→2 and g2→1 in one step. We then keep these fixed and update
the parameters for the discriminator D1→2. Finally, we train the model by iterating this alternat-
ing process. The adversarial training scheme for Ldann can be easily implemented in practice by
connecting the classifier cdann and the embedding layer via a gradient reversal layer (Ganin et al.,
2016): The feed-forward pass is unaffected, however the gradient is backpropagated to the encoders
with a sign-inversion representing the minmax alternation. This update is performed in the same
step as for the generator parameters. Finally, we use ADAM optimization (Kingma & Ba, 2015)
with an initial learning rate of 0.0001 to train the model.

4 THE CARTOONSET DATASET1

Figure 3: Random samples from our cartoon dataset, CartoonSet. Each cartoon face is composed
of 16 discrete attributes resulting in the order of 100 million possible cartoon faces.

Although previous work has tackled the task of transforming frontal faces to a specific cartoon style,
there is currently no such dataset publicly available. For this purpose, we introduce a new dataset,
CartoonSet, which we will release publicly to further aid research on this topic.

Each cartoon face is composed of 16 components including 12 facial attributes (e.g., facial hair, eye
shape, etc) and 4 color attributes (such as skin or hair color) which are chosen from a discrete set
of RGB values. The number of options per attribute category ranges from 3, for short/medium/long
chin length, to 111, for the largest category, hairstyle. Each of these components and their variation
were drawn by the same artist, resulting in approximately 250 cartoon components artworks and 108

possible combinations. Furthermore, the artwork components are divided into a fixed set of layers
that define a Z-ordering for rendering. For instance, face shape is defined on a layer below eyes and
glasses, so that the artworks are rendered in the correct order. Hair style is a more complex case and
needs to be defined on two layers, one behind the face and one in front. There are 8 total layers: hair
back, face, hair front, eyes, eyebrows, mouth, facial hair, and glasses. The mapping from attribute to
artwork is also defined by the artist such that any random selection of attributes produces a visually

1We are currently in the process of releasing the dataset.
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appealing cartoon without any misaligned artwork; this sometimes involves handling interaction
between attributes. For example, the proper way to display a ”short beard” changes for different
face shapes, which required the artist to create a ”short beard” artwork for each face shape.

We create the CartoonSet dataset from arbitrary cartoon faces by randomly sampling a value for
each attribute. The corresponding artworks are rendered back-to-front. We then filter out unusual
hair colors (pink, green etc) or unrealistic attribute combinations, which results in a final dataset
of approximately 9, 000 cartoons. In particular, the filtering step guarantees that the dataset only
contains realistic cartoons, while being completely unrelated to the source dataset.

Figure 4: Random samples from the centered aligned VGG-Face dataset.

5 EXPERIMENTS

We experimentally evaluate our XGAN model on semantic style transfer; more specifically, on the
task of converting images of frontal faces (source domain) to images of cartoon avatars (target do-
main) given an unpaired collection of such samples in each domain. Our source domain is composed
of real-world frontal-face images from the VGG-Face dataset (Parkhi et al., 2015). In particular, we
use an image collection consisting of 18,054 uncropped celebrity frontal face pictures. As a pre-
processing step, we align the faces based on eyes and mouth location and remove the background.
The target domain is the cartoon style we introduced in Section 4. The corresponding training im-
age collection consists of 9,000 cartoon images that we center-align by localizing the center of the
irises, the center of the mouth, and tip of the nose. Finally, we randomly select and take out 20% of
the images from each dataset for testing purposes, and use the remaining 80% for training. For our
experiments we also resize all images to 64×64. As shown in Figures 3 and 4, the two domains vary
significantly in appearance. In particular, cartoon faces are rather simplistic compared to real faces,
and do not display as much variety (e.g., noses or eyebrows only have a few shape options). Fur-
thermore, we observe a major content distribution shift between the two domains due to the way we
collected the data: for instance, certain hair color shades (e.g., bright red, gray) are over-represented
in the cartoon domain compared to real faces. Similarly, the cartoon dataset contains many samples
with eyeglasses while the source dataset only has a few.

Baseline comparison. Our primary evaluation result is a qualitative comparison between the Do-
main Transfer Network (DTN) (Taigman et al., 2016) and XGAN on the semantic style transfer
problem outlined above. To the best of our knowledge, DTN is the current state of the art for se-
mantic style transfer given unpaired image corpora from two domains with significant visual shift.
In particular, DTN was also applied to the task of transferring face pictures to cartoons (bitmojis) in
the original paper2. See Section 2 for a more detailed introduction. Figure 5 shows the performance
of both DTN and XGAN applied to random VGG-Face samples from the test set to produce cartoon
versions of each sample. For both models, we present random samples produced with the best set
of hyperparameters we found. Evaluation metrics for style transfer are still an active research topic
with no good solution yet. Hence we choose optimal hyperparameters by manually evaluating the
quality of resulting samples, focusing on accurate transfer of semantic attributes, similarity of the
resulting sample to the target domain, and crispness of samples.

It is clear from Figure 5 that DTN fails to capture the transformation function that semantically
stylizes frontal faces to cartoons from our target domain. In contrast, XGAN is able to produce
sensible cartoons both in terms of the style domain – the resulting cartoons look crisp and respect
the specific CartoonSet style – and in terms of semantic similarity to the input samples from VGG-
Face. There are some failure cases such as hair or skin color mismatch, which emerge from the
weakly supervised nature of the task and the significant content shift between the two domains (e.g.,
red hair is over-represented in the target cartoon dataset). We also report selected XGAN samples

2The original DTN code and dataset is not publicly available, hence we instead report results from our
implementation applied to the VGG-Face to CartoonSet setting.
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(a) Baseline: DTN (b) Proposed: XGAN

Figure 5: A qualitative comparison between DTN and XGAN. In both cases we present random
test samples for the face-to-cartoon transformation with optimal hyperparameters. The tables are
prganized row-wise where each face input is mapped to the cartoon face immediately on its right.

Figure 6: Selected samples generated by XGAN on the VGG-Face to CartoonSet task.

that we think best illustrate its semantic consistency abilities in Figure 6. Finally, additional random
samples for both cross-domain mappings are available in Appendix 7.3.

We believe the failure of DTN is primarily due to its assumption of a fixed joint encoder for both
domains. Although the decoder learns to reconstruct inputs from the target domain almost perfectly,
the semantics are not well preserved across domains and the decoder yields samples of poor quality
for the domain transfer. In fact, FaceNet was originally trained on real faces inputs, hence there
is no guarantee it can produce a meaningful representation for CartoonSet samples. In contrast to
our dataset, the target bitmoji domain in (Taigman et al., 2016) is visually closer to real faces, as
bitmojis are more realistic and customizable than the cartoon style domain we introduce here. This
might explain the good reported performance even with a fixed encoder. Our experiments suggest
that using a fixed encoder is a very restrictive assumption that does not adapt well to new scenarios.
We also report results from a finetuned DTN in Appendix 7.2 and 7.3, which yields samples of better
quality than the original DTN. However, this setup is very sensitive to training hyperparameters and
prone to mode collapse.

Ablation study. We conduct a number of insightful ablation experiments on XGAN. We first
consider training only with the reconstruction loss Lrec and domain-adversarial loss Ldann. In fact
these form the core domain adaptation component in XGAN and, as we will show, are already able
to capture basic semantic knowledge across domains in practice. Secondly we experiment with
the semantic consistency loss and teacher loss. We show that both have a constraining effect on the
embedding space which contributes to improving the sample consistency. We also show in Appendix
7.4.1 that the GAN loss, even though it makes training more complex, is necessary for producing
samples of good quality and cannot be replaced with simpler image smoothness objectives.

We first experiment on XGAN with only the reconstruction and domain-adversarial losses active.
This component prompts the model to (i) encode enough information for each decoder to correctly
reconstruct images from the corresponding domain and (ii) to ensure that the embedding lies in a
common subspace for both domains. In practice in this setting, the model is robust to hyperparam-
eter choice and does not require much tuning to converge to a good regime, i.e., low reconstruction
error and around 50% accuracy for the domain-adversarial classifier. As a result of (ii), applying
each decoder to the output of the other domain’s encoder yields reasonable cross-domain transla-
tions, albeit of low quality (see Figure 7). Furthermore, we observe that some simple semantics
such as skin tone or gender are overall well preserved by the learned embedding due to the shared
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autoencoder structure. For comparison, failure modes occur in extreme cases, e.g., when the model
capacity is too small, in which case transferred samples are of poor quality, or when ωdann is too low.
In the latter case, the source and target embeddings are easily distinguishable and the cross-domain
translations do not look realistic (see Appendix 7.4).

source to target target to source

Figure 7: Test results for XGAN with the reconstruction and domain-adversarial losses only

Secondly, we investigate the benefits of adding semantic consistency in XGAN via the following
three components: Sharing high-level layers in the autoencoder leads the model to capture common
semantics earlier in the architecture. In general, high-level layers in convolutional neural networks
are known to encode semantic information. We perform a few experiments when sharing only
the middle layer in the dual autoencoder. As expected, the resulting embedding does not capture
relevant shared domain semantics. Second, we use the semantic consistency loss as self-supervision
for the learned embedding, ensuring that it is preserved through the cross-domain transformations.
It also reinforces the action of the domain-adversarial loss as it constrains embeddings from the
two input domains to lie close to each other. Finally, the optional teacher loss leads the learned
source embedding to lie near the teacher output (in our case, FaceNet’s representation layer), which
is meaningful for real faces. It acts in conjunction which the domain-adversarial loss and semantic
consistency loss which bring the source and target embedding distributions closer to each other.

source to target target to source
(a) Teacher loss inactive

source to target target to source
(b) Semantic consistency loss inactive

Figure 8: Results of ablating the teacher loss (left) and semantic consistency loss (right) in XGAN.

In Figure 8 we report random test samples for both domain-to-domain translations when ablating
the teacher loss and semantic consistency loss respectively. While it is hard to draw conclusions
from qualitative results, it seems that the teacher network has a positive regularization effect on
the learned embedding by guiding it to a more reasonable region of the space: Training the model
without the teacher loss (Figure 8(a)) yields more distorted samples, especially when the input is
an outlier, e.g., person wearing a hat, or cartoons with unusual hairstyles (Figure 5(b)). Conversely,
when the semantic consistency is inactive (Figure 8(b)), the generated samples overall display less
variety. In particular, rare attributes (e.g., unusual hairstyle) are not as well preserved as when the
semantic consistency loss is present.

Discussions and Limitations. Our initial motivation for XGAN was to tackle the semantic style
transfer problem in a fully unsupervised framework by combining techniques from domain adap-
tation and image-to-image translation. We first observe that using a simple setup where a partially
shared dual autoencoder is trained with reconstruction losses and a domain-adversarial loss already
suffices to produce an embedding that captures basic semantics rather well (for instance, skin tone).
However, the generated samples are of poor quality and fine-grained attributes such as facial hair
are not well captured. These two problems are greatly diminished after adding the GAN loss and
the proposed semantic consistency loss, respectively. Failure cases still exist, especially on non-
representative input samples (e.g., a person wearing a hat) which are mapped to unrealistic cartoons.
Adding the teacher loss reduces this problem by regularizing the learned embedding, however it re-
quires additional supervision and makes the model dependent on the specific representation provided
by the teacher network. Future work will focus on evaluating XGAN on more tasks. In particular,
, while we introduced XGAN as a solution to semantic style transfer, we think the model goes be-
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yond this scenario and could be applied to classical domain adaptation problems, where quantitative
evaluation becomes possible.

6 CONCLUSIONS

In this work, we introduced XGAN, a model for unsupervised domain translation applied to the
task of semantically-consistent style transfer. In particular, we argue that learning image-to-image
translation between two structurally different domains requires passing through a high-level joint
semantic representation while discarding local pixel-level dependencies. Additionally, we proposed
a semantic consistency loss acting on both domain translations as a form of self-supervision.

We reported promising experimental results on the task of mapping the domain of face images
to cartoon avatars that clearly outperform the current baseline. We also showed that additional
weak supervision, such as a pretrained feature representation, can easily be added to the model in
the form of teacher knowledge. While not necessary, it acts as a good regularizer for the learned
embeddings and generated samples. This can be particularly useful for natural image data as off-
the-shelf pretrained models are abundant.
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7 APPENDIX

7.1 ARCHITECTURE DETAILS

Autoencoder. Encoders take 64x64 images as input, which are then fed through five 2D convolu-
tional blocks. Two fully-connected layers are applied to the last feature map in order to obtain the
embedding vector. Finally, we normalize the embedding vector so that it lies in the unit ball. We
use the cosine distance for all embedding comparisons (for the semantic consistency and teacher
loss). The architecture for the decoder is a mirrored version of the encoder. From the initial flat
embedding layer, we apply a sequence of five deconvolutions, the last block outputting an 64x64
color image. For both the encoder and decoder, the two highest-level (de)convolutional blocks are
shared across domains. This encourages the model to learn shared representations at different levels
of the architecture rather than only in the middle layer. A detailed overview of the architecture is
presented in Appendix 7.1.

Discriminator. The discriminator architecture is very similar to the encoder architecture with the
difference that it only needs to output one logit for each input image, representing its binary classi-
fication decision. In practice, we use a smaller architecture for the discriminator as it often tends to
be too powerful and easily distinguish between real and transformed images.

Layer Size
Inputs 64x64x3
conv1 32x32x32
conv2 16x16x64
(//) conv3 8x8x128
(//) conv4 4x4x256
(//) FC1 1x1x1024
(//) FC2 1x1x1024
L2 norm. 1x1x1024

(a) Encoder architecture

Layer Size
Inputs 1x1x1024

(//) deconv1 4x4x512
(//) deconv2 8x8x256

deconv3 16x16x128
deconv4 32x32x64
deconv5 64x64x3

(b) Decoder architecture

Layer Size
Inputs 64x64x3
conv1 32x32x16
conv2 16x16x32
conv3 8x8x32
conv4 4x4x32
FC1 1x1x1

(c) Discriminator architecture

Table 1: Overview of the XGAN architecture used in practice. The encoder and decoder have the
same architecture for both domains, and (//) indicates that the layer is shared across domain.

We also report details of the XGAN architecture in Table 1. Note that all layers except the last ones
are followed by batch normalization. We also use ReLU as activation function for each of them,
except for the last deconvolution of the decoders which uses hyperbolic tangent activation function.

7.2 FINETUNING THE DTN ENCODER

As we noted when experimenting with the DTN, its main drawback seems to come from the as-
sumption to keep a fixed pretrained encoder in the model. Following this observation, we perform
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another experiment in which we finetune the FaceNet encoder relatively to the semantic consistency
loss, additionally to the decoder parameters.

While this yields visually better samples (see Figure 9(b)), it also raises the classical domain adap-
tation issue of guaranteeing that the initial FaceNet embedding knowledge is preserved when re-
training the embedding. For comparison, XGAN exploits a teacher network that can be used to distill
prior domain knowledge throughout training, when available. Secondly, this finetuned DTN is prone
to mode collapse. In fact, the encoder is now only trained relatively to the semantic consistency loss
which can be easily minizimed by mapping each domain to the same point in the embedding space,
leading to the same cartoon being generated for all of them. In XGAN, the source embeddings are
regularized by the reconstruction loss on the source domain. This allows us to learn a joint domain
embedding from scratch in a proper domain adaptation framework.

(a) Random generated samples (left) and reconstructions (right) with
fixed FaceNet embedding

(b) Random generated samples with
a fine-tuned FaceNet encoder

Figure 9: Reproducing the Domain Transfer Network performs badly in our experimental setting
(a); fine-tuning the encoder yields better results (b) but is unstable for training in practice.

7.3 EXTENSIVE QUALITATIVE EVALUATION

As mentioned in the main text, the DTN baseline fails to capture a meaningful shared embedding for
the two input domains. Instead, we consider and experiment with three different models to tackle
the semantic style transfer problem. Selected samples are reported in Figure 10:

• Finetuned DTN, as introduced previously. In practice, this model yields satisfactory sam-
ples but is very sensitive to hyperparameter choice and often collapses to one model.

• XGAN with Lrec and Ldann active only corresponds to a simple domain-adaptation set-
ting: the proposed XGAN model where only the reconstruction loss Lrec and the domain-
adversarial loss Ldann are active. We observe that semantics are globally well preserved
across domains although the model still makes some basic mistakes (e.g., gender misclas-
sifications) and the samples quality is poor.

• XGAN, the full proposed model, yields the best visual samples out of the models we exper-
iment on. In the rest of this section, we report a detailed study on its different components
and possible failure modes.

(a) Baseline: DTN (b) Finetuned DTN (c) XGAN (Lr only) (d) XGAN

Figure 10: Cherry-picked samples for the DTN baseline and three improved models we consider
for the semantic style transfer task

In Figure 11 we also report a more extensive random selection of samples produced by XGAN. Note
that we only used a discriminator for the source to target path (i.e., Lgan,2→1 is inactive); in fact the
GAN objective tends to make training more unstable so we only use one for the transformation we
care most about for this specific application, i.e., faces to cartoons. Other than the GAN objective,
the model appears to be robust to the choice of hyperparameters.
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(a) Source to target mapping

(b) Target to source mapping

Figure 11: Random samples obtain when applying a trained XGAN on faces from the testing set

Overall, the cartoon samples are visually very close to the original dataset and main identity charac-
teristics such as face shape, hair style, skin tone, etc., are well preserved between the two domains.
The main failure mode appears to be mismatched hair color: in particular, bright red hair appear
very often in generated samples which is likely due to its abundance in the training cartoon dataset.
In fact, when looking at the target to source generated samples, we observe that this color shade
often gets mapped to dark brown hair in the real face domain. One could expect the teacher network
to regularize the hair color mapping, however FaceNet was originally trained for face identification,
hence is most likely more sensitive to structural characteristics such as face shape. More generally,
most mistakes are due to the shift in content distribution rather than style distribution between the
two domains. Other examples include bald faces being mapped to cartoons with light hair (most
likely due to the lack of bald cartoon faces and the model mistaking the white background for hair
color). Also, eyeglasses on cartoon faces disappear when mapped to the real face domain (only very
few faces in the source dataset wear glasses).

7.4 FAILURE MODE WHEN TRAINING WITH Lrec AND Ldann

In Figure 12 we report examples of failure cases when ωdann is too high in the setting with the
reconstruction and domain-adversarial loss only: The domain-adversarial classifier cdann reaches
perfect accuracy and cross-domain translation fails.
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source to target target to source

Figure 12: Random test samples for both cross-domain translations in the failure mode for the
Lrec + Ldann only XGAN setting

7.4.1 GAN LOSS ABLATION EXPERIMENT

As mentioned Section 3.1, we only use a GAN loss term for the source→ target translation, to ease
training. This prompts the face-to-cartoon path to generate more realistic samples. As expected,
when the GAN loss is inactive, the generated samples are noisy and unrealistic (see Figure 13(a)).
For comparison, tackling the low quality problem with simpler regularization techniques such as
using total variation smoothness loss leads to more uniform samples but significantly worsen their
blurriness on the long term (see Figure 13(b)). This shows the importance of the GAN objective for
image generation applications, even though it makes the training process more complex.

(a) Without total variation loss (b) With total variation loss

Figure 13: Test samples for XGAN when the GAN loss Lga is inactive
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