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Abstract

Gastric cancer is one of the main causes of cancer and cancer-related mortality1

worldwide, and the diagnosis based on histopathology images is a gold standard2

for gastric cancer detection. However, manual diagnosis is labor-intensive and3

low in inter-observer agreement. Computer-aided image analysis method were4

thus developed to alleviate the workload of pathologists and overcome the prob-5

lem of subjectivity. Histopathology image analysis using deep learning has been6

proved to give more promising results than traditional methods on many whole7

slide image cancer detection tasks, including breast cancer detection and prostate8

cancer detection. In this paper, we further studied a whole slide image classifi-9

cation method using Convolutional Neural Networks (CNNs) on gastric cancer10

data. The method classify a whole slide image based on patch-sized classification11

results. Various experiments for patch-level classification using different existing12

CNN architectures were conducted. Experiment results show that the architecture13

gives the state-of-the-art result in natural image classification tasks can also give14

impressive results in histopathology image classification tasks.15

1 Introduction16

Gastric cancer is the second most common cancer in China[3] and the third leading cause of17

cancer death worldwide[16]. Diagnoses in histopathology images is essential for assessing the18

tumor response and prognosis of patients to different treatments[11, 2, 5, 20]. Nevertheless, the19

manual pathological diagnoses are time-consuming, often require tedious and laborious work. Also,20

manual diagnoses could be subjective and difficult to standardize, leading low level diagnostic21

concordance[15, 4]. Therefore, computer-aided histopathology image analysis methods are developed22

to assist pathologists to improve the efficiency, accuracy and consistency of cancer detection[6, 7].23

Recent works show great success in applying deep learning for histopathology image analysis. Specif-24

ically, Convolutional Neural Networks (CNNs) are applied to analyze the complicated histopathology25

images. This technique allows an image analysis method to be designed without specific field-related26

knowledge, and the model would learn all the features from images itself. Spanhol et al.[19] used27

a simple CNN architecture, AlexNet[10], to classify hematoxylin and eosin (H&E) stained breast28

histopathology images into two classes, benign and malignant. Small scaled input patch were used in29

their work. They then combined the results from patch classification to give the local-region-level30

classification. Subsequently, Araújoo et al.[1] extended the classification problem from 2-class to31

4-class, and also experimented larger scaled input patches. While these works focused their studies in32

patch-level and local-region-level classifications, Litjens et al.[12], Wang et al.[21] and Liu et al.[13]33

further improved the image analysis methods, giving a whole-slide-level classification prediction.34
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Table 1: Details of annotations given for the gastric cancer datasets
Training/Validation Testing

Slide-level labels (WSIs) 150 cancer + 39 normal 110 cancer + 70 normal
Pixel-level annotations 1500 region images 5 cancer WSIs

(from 150 cancer WSIs,
10 from each slide)

Authors in works mentioned above proposed their classification methods for either breast cancer35

data or prostate cancer data, and Sharma et al.[17] later applied deep learning methods to the gastric36

cancer data. They proposed an introductory CNN architecture and compared the performance of it37

with AlexNet[10] and several other traditional methods. 15 whole slide images (WSIs) were used for38

extracting patches for training, validation and testing (11 for cancer classification and 4 for necrosis39

detection), and accuracies of 69.90% for cancer classification and 81.44% for necrosis detection were40

achieved for patch-level classifications.41

In our work, with a larger gastric cancer dataset introduced, we evaluated the feasibility of a whole-42

slide-image-level classification method for gastric cancer. Additionally, to see would the architecture43

with more complicated structures outperform AlexNet[10] for histopathology images, different44

existing CNN architectures were assessed in patch-level classifications. The effect of different45

patch scales were also experimented. Finally, we achieved an accuracy of 98.698% for patch-level46

classification and an accuracy of 97.728% for slide-level classification.47

2 Dataset48

The gastric cancer dataset consists of 369 WSIs, each from a distinct patient who underwent curative49

surgery at Changhai Hospital in Shanghai, China, from 2001 to 2005. Mean age of these patients50

was 59 years old. The slides in the dataset were stained with hematoxylin and eosin (H&E), and51

digitized by MAGSCANNER KF-PRO-1201 at magnification of 20×. The use of these slides has52

been approved by the Changhai Hospital Institutional Review Board.53

Annotations of the data are given by expert pathologists, and presented in two different forms, pixel-54

level delineation of cancerous regions on images and cancer/normal labels for each slide. 1500 cancer55

region images (acquired from 150 WSIs, each with 10 region images), each of size 2048× 204856

pixels, and another 5 cancer WSIs are given with pixel-level annotations (the 5 WSIs are exhaustively57

annotated). The 1500 cancer region images were used for extracting positive patches used for training58

and validating the patch-level classifier, and the 5 WSIs were used for positive patch extraction for59

testing the trained classifier. The patch extraction strategies would be further explained in details60

in the following sections. Total number of 369 WSIs are given with slide-level labels, and are split61

into 189 (150 cancer slides and 39 normal slides) for training of the slide-level classifier and 18062

(110 cancer slides and 70 normal ones) for testing. The normal slides were also used for the negative63

patch extraction. The first 39 normal slides were used for extracting negative patches for training and64

validation of the patch-level classifier, whereas 5 out of the 70 normal slides were used for testing.65

Details of the annotations are summarized in Table 1.66

3 Methods67

The classification method consists of four steps: (1) image preprocessing to extract the tissue region;68

(2) patch-level classification using CNN; (3) cancer likelihood map generated from the patch-level69

classification results; (4) slide-level classification based on the likelihood map. Details are explained70

in the following sections.71

1http://www.kfbio.cn/productshow.php?cid=27&id=43
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3.1 Image Preprocessing72

Most of the WSI area is non-informative background. These area would lead to unnecessary73

computational costs. To save computational costs and increase efficiency, we did image preprocessing74

to extract the tissue regions from the slide first.75

Common thresholding algorithms were used in [12, 21] to extract the tissue region. These thresholod-76

ing algorithms differentiate foreground and background objects by setting a threshold intensity,77

and simply grouping pixels with intensity higher than the threshold and lower than the threshold78

separately[14]. These methods are capable of separating the foreground objects from the blank79

background regions, however, it is unable to remove regions of glasses, glues and dirt, which would80

have pixels with similar intensities to tissue regions but different from blank regions. These useless81

regions would remain together with the tissue regions, causing computational costs and unnecessarily82

complicating the cancer detection problem since patches containing different forms of glass textures83

would also be required as normal patches for the training of the patch-wise classifier. Therefore, a84

tissue extraction method based on differences between R/G/B color channels was used. The blank85

background is close to white, whereas the regions of glasses, glues and dirt are generally greyish86

or close to black. Pixels with color close to black or white, or greyish colors would have relatively87

uniform values for R/G/B channels. In other words, the difference between the highest channel value88

and the lowest channel value of the pixel with those colors would be smaller than a certain threshold.89

Thus, pixels with channel value difference greater than the threshold would be marked as tissue90

regions, while the remaining would be regarded as the non-informative background. A threshold91

value of 25 was empirically obtained and was used to get the binary mask. Noises and small holes92

were later removed by morphological operations. Figure 1 shows the results of applying the tissue93

extraction method.94

(a) (b)

Figure 1: Examples show tissue regions extracted from WSI. The extracted tissue regions are
successfully separated from background consists of blank regions, marks of glasses and glues, and
dirt, and contoured with black curves.

3.2 Patch-wise Classification95

The WSIs are large in size, hence it is impossible to directly put them as the input for the classification.96

One good way is to divide the tissue regions into small patches and the further slide-level classification97

could be done by combining all the results of the small patches. Since the objective is to give diagnos-98

tic results of cancer/normal for the slide, it is not important to precisely delineate the boundaries of99

cancerous regions on the slide. As a result, image classification models were considered rather than100

segmentation ones. For achieving better performance, CNN was used for patch-wise classifications.101

In the following, patch extraction strategies, data augmentation and detailed explanation of network102

architectures we used for training the patch-level classifier are presented.103

3



3.2.1 Patch extraction104

Patches for training, validation and testing sets were generated according to the pixel-level annotations105

given by pathologists. On images with pixel-level annotations, patches were extracted with a stride106

of 100 pixels in the tissue region and labeled as positive if the patch center located in the annotated107

cancerous region. Normal patches were generated randomly in the tissue regions of normal slides,108

and labeled as negative. To avoid bias to the patch dataset, the ratio of total amount of negative109

patches to total amount of positive patches was controlled to be roughly 1:1. Three patch sizes were110

extracted for further comparison: 120× 120, 240× 240 and 480× 480.111

3.2.2 Data augmentation112

Data augmentation was utilized to obtain more robust models. To increase the size of the patch113

dataset, random cropping of sizes 112× 112, 224× 224 and 448× 448 was applied to input patches114

of 120× 120, 240× 240 and 480× 480 respectively during the training. Since features extracted115

from histopathology images should be orientation invariant, random flipping and rotation were also116

used. Vertical flipping and horizontal flipping would be applied to the input patches randomly with a117

probability of 0.5, and the patches would then be rotated by random multiples of 90◦. To combat the118

variations between different slides caused by, for example, different color staining, problem caused119

by overexpossure during scanning, etc., the brightness, contrast, saturation and hue of the patches120

were slightly adjusted by a random factor in each training epoch.121

3.2.3 Using existing network architectures122

We experimented with various previously existing CNN architectures to find the network architecture123

that suits the gastric cancer classification problem best. We started the evaluation with AlexNet[10],124

a network architecture simply composed of layers of convolution and pooling sequentially, followed125

by fully-connected layers. Next, VGG-16[18] was evaluated. VGG-16 has very similar "plain"126

network structures to AlexNet, but with more layers. We then experimented on more complex127

models, ResNets[8] and DenseNets[9]. These models have much deeper networks. ResNets[8] use128

identity-based shortcut connections to bypass the signal from previous layers to the next, alleviating129

degradation problems during the training for very deep networks. DenseNets[9] provide with a130

reformulation of the connection, which helps to train a deeper network but also substantially improves131

the parameter efficiency and better the generality of the trained model.132

3.3 Cancer Likelihood Map133

Tissue regions were extracted from the slide first, and patch-level inference was then carried out in a134

sliding window manner with strides of 28, 56, 112 and 224 pixels in the tissue regions. Smaller strides135

would lead to finer results but with more computation time. We did experiments to compare the136

results using different strides, and the experiment suggests that the results with stride of 56 was good137

enough to give visually smooth likelihood map and deliver enough information for later slide-level138

classification, while not being too time-consuming. Therefore, stride of 56 pixels was used for later139

experiments in this paper.140

Classification results for small patches were then merged into the cancer likelihood map. Pixels in141

the patches predicted to be positive would be added by one on the map while the ones predicted142

to be negative would be remained as the original value. The final cancer likelihood map were then143

normalized to values in range [0,1] by dividing by144

factor =
(patch size

stride

)2

(1)

3.4 Slide-level Classification Based on Cancer Likelihood Maps145

After getting the cancer likelihood map for the slide, Nt binary masks according to Nt different146

thresholds of likelihood were obtained from the map, where Nt is the number of thresholds used. For147

each threosholded binary mask, we collect 9 features, including area, solidity, eccentricity and extent148

of the largest component and the second largest component of the cancer area, and ratio between the149

total cancer area and the tissue area. Thus each slide could get Nt×9 features.150
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Table 2: Details of datasets for training the patch-level classifier
Training Validation Testing

positive/negative patches 135k/135k 34k/34k 50k/50k
Total 270k 68k 100k

189 slides (150 cancer slides and 39 normal slides) provided with slide-level labels were used for151

training the slide-level classifier. Cancer likelihood maps were first generated for these slides. With152

the features extracted from the map as the inputs and the slide-level label as the output label, a random153

forest classifier was trained to determine whether the slide should be predicted as cancer or normal.154

The performance of the slide-level classifier was further tested by the testing set consisting of 110155

cancer slides and 70 normal slides.156

4 Experiments157

4.1 Patch-level Classification158

1500 annotated 2048× 2048 region images were used to generate a total amount of 169,275 positive159

patches for training and validation. Negative patches for training and validation were then extracted160

from 39 normal slides. In order to keep the ratio of the total amount of positives to negatives to be161

roughly 1:1, each normal slide was used for generating 4340 negative patches randomly positioned162

in the tissue regions of the normal slide. Accordingly, total amount of 338k positive and negative163

patches were generated. Then, these patches are equally divided into 5 groups. One of the groups164

was used as validation set whereas the remaining was used as the training set, leading to a training set165

of 270k patches and a validation set of 68k patches. Then, 5 annotated cancer slides and 5 normal166

slides from the additional 180 slides were used to produce the testing set. For each slide, 10k patches167

were extracted, making a testing set of 100k patches in total, consisting of 50k positives and 50k168

negatives. Details for each dataset are summarized in Table 2.169

Because of the tremedous differences between histopathology images and natural images, we did not170

use any pretrained models and all networks were trained from scratch. The network was trained for171

20 epochs, and the one with the highest accuracy on validation set was saved. Then the best model172

from last 20-epoch-training would be trained for another 20 epochs with a learning rate ten times173

smaller than before. Repeating for three times and the final network was obtained. All networks for174

comparison were acquired in the same way.175

Table 3 shows the accuracy of different network architectures. Results in Table 3 indicate that the176

accuracy of a testing set is always lower than that of a validation set. This is because that the validation177

set was draw out from the same dataset where the training set was from, which means these two178

sets have though slightly different but similar patches. As for the testing set, patches were extracted179

from another 10 slides that had never been seen in the training process. Hence, patches in the testing180

set should be more different from the training patches, and that difference leads to the decrease in181

the accuracy. However, although there is a slight drop, the accuracy on the testing set is still very182

high. This may be due to the large amount of patches we used for training, and proper extensive data183

augmentation encourages the generality of the model and avoids over-fitting problems.184

We first evaluated the performance of different network architectures with the same patch scale,185

224× 224. Although VGG-16[18] has a very simple and straightforward architecture, it still achieved186

surprisingly good result. This may be due to large amount of parameters in the VGG-16 architecture.187

Still, the highest accuracy was achieved by DenseNet-201[9]. DenseNet-201 has much fewer188

parameters than VGG-16, but its structure utilize features in an efficient way to avoid feature189

redundancy and help to generate a more compact network delivering better results. Regarding the190

fact that DenseNet-201 gave the best results for both validation and testing sets, we performed the191

following experiment using DenseNet-201.192

Next, we compared the performance of DenseNet-201[9] using different input scales. Input size of193

112× 112 pixels gave much lower accuracy as expected, whereas model with 448× 448 sized inputs194

gave sightly better results than 224× 224. Since the improvement of model using 448× 448 sized195

inputs was not very significant, about 0.1% in accuracy on training set and 0.2% on testing set, and it196
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Table 3: Patch-wise classification accuracy (%)
Network Input patch size Validation Testing

AlexNet 224× 224 98.156 96.722
VGG-16 224× 224 99.565 98.413
ResNet-101 224× 224 98.879 98.353
ResNet-152 224× 224 99.290 97.244
DenseNet-121 224× 224 98.444 98.153

112× 112 97.845 96.821
DenseNet-201 224× 224 99.655 98.698

448× 448 99.758 98.973

Table 4: Slide-level classification accuracy (%)
Random forest classifier Training Testing

accuracy 100.000 97.728
sensitivity 100.000 95.454
specificity 100.000 100.000

would cause substantial increase in computational costs. Considering the time constraint, we chose197

DenseNet-201 with 224× 224 as the input size to finish the following experiments.198

4.2 Slide-level Results199

Once the trained network is obtained, it can be applied to the tissue region of the slide in a sliding200

window manner. The cancer likelihood map can be generated afterwards. An example2,3 of cancer201

likelihood map for gastric cancer detection is shown in Figure 2(c). Figure 2(b) presents the202

corresponding ground truth annotation given by pathologists. Regions predicted with high likelihood203

of being cancerous are shown in red or yellow, whereas regions with low likelihood of cancer are204

shown in green or blue. Transparent areas indicate normal tissue regions. Most of the cancerous205

regions are correctly detected. Few false positives exist.206

After getting the likelihood map, features were extracted from the map and fed as the training inputs207

to a Random Forest classifier. The slide-level label was used as the training ground truth. Dataset of208

189 labeled slides (comprised of 150 cancer slides and 39 normal slides) was used as the training209

set and additional 180 slides (comprised of 110 cancer slides and 70 normal ones) were used as210

the testing set. We evaluated the performance of slide-level classifier with accuracy, sensitivity and211

specificity. Results for the slide-level classifier are summarized in Table 4. It can be seen from Table 4212

that the classifier classified all normal slides in the testing set correctly but mis-classified several213

cancer slides. Most of the mis-classified cancer slides contains very few amount of cancerous area,214

like 0.23% of the tissue area. In the training set, the cancer slides contain an average cancerous region215

of 8.77% of the tissue regions (the least amount is 1.32% of the tissue region). Hence, even though216

the patch-level classifier is able to detect the cancerous regions in the slide, the post-processing217

slide-level classifier was trained to "assume" those detected cancerous regions to be false positives218

and gave incorrect slide-level classification results. In spite of this, the slide-level classifier is still219

able to give 100% of accuracy for gastric cancer detection if the slide contains cancerous area more220

than 1.5% of the tissue region.221

2Full sized example image and the corresponding cancer likelihood map can be viewed by link:
http://box.histogram.cn/s/i7Aune. The link is generated by HISTOGRAMTMfor data sharing. Likelihood
map can be viewed by clicking the "heatmap" icon, and the pixel-level annotation can be viewed by clicking the
eye icon.

3More full sized examples and corresponding maps can be viewed here: http://box.histogram.cn/s/OP0eNa
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Figure 2: (a) Whole slide image of a tissue sample of gastric cancer. (b) The ground truth annotation
of cancerous regions given by expert pathologists. (c) The predicted cancer likelihood map of the
slide. (d) Zoom in on area indicated by the yellow square on (c) to a higher magnification (10×). The
top image is the annotation of the cancerous region, and the bottom image is the cancer likelihood
map.

5 Conclusions222

In this paper, the feasibility of a whole slide image classification method of gastric cancer using223

CNN is studied. An image preprocessing method is introduced to extract tissue regions from non-224

informative background, including blank regions, marks of glassess, glues and dirt. The whole slide225

classification is acquired by combining patch-level classification results. Patch extraction strategies226

are shown, and data augmentation is applied to increase the size of the training dataset for the patch-227

level classifier. Different existing CNN architectures are evaluated for patch-wise classification, and228

DenseNet-201 is reported to be the best network architecture for histopathology image classification229

of gastric cancer, giving an accuracy of 98.698% for the testing set. This leads to the conclusion that230

the best-in-class network architecture for natural image classification tasks can also give promising231

results in gastric cancer histopathology image classification. The cancer likelihood map for whole232

slide image of gastric cancer is produced by aggregating the patch-wise classification results. Final233

slide-level classifier is trained based on Random Forest classifier, using features extracted from the234
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corresponding cancer likelihood map as the inputs. Experiment demonstrates that the slide-level235

classifier achieves an accuracy of 97.728% for the testing set. We thus conclude that the whole slide236

image classification method is useful for gastric cancer detection.237

Future work can extend the binary classification of cancer/normal to multi-class classification, to238

distinguish between various sub-types of the gastric cancer. Moreover, data used for this work are239

from the same center using the same scanner. Further studies can explore the method with data from240

multiple centers and different digitization equipments.241
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