
Under review as a conference paper at ICLR 2018

FEAT2VEC: DENSE VECTOR REPRESENTATION OF
DATA WITH ARBITRARY FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Methods that calculate dense vector representations for features in unstructured
data—such as words in a document—have proven to be very successful for knowl-
edge representation. We study how to estimate dense representations when mul-
tiple feature types exist within a dataset for supervised learning where explicit la-
bels are available, as well as for unsupervised learning where there are no labels.
Feat2Vec calculates embeddings for data with multiple feature types enforcing
that all different feature types exist in a common space. In the supervised case,
we show that our method has advantages over recently proposed methods; such as
enabling higher prediction accuracy, and providing a way to avoid the cold-start
problem. In the unsupervised case, our experiments suggest that Feat2Vec sig-
nificantly outperforms existing algorithms that do not leverage the structure of the
data. We believe that we are the first to propose a method for learning unsuper-
vised embeddings that leverage the structure of multiple feature types.

1 INTRODUCTION

Informally, in machine learning a dense representation, or embedding of a vector ~x ∈ Rn is an-
other vector ~y ∈ Rr that has much lower dimensionality (r � n) than the original representation,
and can be used to replace the original vector in downstream prediction tasks. Embeddings have
multiple advantages, as they enable more efficient training (Mikolov et al., 2013), and unsupervised
learning (Schnabel et al., 2015). For example, when applied to text, semantically similar words are
mapped to nearby points.

We consider two kind of algorithms that use embeddings:

1. Unsupervised methods (sometimes referred as self-supervised methods) like
Word2Vec (Mikolov et al., 2013), are designed to provide embeddings that are use-
ful for a wide-array of predictions tasks. For example, the loss function of the continuous
bag of words (CBOW) algorithm of Word2Vec is tuned to predict the next word of a
sequence; however, in practice, the embeddings produced are mostly used for other tasks,
such as analogy solving (Mikolov et al., 2013), or sentiment analysis (Le & Mikolov,
2014). In the context of this paper, we refer to the embeddings of an unsupervised method
that can be used for a variety of auxiliary prediction tasks as general-purpose.

2. Supervised methods, like matrix factorization, produce embeddings that are highly tuned
to a prediction task. These embeddings may be interpretable but do not usually general-
ize to other tasks. We refer to these embeddings as task-specific. Matrix factorization and
Word2Vec are unable to calculate embeddings for items that are not available during train-
ing (“cold-start” problem). While recent work using n-gram features (Bojanowski et al.,
2016) have addressed this limitation for supervised and unsupervised tasks, it can only be
used for a single feature type—words.

In this paper we propose Feat2Vec as a novel method that allows calculating embeddings of arbitrary
feature types from both supervised and unsupervised data. Our main contributions are:

• Unsupervised Feat2Vec. Existing general-purpose dense representation methods are
largely restricted to one or two feature types. For example, the Word2Vec methods can
only calculate embeddings for words, while follow-up work has enabled embeddings for

1

Under review as a conference paper at ICLR 2018

both words and documents (Le & Mikolov, 2014). To our knowledge, Feat2Vec is the
first algorithm that is able to calculate general-purpose embeddings that are not tuned for a
single specific prediction task for arbitrary feature types.
• Supervised Feat2Vec. Task-specific methods can use arbitrary feature types, but are re-

stricted in that embeddings must be calculated for each individual feature, while sometimes
higher-level of abstractions may be desirable—for example, we may want to have embed-
dings of documents instead of simply words. This capability makes Supervised Feat2Vec
extremely flexible. We demonstrate that our method can be used to calculate embeddings
of unseen (cold-start) items when there is an alternative textual description.

2 PRELIMINARIES

Factorization Machine (Rendle, 2010) is one of the most successful methods for general-purpose
factorization. Rendle (2010) formulated it as an extension to polynomial regression. Consider a
degree-2 polynomial (quadratic) regression, where we want to predict a target variable y from a
vector of inputs ~x ∈ Rn:

ŷ(~x;~b, ~w) = ω
(
b0 +

∑
i

bixi +

n∑
i=1

n∑
j=i+1

wi,j xixj
)

(1)

In words, n is the total number of features, the term b0 is an intercept, bi is the strength of the i-th
feature, and wi,j is the interaction coefficient between the i-th and j-th feature. The function ω is an
activation. Choices for ω include a linear link (ω(x) = x) for continuous outputs, or a logistic link
(ω(x) = exp(x)

exp(x)+1) for binary outputs.

Factorization Machine replaces the two-way individual pairwise parameterswi,j for each interaction
with a vector of parameters ~wi for each feature. This is a rank-r vector of latent factors—embeddings
in the neural literature—that encode the interaction between features and replaces the quadratic
regression model with the following:

ŷ(~x;~b, ~w) = ω
(
b0 +

∑
i

bixi +

n∑
i=1

n∑
j=i+1

(xi ~wi) · (xj ~wj)
)

(2)

Intuitively, the dot product (·) returns a scalar that measures the (dis)similarity between the latent
factors of features xi and xj . Polynomial regression has n2 interaction parameters, and Factorization
Machine has n×r. While setting r � nmakes the model less expressive, factorization will typically
exploit features having some shared latent structure. Factorization Machine may dramatically reduce
the number of parameters to estimate. Rendle (2010) shows that when the feature vector x consists
only of two categorical features in one-hot encoding, Factorization Machine is equivalent to the
popular Matrix Factorization algorithm (Koren et al., 2009).

3 FEAT2VEC

We now describe how Feat2Vec extends the Factorization Machine model by allowing grouping
of features, and enabling arbitrary feature extraction functions (§ 3.1). We also report a supervised
method to learning Feat2Vec (§ 3.2), as well as a novel unsupervised training procedure (§ 3.3).

3.1 MODEL

We propose a framework for extending factorization machine with neural methods, by introducing
structure into the feature interactions. Specifically, we do this by defining feature groups, ~κ, where
each group contains features of a particular type. Explicitly, ~κ is a partition of the set of feature
columns in a dataset and each set within the partition is a feature group. The embeddings of a
feature group are then learned via a feature extraction function, φi, defined for each feature group.
Feat2Vec will then extract features from each feature group, and build r latent factors from them.
In Factorization Machine, all the feature embeddings interact with each other, while in Feat2Vec,
the interactions only occur between different feature groups.

2

Under review as a conference paper at ICLR 2018

Formally, the addition of deep extraction methods yields the following statistical model:

ŷ(~x,~b, ~φ) = ω

(
b0 +

n∑
i=1

bixi +

|~κ|∑
i=1

|~κ|∑
j=i

φi(~x~κi
) · φj(~x~κj

)

)
(3)

In this notation, ~x~κi
is a subvector that contains all of the features that belong to the group ~κi. Thus,

x~κi
= [xj : j ∈ ~κi]. The intuition is that by grouping (sub-)features as a single entity, we can

can reason on a higher level of abstraction. Instead of individual sub-features interacting among
each other, the embeddings of feature groups interact with those of other groups. φi is a feature
extraction that inputs the i-th feature group of the instance, and returns an r-dimensional embedding.
The feature extraction function φi can allow for an arbitrary processing of its subfeatures. Across
groups, entities interact with each other via the output of φ only.

As a concrete example of an application of this grouping/feature extraction, we might group the in-
dividual words of a document into a “document” feature group, and allow this document embedding
to then interact with learned embeddings of other document metadata (such as author id). We might
expect the extraction function φ for the words in a document to extract features that characterize the
attributes of the document taken as a whole, rather than simply the sum of its individual words.

Figure 1 compares existing factorization methods with our novel model. In this example, Feat2Vec
is using two feature groups: the first group only has a single feature which is projected to an embed-
ding (just like a regular Factorization Machine); the second group has multiple features, which are
together projected to a single embedding.

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(a) Shallow

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(b) Feat2Vec

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(c) “Neural”

Figure 1: Network architectures for factorization models. The white clouds (�) represent deep
layers, for example a convolutional network for text features.

The simplest implementation for φi is a linear fully-connected layer, where the output of the r-th
entry is:

φi
(
~xi; ~w

)
r

=

di∑
a=1

wraxia (4)

Note that without loss of generality, we could define a model that is equivalent to a shallow Factor-
ization Machine by allowing each feature group to be a singleton : ~κ = {{x1}, {x2} . . . {xn}} and
the linear extraction function presented in Equation 4.

We can use Feat2Vec to both use large feature sets and overcome the cold-start problem. This is
only possible when there is an alternative description of the item available (for example an image
or a passage of text). In Figure 2, we show how we address this problem by treating the words
as indexed features, but placed within a structured feature group κw, the group of word features. A
feature extraction function φ acts on the features in κw, and the other features interact with the words
only via the output of φ. Notice that this implies we can precompute and store the latent factors of the
target task seen during training, so that predictions during inference can be sped-up. For example
if we have two feature groups (e.g, a label and an item), first we compute the feature extraction

3

Under review as a conference paper at ICLR 2018

function to the unseen items and their embeddings, and then we simply apply a dot product over the
stored vectors of the labels.

0 ...1 1label 0 ...1 1label ⎬

(a) Shallow

0 ...1 1label ⎬

φ

(b) Feat2Vec

Figure 2: Comparison of how factorization may use item descriptions features.

Figure 1c shows an approach of using neural networks within factorization machines that has been
proposed multiple times (Dziugaite & Roy, 2015; Guo et al., 2017). It replaces the dot product of
factors with a learned neural function, which has been shown to improve predictive accuracy for
various tasks. In this case, fast inference for cold-start documents using pre-computed label embed-
dings is no longer possible. It needs to store the entire neural function that takes the embeddings
as inputs. Another shortcoming of replacing the dot product with a neural function is that it would
no longer be possible to interpret the embeddings as containing latent factors related to the target
task; There may be highly complex mappings from the embeddings to the final output via this neural
function. However, it would be straightforward to combine this approach with Feat2Vec. This is
not explored in this work.

3.2 SUPERVISED LEARNING FROM DATA

We can learn the the parameters of a deep factorization model θ using training data by minimizing
a loss function L:

arg min
~θ

∑
x

L
(
y(x), ŷ(x;~θ)

)
+ γ||θ||w (5)

Here, y(x) is the true target value for x obtained from training data, and ŷ(x) is the one estimated
by the model; the hyperparameter γ controls the amount of regularization. For the labeling and
classification tasks, we optimize the binary cross-entropy for y ∈ {0, 1}:

L(y, ŷ) = −
(
y log(ŷ)

)
− (1− y) log(1− ŷ)

)
(6)

For the regression tasks where the target value is continuous, we optimize the mean squared error
(MSE):

L(y, ŷ) = (y − ŷ)2 (7)

Neural models are typically learned using mini-batch updates, where the incremental descent is
performed with respect to several instances at a time. For the implementation of this paper, we
built our models using the Keras programming toolkit (Chollet et al., 2015), that is now part of
Tensorflow (Abadi et al., 2015). It enables automatic differentiation, and is bundled with a general-
purpose optimization algorithm called ADAM (Kingma & Ba, 2014) that needs no tuning of gradient
step sizes.

It is straightforward to optimize Equation 5 directly for multiclass or binary classification. However,
when the number of labels is very large, it is common practice use a binary classifier and sample
the negative examples (Dyer, 2014). For the multi-label classification tasks, we use Feat2Vec with
a binary output. In this case we would have at least two feature groups—one of the feature groups
is the label that we want to predict, and the other group(s) is the input from which we want to make
the prediction. The output indicates whether the label is associated with the input (y = +1), or not
(y = 0). The datasets we use for our labeling experiments only contains positive labels, thus for
each training example we sample a set of negative labels equal to the number of positive labels. It is
typical to use one of the following sampling strategies according to the best validation error, in each
case excluding the actual positive labels for each training example – (i) uniformly from all possible
labels, or (ii) from the empirical distributions of positive labels. Other sampling strategies have been
proposed (Rendle et al., 2009; Rendle & Freudenthaler, 2014).

4

Under review as a conference paper at ICLR 2018

3.3 UNSUPERVISED LEARNING FROM DATA

We now discuss how Feat2Vec can be used to learn embeddings in an unsupervised setting with no
explicit target for prediction.

The training dataset for a Feat2Vec model consists of only the observed data. In natural language,
these would be documents written by humans. Since Feat2Vec (Equation 3) requires positive and
negative examples, we also need to supply unobserved data as negative examples. Consider a feature
group ~κi, that exists in very high dimensional space. For example, this could happen because we
are modeling with one-hot encoding a categorical variable with large number of possible values. In
such scenario, it is overwhelmingly costly to feed the model all negative labels, particularly if the
model is fairly sparse.

A shortcut around this is a concept known as implicit sampling, where instead of using all of the
possible negative labels, one simply samples a fixed number (k) from the set of possible negative
labels for each positively labelled record. Word2Vec makes use of an algorithm called Negative
Sampling, that has little theoretical guarantees (Dyer, 2014). In short, their approach samples a
negative observation from a noise distribution Qw2v , that is proportional to the empirical frequency
of a word in the training data.

We introduce a new implicit sampling method that enables learning unsupervised embeddings for
structured feature sets. We can learn the correlation of features within a dataset by imputing negative
labels, simply by generating unobserved records as our negative samples. Unlike Word2Vec, we
do not constraint features types to be words. Features groups can be individual columns in a data
matrix, but they need not to be. By grouping subfeatures using the parameter κ in Equation 3, the
model can reason on more abstract entities in the data. By entity, we mean a particular feature group
value. For example, in our experiments on a movie dataset, we use a “genre” feature group, where
we group non-mutually exclusive indicators for movie genres including comedy, action, and drama
films.

We start with a dataset S+ of records with |~κ| feature groups. We then mark all observed records in
the training set as positive examples. For each positive record, we generate k negative labels using
the following 2-step algorithm:

Algorithm 1 Implicit sampling algorithm for unsupervised Feat2Vec: Q
1: function FEAT2VEC SAMPLE(S+, k, α1, α2)
2: S− ← ∅
3: for ~x+ ∈ S+ do
4: Draw a random feature group κi ∼ Q1({params(φi)}|~κ|i=1, α1)
5: for j ∈ {1, . . . , k} do
6: ~x− ← ~x+ . set initially to be equal to the positive sample
7: Draw a random feature group value x̃ ∼ Q2(Xκi , α2)
8: ~x−κi

← x̃ . substitute the i-th feature type with the sampled one
9: S− ← S− + {~x−}

10: end for
11: end for
12: return S−
13: end function

Explained in words, our negative sampling method for unsupervised learning iterates over all of the
observations of the training dataset. For each observation ~x+, it randomly selects the i-th feature
group from a noise distributionQ1(·). Then, it creates a negative observation that is identical to ~x+,
except that its i-th feature group is replaced by a value sampled from a noise distribution Q2(·). In
our application, we use the same class of noise distributions (flattened multinomial) for both levels
of sampling, but this need not necessarily be the case.

We now describe the two noise distributions that we use. We use PQ(x) to denote the probability of
x under a distribution Q.

Sampling Feature Groups. The function params calculates the complexity of a feature extraction
function φi. To sample a feature group, we choose a feature group κi from a multinomial distribution
with probabilities proportional a feature’s complexity. By complexity, we mean the number of

5

Under review as a conference paper at ICLR 2018

parameters we need to learn that are associated with a particular feature group. This choice places
more weight on features that have more parameters and thus are going to require more training
iterations to properly learn. The sampling probabilities of each feature group are:

PQ1
(κi|params(φi)}|

~κ|
i=1, α1) =

params(φi)
α1∑|~κ|

j=1 params(φj)α1

, α1 ∈ [0, 1] (8)

For categorical variables using a linear fully-connected layer, the complexity is simply proportional
to the number of categories in the feature group. However, if we have multiple intermediate layers
for some feature extraction functions (e.g., convolutional layers), these parameters should also be
counted towards a feature group’s complexity. The hyper-parameter α1 helps flatten the distribution.
When α1 = 0, the feature groups are sampled uniformly, and when α1 = 1, they are sampled
proportional to their complexity. Figure A.1 in the Appendix provides a visualization of how the
feature sampling rate varies with the hyperparameter for features with differing levels of complexity.

Sampling Feature Group Values. To sample a value from within a feature groups κi, we use a
similar strategy to Word2Vec and use the empirical distribution of values:

PQ2
(x|Xκi

, α2) =
count(x)α2∑

x′κi
∈S+ count(x′κi

)α2
, α2 ∈ [0, 1] (9)

Here, count(x) is the number of times a feature group value x appeared in the training dataset S+ ,
and α2 is again a flattening hyperparameter.

This method will sometimes by chance generate negatively labeled samples that do exist in our
sample of observed records. The literature offers two possibilities: in the Negative Sampling that
Word2Vec follows, the duplicate negative samples are simply ignored (Dyer, 2014). Alternatively,
it is possible to account for the probability of random negative labels that are identical to positively
labeled data using Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010).

3.3.1 THE LOSS FUNCTION FOR UNSUPERVISED LEARNING

For our unsupervised learning of embeddings, we optimize a NCE loss function, to adjust the struc-
tural statistical model ŷ = p(y = 1|~x, ~φ,θ), expressed in Equation 3 to account for the possibility
of random negative labels that appear identical to positively labeled data. θ here represents the pa-
rameters learned in during training (i.e. the bi terms and parameters associated with the extraction
functions φi in Equation 3). Since we only deal with a dichotomous label, indicating a positive or
negative sample, for unsupervised learning, we restrict our attention to usage of Equation 3 with ω
as a logistic link function.

An additional burden of NCE is that we need to calculate a partition function Z~x for each unique
record type ~x in the data that transforms the probability ŷ of a positive or negative label into a well-
behaved distribution that integrates to 1. Normally, this would introduce an astronomical amount
of computation and greatly increase the complexity of the model. As a work-around, we appeal to
the work of Mnih & Teh (2012), who showed that in the context of language models that setting the
Z~x = 1 in advance effectively does not change the performance of the model. The intuition is that if
the underlying model has enough free parameters that it will effectively learn the probabilities itself.
Thus, it does not over/under predict the probabilities on average (since that will result in penalties
on the loss function).

Written explicitly, the new structural probability model is:

p̃(Y = 1|~x, ~φ,θ) =
exp
(
s(~x, ~φ,θ)

)
exp(s

(
~x, ~φ,θ)

)
+ PQ(~x|α1, α2)

(10)

where s(.) denotes the score of a record ~x given parameter values/extraction functions:

s(~x, ~φ,θ) = b0 +

n∑
i=1

bixi +

|~κ|∑
i=1

|~κ|∑
j=i

φi(~x~κi
) · φj(~x~κj

) (11)

6

Under review as a conference paper at ICLR 2018

and PQ(.) denotes the total probability of a record ~xi being drawn from our negative sampling
algorithm, conditional on the positively labeled record ~x+ the negative sample is drawn for:

PQ(~x|α1, α2,X, ~x
+) = PQ2

(~xκi |Xκi , α2)PQ1
(κi|params(φi)}ni=1, α1) (12)

Our loss function L optimizes θ, the parameters of the feature extraction functions ~φ, while account-
ing for the probability of negative samples.

L(S) = arg min
θ

1

|S+|
∑

~x+∈S+

(
log(p̃(y = 1|~x+, ~φ,θ)) +

k∑
~x−∼Q(·|~x+)

log(p̃(y = 0|~x−, ~φ,θ))
)

(13)

Feat2Vec has interesting theoretical properties. For example, it is well known that Factorization
Machines can be used as a multi-label classifier: with at least two features, one can use one of the
feature as the target label, and the other as the input feature to make a prediction. In such setting,
the output indicates whether the label is associated with the input (y = +1), or not (y = 0), and
therefore the input can be associated with more than one label. With n feature types, Feat2Vec is
equivalent to optimizing a convex combination of the loss functions from n individual Factorization
Machines. In other words, it optimizes n multi-label classifiers, where each classifier is optimized
for a different target (i.e.,a specific feature group). We show the proof of this in the Appendix 1.

4 EMPIRICAL RESULTS

4.1 SUPERVISED EMBEDDINGS

We now address our working hypotheses for evaluating supervised embeddings. For all our experi-
ments we define a development set and a single test set which is 10% of the dataset, and a part of the
development set is used for early stopping or validating hyper-parameters. Since these datasets are
large and require significant time to train on an Nvidia K80 GPU cluster, we report results on only
a single training-test split. For the multi-label classification task in 4.1.1 we predict a probability
for each document-label pair and use an evaluation metric called Area Under the Curve (AUC) of
the Receiver Operating Characteristic (ROC). Since we only observe positive labels, for each pos-
itive label in the test set we sample negative labels according to the label frequency. This ensures
that if a model merely predicts the labels according to their popularity, it would have an AUC of
0.5. A caveat of our evaluation strategy is that we could be underestimating the performance of our
models—there is a small probability that the sampled negatives labels are false negatives. However,
since we apply the same evaluation strategy consistently across our methods and baselines, the rel-
ative difference of the AUC is meaningful. We choose the AUC as a metric because it is popular
for both classification and ranking problems. For the regression task in 4.1.2, we use mean squared
error (MSE) as the evaluation metric. In preliminary experiments we noticed that regularization
slows down convergence with no gains in prediction accuracy, so we avoid overfitting only by using
early stopping. We share most of the code for the experiments online1 for reproducibility.

For our feature extraction function φ for text, we use a Convolutional Neural Network (CNN) that
has been shown to be effective for natural language tasks (Kalchbrenner et al., 2014; Weston et al.,
2014). In Appendix B we describe this network and its hyper-parameters. Instead of tuning the
hyper-parameters, we follow previously published guidelines (Zhang & Wallace, 2015).

4.1.1 IS Feat2Vec EFFECTIVE FOR COLD-START PREDICTIONS?

We compare Feat2Vec with an extension of matrix factorization that can generalize to unseen items
for text documents, Collaborative Topic Regression (CTR– Wang & Blei (2011)), a method with an
open-source Python implementation2. We evaluate them on the CiteULike dataset which consists
of pairs of scientific articles and the users who have added them to their personal libraries, and it
contains 16,980 unique articles and 5,551 unique users. We use the models to predict users who

1https://goo.gl/zEQBiA
2https://github.com/arongdari/python-topic-model

7

https://goo.gl/zEQBiA

Under review as a conference paper at ICLR 2018

Table 1: Yelp rating prediction

MSE Improvement over Matrix Factorization

Matrix Factorization 1.561 -
Feat2Vec 0.480 69.2 %
DeepCoNN 1.441 19.6 %

may have added a given article to their library. We compare the performance of Feat2Vec with CTR
using pre-defined cross-validation splits3. We use 1% of the training set for early stopping.

For CTR we use the hyper-parameters reported by the authors as best, except for r which we found
had a significant impact on training time . We only consider r ∈ {5, 10, 15} and choose the value
which gives the best performance for CTR (details in Appendix A.2). On the warm-start condition,
CTR has an AUC of 0.9356; however, it shows significant degradation in performance for unseen
documents and it only performs slightly better than random chance with an AUC of 0.5047. On the
other hand, Feat2Vec achieves AUC of 0.9401 on the warm-start condition, and it only degrades
to 0.9124 on unseen documents. Feat2Vec can also be trained over ten times faster, since it can
leverage GPUs.4 We also note that we have not tuned the architecture or hyper-parameters of the
feature extraction function φ and greater improvements are possible by optimizing them.

4.1.2 COMPARISON WITH ALTERNATIVE CNN-BASED TEXT FACTORIZATION

We now compare with a method called DeepCoNN, a deep network specifically designed for in-
corporating text into matrix factorization (Zheng et al., 2017)—which reportedly, is the state of the
art for predicting customer ratings when textual reviews are available. For Feat2Vec we use the
same feature extraction function (see Appendix B.1 for details) used by DeepCoNN. We evaluate
on the Yelp dataset5, which consists of 4.7 million reviews of restaurants. For each user-item pair,
DeepCoNN concatenates the text from all reviews for that item and all reviews by that user. The
concatenated text is fed into a feature extraction function followed by a factorization machine. In
contrast, for Feat2Vec, we build 3 feature groups: item identifiers (in this case, restaurants), users
and review text.

Table 1 compares our methods to DeepCoNN’s published results because a public implementation
is not available. We see that Feat2Vec provides a large performance increase when comparing the
reported improvement, over Matrix Factorization, of the mean squared error. Our approach is more
general, and we claim that it is also more efficient. Since DeepCoNN concatenates text, when the
average reviews per user is n̄u and reviews per item is n̄i, each text is duplicated on average n̄i× n̄u
times per training epoch. In contrast, for Feat2Vec each review is seen only once per epoch. Thus
it can be 1-2 orders of magnitude more efficient for datasets where n̄i × n̄u is large.

4.2 GENERAL-PURPOSE EMBEDDINGS

4.2.1 DOES Feat2Vec ENABLE BETTER EMBEDDINGS?

Ex ante, it is unclear to us how to evaluate the performance of an unsupervised embedding algorithm,
but we felt that a reasonable task would be a ranking task one might practically attempt using our
datasets. This task will assess the similarity of trained embeddings using unseen records in a left-out
dataset. In order to test the relative performance of our learned embeddings, we train our unsuper-
vised Feat2Vec algorithm and compare its performance in a targeted ranking task to Word2Vec’s
CBOW algorithm for learning embeddings. In our evaluation approach, we compare the cosine sim-
ilarity of the embeddings of two entities where these entities are known to be associated with each
other since they appear in the same observation in a test dataset. In particular, in the movie dataset

3For warm-start we use https://www.cs.cmu.edu/˜chongw/data/citeulike/folds/
cf-train-1-items.dat and for cold-start predictions, we use the file ofm-train-1-items.dat
and the corresponding test sets for each

4Feat2Vec and MF were trained on an Nvidia K80 GPU, while CTR was trained on a Xeon E5-2666 v3
CPU.

5https://www.yelp.com/dataset/challenge

8

https://www.cs.cmu.edu/~chongw/data/citeulike/folds/cf-train-1-items.dat
https://www.cs.cmu.edu/~chongw/data/citeulike/folds/cf-train-1-items.dat

Under review as a conference paper at ICLR 2018

we compare the similarity of movie directors to those of actors who were cast in the same film for
a left-out set of films. For our educational dataset, we compare rankings of textbooks by evaluating
the similarity of textbook and user embeddings. We evaluate the rankings according to their mean
percentile rank (MPR):

MPR =
1

N

N∑
i=1

Ri
maxR

where Ri is the rank of the entity under our evaluation procedure for observation i. This measures
on average how well we rank actual entities. A score of 0 would indicate perfect performance (i.e.
top rank every test sample given), so a lower value is better under this metric. See the appendix §A.1
for further details on the experimental setup.

4.2.2 DATASETS

Movies The Internet Movie Database (IMDB) is a publicly available dataset6 of information re-
lated to films, television programs and video games. Though in this paper, we focus only on data
on its 465,136 movies. Table A.1 in the appendix (§A.1) summarizes the feature types we use. It
contains information on writers, directors, and principal cast members attached to each film, along
with metadata.

Education We use a dataset from an anonymized leading technology company that provides ed-
ucational services. In this proprietary dataset, we have 57 million observations and 9 categorical
feature types which include textbook identifier, user identifier, school identifier, and course the book
is typically used with, along with other proprietary features. Here, each observation is an “interac-
tion” a user had with a textbook.

4.2.3 RESULTS

After training, we use the cast members associated with the movies of the test set and attempt to
predict the actual director the film was directed. We take the sum of the cast member embeddings,
and rank the directors by cosine similarity of their embeddings to the summed cast member vector.
If there is a cast member in the test dataset who did not appear in the training data, we exclude them
from the summation. For the educational dataset, we simply use the user embedding directly to get
the most similar textbooks.

Table 2 presents the results from our evaluation. Feat2Vec sizably outperforms CBOW in the MPR
metric. In fact, Feat2Vec predicts the actual director 2.43% of the times, while CBOW only does so
1.26% of the time, making our approach almost 2 times better in terms of Top-1 Precision metric.
We explore in greater detail the distribution of the rankings in the appendix in §A.2.

Table 2: Mean percentile rank

Dataset Feat2Vec CBOW
IMDB 19.36% 24.15%
Educational 25.2% 29.2%

4.3 UNSUPERVISED Feat2Vec PERFORMANCE WITH CONTINUOUS INPUTS

We now focus on how well Feat2Vec performs on a real-valued feature with a complex feature
extraction function. We expect this task to highlight Feat2Vec’s advantage over token-based em-
bedding learning algorithms, such as Word2Vec, since our rating embedding extraction function
will require embeddings of numerically similar ratings to be close , while Word2Vec will treat two
differing ratings tokens as completely different entities. We evaluate the prediction of the real-valued
rating of movies in the test dataset by choosing the IMDB rating embedding most similar7 to the
embedding of the movie’s director, and compute the Root Mean Squared Error (RMSE) of the pre-
dicted rating in the test dataset. We also vary α1, the flattening hyperparameter for feature group

6http://www.imdb.com/interfaces/
7As before, the metric is cosine similarity.

9

http://www.imdb.com/interfaces/

Under review as a conference paper at ICLR 2018

0.0 0.2 0.4 0.6 0.8 1.0
*¢

2.6

2.8

3.0

3.2

3.4

R
M

S
E

Feat2Vec
CBOW
Random Uniform

Figure 3: RMSE in Ratings Task as a Function of α1

sampling, to see what effect this hyperparameter has on our performance. Intuitively, a low α1 will
greatly improve the quality of the ratings embeddings learned, since it has relatively few parameters
and is otherwise sampled infrequently. At the same time, with low α1 the director feature will be
sampled less since it is one of the most complex features to learn, so the learned director embeddings
may be of poorer quality. Figure 3 displays the results of our experiment, benchmarked against the
performance of Word2Vec’s CBOW algorithm in the prediction task. We also show as a baseline the
RMSE of a random uniform variable over the range of possible ratings (0 to 10). As is evident from
the plot, CBOW performs a bit better than a random prediction, but is also handily outperformed
by Feat2Vec across all hyper-parameter settings. The algorithm’s performance does not seem very
sensitive to the hyperparameter choice.

5 RELATION TO PRIOR WORK

The original Factorization Machine formulation has been extended for multiple contexts. For ex-
ample, Field-Aware Factrorization Machine (Juan et al., 2016) allows different weights for some
feature interactions, but does not allow feature groups or feature extraction functions like Feat2Vec
does.

Algorithms that calculate continuous representations of entities other than words have been pro-
posed for biological sequences (Abrahamsson & Plotkin, 2009), of vertices in network graphs (Per-
ozzi et al., 2014) or in machine translation for embeddings of complete sentences (Kiros et al.,
2015). Generative Adversarial Networks (Goodfellow et al., 2014)(GANs) have been used to pro-
duce unsupervised embeddings of images effective for classification (Radford et al., 2015) and for
generating natural language (Press et al., 2017). To our knowledge, GANs have not been used for
jointly embedding multiple feature types. Adversarial training could be an alternative to NCE for
unsupervised learning, but we leave this for future study.

We recently discovered a promising direction for an algorithm still in development called
StarSpace (Wu et al., 2017) with similar goals from ours. Even though they intend to be able to
embed all types of features, at the time of the writing of this paper, their pre-print method was lim-
ited to only work for bag of words. While Feat2Vec can jointly learn embeddings for all feature
values in a dataset, StarSpace samples a single arbitrary feature. Our preliminary experiments sug-
gest that sampling a single feature does not produce embeddings that generalize well. Nonetheless,
a limitation of our work is that we do not compare with StarSpace, which future work may decide
to do.

10

Under review as a conference paper at ICLR 2018

6 CONCLUSION

Embeddings have proven useful in a wide variety of contexts, but they are typically built from
datasets with a single feature type as in the case of Word2Vec, or tuned for a single prediction task
as in the case of Factorization Machine. We believe Feat2Vec is an important step towards general-
purpose methods, because it decouples feature extraction from prediction for datasets with multiple
feature types, it is general-purpose, and its embeddings are easily interpretable.

In the supervised setting, Feat2Vec is able to calculate embeddings for whole passages of texts, and
we show experimental results outperforming an algorithm specifically designed for text—even when
using the same feature extraction CNN. This suggests that the need for ad-hoc networks should be
situated in relationship to the improvements over a general-purpose method.

In the unsupervised setting, Feat2Vec’s embeddings are able to capture relationships across features
that can be twice as better as Word2Vec’s CBOW algorithm on some evaluation metrics. Feat2Vec
exploits the structure of a datasets to learn embeddings in a way that is structurally more sensible
than existing methods. The sampling method, and loss function that we use have interesting theo-
retical properties. To the extent of our knowledge, Unsupervised Feat2Vec is the first method able
to calculate continuous representations of data with arbitrary feature types.

Future work could study how to reduce the amount of human knowledge our approach requires;
for example by automatically grouping features into entities, or by automatically choosing a feature
extraction function. These ideas can extend to our codebase that we make available 8. Overall, we
evaluate supervised and unsupervised Feat2Vec on 2 datasets each. Though further experimentation
is necessary, we believe that our results are an encouraging step towards general-purpose embedding
models.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Soft-
ware available from tensorflow.org.

Erik Abrahamsson and Steven S Plotkin. Biovec: a program for biomolecule visualization with ellipsoidal
coarse-graining. Journal of Molecular Graphics and Modelling, 28(2):140–145, 2009.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword
information. arXiv preprint arXiv:1607.04606, 2016.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
Chris Dyer. Notes on noise contrastive estimation and negative sampling. arXiv preprint arXiv:1410.8251,

2014.
Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factorization. CoRR, abs/1511.06443,

2015. URL http://arxiv.org/abs/1511.06443.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-machine
based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnor-
malized statistical models. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pp. 297–304, 2010.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE international conference on com-
puter vision, pp. 1026–1034, 2015.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization machines for ctr
prediction. In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 43–50. ACM, 2016.

8The code for the Feat2Vec algorithm is available here and the empirical experiments for the IMDB data
can be found here

11

http://tensorflow.org/
https://github.com/fchollet/keras
http://arxiv.org/abs/1511.06443
https://www.dropbox.com/sh/wdr2sgt0z9gj6kb/AABlzw7QhteTYViSoMk3CDZpa?dl=0
https://www.dropbox.com/sh/uc07ng403i4ss9a/AAAPshFzdOug_ooeLn4SGR3Ua?dl=0

Under review as a conference paper at ICLR 2018

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural network for modelling
sentences. CoRR, abs/1404.2188, 2014. URL http://arxiv.org/abs/1404.2188.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of the Inter-
national Conference on Learning Representations (ICLR), abs/1412.6980, 2014. URL http://arxiv.
org/abs/1412.6980.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In Advances in neural information processing systems, pp. 3294–3302, 2015.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques for Recommender Systems.
Computer, 42(8):30–37, August 2009. ISSN 0018-9162. URL http://dx.doi.org/10.1109/MC.
2009.263.

Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp. 1188–1196, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pp.
3111–3119, 2013.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language models.
In In Proceedings of the International Conference on Machine Learning, 2012.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pp. 701–710, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/
2623330.2623732. URL http://doi.acm.org/10.1145/2623330.2623732.

Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language generation with recurrent genera-
tive adversarial networks without pre-training. arXiv preprint arXiv:1706.01399, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th International Conference
on, pp. 995–1000. IEEE, 2010.

Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for item recommendation from
implicit feedback. In Proceedings of the 7th ACM International Conference on Web Search and Data
Mining, WSDM ’14, pp. 273–282, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2351-2. doi:
10.1145/2556195.2556248. URL http://doi.acm.org/10.1145/2556195.2556248.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI ’09, pp. 452–461, Arlington, Virginia, United States, 2009. AUAI Press. ISBN 978-0-
9749039-5-8. URL http://dl.acm.org/citation.cfm?id=1795114.1795167.

Tobias Schnabel, Igor Labutov, David M Mimno, and Thorsten Joachims. Evaluation methods for unsupervised
word embeddings. In EMNLP, pp. 298–307, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Chong Wang and David M Blei. Collaborative topic modeling for recommending scientific articles. In Pro-
ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
448–456. ACM, 2011.

Jason Weston, Sumit Chopra, and Keith Adams. #tagspace: Semantic embeddings from hashtags. In Alessan-
dro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pp. 1822–1827. ACL, 2014. ISBN 978-1-937284-96-1. URL
http://aclweb.org/anthology/D/D14/D14-1194.pdf.

Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. Starspace: Embed
all the things! arXiv preprint arXiv:1709.03856, 2017.

Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015.

Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items using reviews for
recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, WSDM ’17, pp. 425–434, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4675-7. doi:
10.1145/3018661.3018665. URL http://doi.acm.org/10.1145/3018661.3018665.

12

http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2556195.2556248
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://aclweb.org/anthology/D/D14/D14-1194.pdf
http://doi.acm.org/10.1145/3018661.3018665

Under review as a conference paper at ICLR 2018

0.0 0.2 0.4 0.6 0.8 1.0
α1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
r(

ch
o
o
se

 f
e
a
tu

re
)

Cast Members

Movie Title

Movie Genres

Figure A.1: Feature Sampling Probabilities as a Function of α1

Table A.1: IMDB dataset features

Feature Type Name Type # of feats. Example for an instance

Runtime (minutes) Real-valued 1 116
IMDB rating (0-10) Real-valued 1 7.8
of IMDB rating votes Real-valued 1 435,682
Is adult film? Boolean 2 False
Movie releaes year Categorical 271 2001
Movie title Text 165,471 “Ocean’s”, “Eleven”
Directors Bag of categories 174,382 ‘Steven Soderbergh”
Genres Bag of categories 28 “Crime”, “Thriller”
Writers Bag of categories 244,241 “George Johnson”, “Jack Russell”
Principal cast members (actors) Bag of categories 1,104,280 “George Clooney”, “Brad Pitt”, “Julia Roberts”

A APPENDIXES

A.1 UNSUPERVISED RANKING EXPERIMENT DETAILS

For our evaluation, we define a testing set that was not used to tune the parameters of the model.
For the IMDB dataset, we randomly select a 10% sample of the observations that contain a director
that appears at least twice in the database 9. We do this to guarantee that the set of directors in
the left-out dataset appear during training at least once, so that each respective algorithm can learn
something about the characteristics of these directors. For the educational dataset, our testing set
only has observations of textbooks and users that appear at least 10 times in training.

For both Feat2Vec and CBOW, we perform cross-validation on the loss function, by splitting the
10% of the training data randomly into a validation set, to determine the number of epochs to train,
and then train the full training dataset with this number of epochs. 10 While regularization of the
embeddings during training is possible, this did not dramatically change results, so we ignore this
dimension of hyperparameters.

We rank left-out entity pairs in the test dataset using the ordinal ranking of the cosine similarity of
target and input embeddings. For the IMDB dataset, the target is the director embedding, and the

9Over 90% of the movies in the database have exactly one director, but in cases where there are multiple
directors to a film, we use the first director listed in the IMDB dataset.

10Because we train the Word2Vec CBOW algorithm with the gensim python library, it is impossible to
recover the output weight matrix, and so the loss function is inaccessible for an outside document set. So, we
created our own loss function that measures average within-document cosine similarity of all possible token
pairs. The result was that both algorithms are trained for a similar number of epochs.

13

Under review as a conference paper at ICLR 2018

input embedding is the sum of the cast member embeddings. For the educational dataset, the target
is the textbook embedding, and the input embedding is the user embedding.

For training Feat2Vec we set α1 = α2 = 3/4 in the IMDB dataset; and α1 = 0 and α2 = 0.5 for
the educational. In each setting, α2 is set to the same flattening hyperparameter we use for CBOW
to negatively sample words in a document. We learn r = 50 dimensional embeddings under both
algorithms.

Below we describe how CBOW is implemented on our datasets for unsupervised experiments and
what extraction functions are used to represent features in the IMDB dataset.

Word2Vec For every observation in each of the datasets, we create a document that tokenizes the
same information that we feed into Feat2Vec. We prepend each feature value by its feature name,
and we remove spaces from within features. In Figure A.2 we show an example document. Some
features may allow multiple values (e.g., multiple writers, directors). To feed these features into the
models, for convenience, we constraint the number of values, by truncating each feature to no more
than 10 levels (and sometimes less if reasonable). This results in retaining the full set of information
for well over 95% of the values. We pad the sequences with a “null” category whenever necessary
to maintain a fixed length. We do this consistently for both Word2Vec and Feat2Vec. We use
the CBOW Word2Vec algorithm and set the context window to encompass all other tokens in a
document during training, since the text in this application is unordered.

Runtime_116, IMDB_rating_7.8, ..., Writers_George_Johnson, Writers_Jack_Russell

Figure A.2: Sample document for Word2Vec for the Ocean’s Eleven movie

Feat2Vec Feature representation in Feat2Vec requires a feature extraction function for each fea-
ture type. Here, we explain how we build these functions:

• Bag of categories, categorical, and boolean: For all of the categorical variables, we learn
a unique r-dimensional embedding for each entity using a linear fully-connected layer
(Equation 4). We do not require one-hot encodings, and thus we allow multiple categories
to be active; resulting in a single embedding for the group that is the sum of the embeddings
of the subfeatures. This is ordering-invariant: the embedding of “Brad Pitt” would be the
same when he appears in a movie as a principal cast member, regardless whether he was 1st
or 2nd star. Though, if he were listed as a director it may result in a different embedding.

• Text: We preprocess the text by removing non alpha-numeric characters, stopwords, and
stemming the remaining words. We then follow the same approach that we did for cate-
gorical variables, summing learned word embeddings to a “title embedding” before inter-
acting. It would be easy to use more sophisticated methods (e.g, convolutions), but we felt
this would not extract further information.

• Real-valued: For all real-valued features, we pass these features through a 3-layer feed-
forward fully connected neural network that outputs a vector of dimension r, which we
treat as the feature’s embedding. Each intermediate layer has r units with relu activation
functions. These real-valued features highlight one of the advantages of the Feat2Vec al-
gorithm: using a numeric value as an input, Feat2Vec can learn a highly nonlinear relation
mapping a real number to our high-dimensional embedding space. In contrast, Word2Vec
would be unable to know ex ante that an IMDB rating of 5.5 is similar to 5.6.

A.2 DISTRIBUTION OF IMDB DIRECTOR RANKINGS

Figure A.3 shows the full distribution of rankings of the IMDB dataset, rather than summary statis-
tics, in the form of a Cumulative Distribution Function (CDF) of all rankings calculated in the test
dataset. The graphic makes it apparent for the vast majority of the ranking space, the rank CDF of
Feat2Vec is to the left of CBOW, indicating a greater probability of a lower ranking under Feat2Vec.
This is not, however, the case at the upper tail of ranking space, where it appears CBOW is superior.

14

Under review as a conference paper at ICLR 2018

However, when we zoom-in on the absolute upper region of rankings (1 to 25), which might be a
sensible length of ranks one might give as actual recommendatiosn, it is the case that up until rank
8 or so, Feat2Vec outperforms CBOW still. Intermediate rankings are still strong signals that our
Feat2Vec algorithm is doing a better job of extracting information into embeddings, particularly
those entities that appear sparsely in the training data and so are especially difficult to learn.

0 30000 60000 90000 120000 150000
Director Ranking

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Feat2Vec
CBOW

0 5 10 15 20 25
0.00

0.02

0.04

0.06

0.08

0.10

Figure A.3: Cumulative Distribution Function of Director Rankings
(With Zoom-in to Top 25 Ranks)

A.3 PROOF TO THEOREM 1

Theorem 1. The gradient for learning embeddings with Feat2Vec is a convex combination of the
gradient from n targeted Factorization Machines for each feature in the data when each feature
group is a singleton, where n is the total number of features in the dataset.

Proof. Let S+
κi

denote the positively labeled records whose corresponding negative samples resam-
ple feature κi. For convenience, suppress the inclusion of learned parameters θ in the notation in
this section while understanding the feature extraction functions ~φ implicitly include these parame-
ters. We can express the loss function L(.), the binary cross-entropy of the data given the Feat2Vec
model, as follows:

15

Under review as a conference paper at ICLR 2018

L(S+|~φ) =
1

|S+|
∑

~x+∈S+

(
log(p̃(y = 1|~φ, ~x+)) +

k∑
~x−∼Q(.|~x+)

log(p̃(y = 0|~φ, ~x−))
)

=
1

|S+|
∑

~x+∈S+

(
log(p̃(y = 1|~φ, ~x+, ~x+ ∈ S+

κi
)p(~x+ ∈ S+

κi
))

+

k∑
~x−∼Q(.|~x+)

log(p̃(y = 0|~φ, ~x−, ~x+ ∈ S+
κi

)p(~x+ ∈ S+
κi

))
)

=
1

|S+|

n∑
i=1

∑
~x+∈S+

κi

(
log(

es(~x
+,~φ)p(~x+ ∈ S+

κi
)

es(~x+,~φ) + PQ(~x+|~x+, ~x+ ∈ S+
κi)

)

+

k∑
~x−∼Q(.|~x+,~x+∈S+

κi
)

log(
PQ(~x−|~x+, ~x+ ∈ S+

κi
)p(~x+ ∈ S+

κi
)

es(~x−,~φ) + PQ(~x−|~x+, ~x+ ∈ S+
κi)

)
)

Note now that PQ(~x|~x+, ~x+ ∈ S+
κi

) is simply the probability of the record’s feature value ~xf under
the second step noise distribution Q2(Xf , α2): PQ(~x|~x+, ~x+ ∈ S+

κi
) = PQ2

(~xf)

=
1

|S+|

n∑
i=1

∑
~x+∈S+

κi

(
log(

es(~x
+,~φ)p(~x+ ∈ S+

κi
)

es(~x+,~φ) + PQ2
(~x+κi)

) +

k∑
~x−∼Q(.|~x+,i∈S+

κi
)

log(
PQ2

(~x−f)p(~x+ ∈ S+
κi

)

es(~x−,~φ) + PQ2
(~x−f))

)

=
1

|S+|

n∑
i=1

∑
~x+∈S+

κi

(
log(

es(~x
+,~φ)

es(~x+,~φ) + PQ2
(~x+κi)

) + log(p(~x+ ∈ S+
κi

)k+1)

+

k∑
~x−∼Q(.|~x+,~x+∈S+

κi
)

log(
PQ2

(~x−f)

es(~x−,~φ) + PQ2
(~x−f)

)
)

We now drop the term containing the probability of assignment to a feature group p(~x+ ∈ S+
κi

)

since it is outside of the learned model parameters ~φ and fixed in advance:

∝ 1

|S+|

n∑
i=1

∑
~x+∈S+

κi

(
log(

es(~x
+,~φ)

es(~x+,~φ) + PQ2
(~x+κi)

) +

k∑
~x−∼Q(.|~x+,~x+∈S+

κi
)

log(
PQ2

(~x−f)

es(~x−,~φ) + PQ2
(~x−f)

)
)

−−−−−−→
|S+|→∞

n∑
i=1

p(~x+ ∈ S+
κi

)E
[

log(
es(~x

+,~φ)

es(~x+,~φ) + PQ2
(~x+κi)

) +

k∑
~x−∼Q(.|~x+,~x+∈S+

κi
)

log(
PQ2

(~x−f)

es(~x−,~φ) + PQ2
(~x−f)

)
]

=

n∑
i=1

p(~x+ ∈ S+
κi

)E
[
L(~x|~φ, target = f)

]
Thus, the loss function is just a convex combination of the loss functions of the targeted classifiers
for each of the p features, and by extension so is the gradient since:

∂

∂φ

n∑
i=1

p(~x+ ∈ S+
κi

)E
[
L(~x|~φ, target = f)

]
=

n∑
i=1

p(~x+ ∈ S+
κi

)
∂

∂φ
E
[
L(~x|~φ, target = f)

]
Thus the algorithm will, at each step, learn a convex combination of the gradient for a targeted clas-
sifier on feature f , with weights proportional to the feature group sampling probabilities in step 1 of

16

Under review as a conference paper at ICLR 2018

the sampling algorithm. Note that if feature groups are not singletons, the gradient from unsuper-
vised Feat2Vec will analogously be a convex combination of n gradients learned from supervised
learning tasks on each of the n feature groups.

B FEATURE EXTRACTION NETWORK FOR NATURAL LANGUAGE

Figure A.4: Feature extraction network used for labelling tasks. We use f=1000 convolutional filters
each of width 3 (words)

Here we describe the details of the feature extraction function φ used in our experiments for super-
vised tasks in §4.1. An overview of the network is given in Fig. A.4. We choose the most common
words of each dataset to build a vocabulary of size n, and convert the words of each document to a
sequence of length t of one-hot encodings of the input words. If the input text is shorter than t, then
we pad it with zeros; if the text is longer, we truncate it by discarding the trailing words. Therefore,
for a vocabulary size n, the input has dimensions t×n. These t× dimensional matrix is then passed
through the following layers:

1. We use an embedding layer to assign a d-dimensional vector to each word in the input
passage of text. This is done through a d×n-dimensional lookup table, which results in an
t× d matrix.

2. We extract features from the embeddings with functions called convolutional filters (LeCun
et al., 1998) (also called feature maps). A convolutional filter is simply a matrix learned
from an input. We learn f filters that are applied on groups ofm adjacent word embeddings,
thus each of our filters is a d × m matrix of learned parameters. Filters are applied by
computing the element-wise dot product of the filter along a sliding window of the entire
input. The resulting output for each filter is a vector of length t−m+ 1. We also apply a
ReLU activation to the output of each filter.

3. Consider the case of inputs of different lengths. For very short texts, the output of the filters
will be mostly zero since the input is zero-padded. To enforce learning from the features of
the text, and not just its length we apply a function called 1-max pooling to the output of
the filters: from the t −m + 1 output vector of each filter, we select the maximum value.
This yields a vector of length F , a representation of the passage which is independent of
its length.

4. We learn higher-level features from the convolutional filters. For this, we use a fully con-
nected layer with p units and a ReLU activation,

5. During training (not in inference), we prevent the units from co-adapting too much with
a dropout layer (Srivastava et al., 2014). Dropout is a form of regularization that for each
mini-batch randomly drops a specified percentage of units.

6. the final embedding for xj (that is used in the factorization) is computed by a dense layer
with r output units and an activation function, where r is the embedding size of our index-
able items.

We set the maximum vocabulary size n to 100,000 words, and input embedding size d to 50
for all experiments. We initialize the input word embeddings and the label embeddings using

17

Under review as a conference paper at ICLR 2018

Word2Vec(Mikolov et al., 2013) We have have not evaluated multiple architectures or hyper-
parameter settings and obtain good results on diverse datasets with the same architecture, which was
designed followed recommendations from a large scale evaluation of CNN hyper parameters(Zhang
& Wallace, 2015). We set the number of convolutional filters f to 1,000, and the dropout rate to 0.1.
The maximum sequence length t was chosen according to the typical document length (350 words
for CiteULike and 250 for Yelp). For the CTR dataset, because we use very small values of r, due
to the tendency of the ReLU units to‘die’ during training (output zero for all examples), which can
have a significant impact, we used instead PReLU activations (He et al., 2015) for the final layer,
since they do not suffer from this issue.

B.1 FEATURE EXTRACTION FOR DEEPCONN COMPARISON

The CNN architecture used for DeepCoNN (Zheng et al., 2017) is similar to the previous section. It
consists of a word embedding lookup table, convolutional layer, 1-max pooling and a fully connected
layer. We use the hyper-parameters that the authors report as best - 100 convolution filters and 50
units for the fully connected layer. We set the word embedding size to 100, the vocabulary size to
100,000 and the maximum document length to 250.

C HYPER-PARAMETERS FOR CTR

To compare Feat2Vec with Collaborative Topic Regression, we choose the embedding size r ∈
{5, 10, 15} for which CTR performs best. The results are show in Table A.2.

Table A.2: Tuning embedding size for CTR

r=5 r=10 r=15 Time (mins.)

Matrix Fact. 0.8723 0.8911 0.9046 1
Feat2Vec 0.9081 0.9303 0.9401 133
C.T.R 0.8763 0.9234 0.9356 1425

18

	Introduction
	Preliminaries
	Feat2Vec
	Model
	Supervised Learning from Data
	Unsupervised Learning From Data
	The Loss Function for Unsupervised Learning

	Empirical Results
	Supervised Embeddings
	 Is `39`42`"613A``45`47`"603AFeat2Vec effective for cold-start predictions?
	Comparison with alternative CNN-based text factorization

	General-purpose Embeddings
	Does `39`42`"613A``45`47`"603AFeat2Vec enable better embeddings?
	Datasets
	Results

	Unsupervised `39`42`"613A``45`47`"603AFeat2Vec Performance with Continuous Inputs

	Relation to Prior Work
	Conclusion
	Appendixes
	Unsupervised Ranking Experiment Details
	Distribution of IMDB director rankings
	Proof to Theorem 1

	Feature extraction network for natural language
	Feature Extraction for DeepCoNN comparison

	Hyper-parameters for CTR

