
Under review as a conference paper at ICLR 2017

LOW-RANK PASSTHROUGH NEURAL NETWORKS

Antonio Valerio Miceli Barone ∗

School of Informatics
The University of Edinburgh
amiceli@inf.ed.ac.uk

ABSTRACT

Deep learning consists in training neural networks to perform computations that
sequentially unfold in many steps over a time dimension or an intrinsic depth
dimension. For large depths, this is usually accomplished by specialized network
architectures that are designed to mitigate the vanishing gradient problem, e.g.
LSTMs, GRUs, Highway Networks and Deep Residual Networks, which are based
on a single structural principle: the state passthrough. We observe that these
"Passthrough Networks" architectures enable the decoupling of the network state
size from the number of parameters of the network, a possibility that is exploited
in some recent works but not thoroughly explored. In this work we propose simple,
yet effective, low-rank and low-rank plus diagonal matrix parametrizations for
Passthrough Networks which exploit this decoupling property, reducing the data
complexity and memory requirements of the network while preserving its memory
capacity. We present competitive experimental results on several tasks, including a
near state of the art result on sequential randomly-permuted MNIST classification,
a hard task on natural data.

1 OVERVIEW

Deep neural networks can perform non-trivial computations by the repeated the application of
parametric non-linear transformation layers to vectorial (or, more generally, tensorial) data. This
staging of many computation steps can be done over a time dimension for tasks involving sequential
inputs or outputs of varying length, yielding a recurrent neural network, or over an intrinsic circuit
depth dimension, yielding a deep feed-forward neural network, or both. Training these deep models
is complicated by the exploding and vanishing gradient problems (Hochreiter, 1991; Bengio et al.,
1994).

Various network architectures have been proposed to ameliorate the vanishing gradient problem in
the recurrent setting, such as the LSTM (Hochreiter & Schmidhuber, 1997; Graves & Schmidhuber,
2005), the GRU (Cho et al., 2014b), etc. These architectures led to a number of breakthroughs
in different tasks in NLP, computer vision, etc. (Graves et al., 2013; Cho et al., 2014a; Bahdanau
et al., 2014; Vinyals et al., 2014; Iyyer et al., 2014). Similar methods have also been applied in the
feed-forward setting with architectures such as Highway Networks (Srivastava et al., 2015), Deep
Residual Networks (He et al., 2015), and so on. All these architectures are based on a single structural
principle which, in this work, we will refer to as the state passthrough. We will thus refer to these
architectures as Passthrough Networks.

Another difficulty in training neural networks is the trade-off between the network representation
power and its number of trainable parameters, which affects its data complexity during training in
addition to its implementation memory requirements. On one hand, the number of parameters can be
thought as the number of tunable "knobs" that need to be set to represent a function, on the other
hand, it also constrains the size of the partial results that are propagated inside the network. In typical
fully connected networks, a layer acting on a n-dimensional state vector has O(n2) parameters stored
in one or more matrices, but there can be many functions of practical interest that are simple enough
to be represented by a relatively small number of bits while still requiring some sizable amount of
memory to be computed. Therefore, representing these functions on a fully connected neural network

∗Work partially done while affiliated with University of Pisa.

1



Under review as a conference paper at ICLR 2017

can be wasteful in terms of number of parameters. The full parameterization implies that, at each step,
all the information in each state component can affect all the information in any state component at
the next step. Classical physical systems, however, consist of spatially separated parts with primarily
local interactions, long-distance interactions are possible but they tend to be limited by propagation
delays, bandwidth and noise. Therefore it may be beneficial to bias our model class towards models
that tend to adhere to these physical constraints by using a parametrization which reduces the number
of parameters required to represent them. This can be accomplished by imposing some constraints
on the n × n matrices that parametrize the state transitions. One way of doing this is to impose
a convolutional structure on these matrices (LeCun et al., 2004; Krizhevsky et al., 2012), which
corresponds to strict locality and periodicity constraints as in a cellular automaton. These constraints
work well in certain domains such as vision, but may be overly restrictive in other domains.

In this work we observe that the state passthrough allows for a systematic decoupling of the network
state size from the number of parameters: since by default the state vector passes mostly unaltered
through the layers, each layer can be made simple enough to be described only by a small number of
parameters without affecting the overall memory capacity of the network, effectively spreading the
computation over the depth or time dimension of the network, but without making the network "thin".
This has been exploited by some convolutional passthrough architectures (Srivastava et al., 2015; He
et al., 2015; Kaiser & Sutskever, 2015), or architectures with addressable read-write memory (Graves
et al., 2014; Danihelka et al., 2016).

In this work we propose simple but effective low-dimensional parametrizations that exploit this
decoupling based on low-rank or low-rank plus diagonal matrix decompositions. Our approach
extends the LSTM architecture with a single projection layer by Sak et al. (2014) which has been
applied to speech recognition, natural language modeling (Józefowicz et al., 2016), video analysis
(Sun et al., 2015), etc. We provide experimental evaluation of our approach on GRU and LSTM
architectures on various machine learning tasks, including a near state of the art result for the hard
task of sequential randomly-permuted MNIST image recognition (Le et al., 2015).

2 MODEL

A neural network can be described as a dynamical system that transforms an input u into an output y
over multiple time steps T . At each step t the network has a n-dimensional state vector x(t) ∈ Rn
defined as

x(t) =

{
in(u, θ) if t = 0

f(x(t− 1), t, u, θ) if t ≥ 1
(1)

where in is a state initialization function, f is a state transition function and θ ∈ Rk is vector of
trainable parameters. The output y = out(x(0 : T ), θ) is generated by an output function out, where
x(0 : T ) denotes the whole sequence of states visited during the execution. In a feed-forward neural
network with constant hidden layer width n, the input u ∈ Rm and the output y ∈ Rl are vectors of
fixed dimension m and l respectively, T is a model hyperparameter. In a recurrent neural network
the input u is typically a list of T m-dimensional vectors u(t) ∈ Rm for t ∈ 1, . . . , T where T
is variable, the output y is either a single l-dimensional vector or a list of T such vectors. Other
neural architectures, such as "seq2seq" transducers without attention (Cho et al., 2014a), can be also
described within this framework.

2.1 PASSTHROUGH NETWORKS

Passthrough networks can be defined as networks where the state transition function f has a special
form such that, at each step t the state vector x(t) (or a sub-vector x̂(t)) is propagated to the next step
modified only by some (nearly) linear, element-wise transformation.

Let the state vector x(t) ≡ (x̂(t), x̃(t)) be the concatenation of x̂(t) ∈ Rn̂ and x̃(t) ∈ Rñ with
n̂+ ñ = n (where ñ can be equal to zero). We define a network to have a state passthrough on x̂ if x̂
evolves as

x̂(t) = fπ(x(t− 1), t, u, θ)� fτ (x(t− 1), t, u, θ) + x̂(t− 1)� fγ(x(t− 1), t, u, θ) (2)

where fπ is the next state proposal function, fτ is the transform function, fγ is the carry function and
� denotes element-wise vector multiplication. The rest of the state vector x̃(t), if present, evolves

2



Under review as a conference paper at ICLR 2017

x̂ (t−1)

f γ

f τ

f π

+ x̂ (t)

x

W

a)

x

R

b)

L

x

R

c)

L

0

0

D

+

Figure 1: Left: Generic state passthrough hidden layer, optional non-passthrough state x̃(t) and per-
timestep input u(t) are not shown. Right: a) Full matrix parametrization. b) Low-rank parametrization.
c) Low-rank plus diagonal parametrization.

according to some other function f̃ . In practice x̃(t) is only used in LSTM variants, while in other
passthrough architectures x̂(t) = x(t).

As concrete example, we can describe a fully connected Highway Network as

fπ(x(t− 1), t, u, θ) = g(θ
(Wπ)
t · x(t− 1) + θ

(bπ)
t )

fτ (x(t− 1), t, u, θ) = σ(θ
(Wτ )
t · x(t− 1) + θ

(bτ )
t )

fγ(x(t− 1), t, u, θ) = 1⊗n − fτ (x(t− 1), t, u, θ)

(3)

where g is an element-wise activation function, usually the ReLU (Glorot et al., 2011) or the
hyperbolic tangent, σ is the element-wise logistic sigmoid, and ∀t ∈ 1, . . . , T , the parameters θ(Wπ)

t

and θ(Wτ )
t are matrices inRn×n and θ(bπ)t and θ(bπ)t are vectors inRn. Dependence on the input u

occurs only through the initialization function, which is model-specific and is omitted here, as is the
output function.

2.2 LOW-RANK PASSTHROUGH NETWORKS

In fully connected architectures there are n × n matrices that act on the state vector, such as the
θ
(Wπ)
t and θ(Wτ )

t matrices of the Highway Network of eq. 3. Each of these matrices has n2 entries,
thus for large n, the entries of these matrices can make up the majority of independently trainable
parameters of the model. As discussed in the previous section, this parametrization can be wasteful.
We impose a low-rank constraint on these matrices. This is easily accomplished by rewriting each of
these matrices as the product of two matrices where the inner dimension d is a model hyperparameter.

For instance, in the case of the Highway Network of eq. 3 we can redefine ∀t ∈ 1, . . . , T

θ
(Wπ)
t = θ

(Lπ)
t · θ(Rπ)t

θ
(Wτ )
t = θ

(Lτ )
t · θ(Rτ )t

(4)

where θ(Lπ)t , θ
(Lτ )
t ∈ Rn×d and θ(Rπ)t , θ

(Rτ )
t ∈ Rd×n. When d < n/2 this result in a reduction of

the number of trainable parameters of the model.

Even when n/2 ≤ d < n, while the total number of parameter increases, the number of degrees of
freedom of the model still decreases, because low-rank factorization are unique only up to arbitrary
d× d invertible matrices, thus the number of independent degrees of freedom of a low-rank layer is

3



Under review as a conference paper at ICLR 2017

2nd−d2. However, we don’t know whether the training optimizers can exploit this kind of redundancy,
thus in this work we restrict to low-rank parametrizations where the number of parameters is strictly
reduced.

This low-rank constraint can be thought as a bandwidth constraint on the computation performed at
each step: the R matrices first project the state into a smaller subspace, extracting the information
needed for that specific step, then the L matrices project it back to the original state space, spreading
the selected information to all the state components that need to be updated. A similar approach has
been proposed for the LSTM architecture by Sak et al. (2014), although they force the R matrices to
be the same for all the functions of the state transition, while we allow each parameter matrix to be
parametrized independently by a pair of R and L matrices.

Low-rank passthrough architectures are universal in that they retain the same representation classes
of their parent architectures. This is trivially true if the inner dimension d is allowed to be O(n) in
the worst case, and for some architectures even if d is held constant. For instance, it is easily shown
that for any Highway Network with state size n and T hidden layers and for any ε > 0, there exist a
Low-rank Highway Network with d = 1, state size at most 2n and at most nT layers that computes
the same function within an ε margin of error.

2.3 LOW-RANK PLUS DIAGONAL PASSTHROUGH NETWORKS

As we show in the experimental section, on some tasks the low-rank constraint may prove to be
excessively restrictive if the goal is to train a model with fewer parameters than one with arbitrary
matrices. A simple extension is to add to each low-rank parameter matrix a diagonal parameter
matrix, yielding a matrix that is full-rank but still parametrized in a low-dimensional space. For
instance, for the Highway Network architecture we modify eq. 4 to

θ
(Wπ)
t = θ

(Lπ)
t · θ(Rπ)t + θ

(Dπ)
t

θ
(Wτ )
t = θ

(Lτ )
t · θ(Rτ )t + θ

(Dτ )
t

(5)

where θ(Dπ)t , θ
(Dτ )
t ∈ Rn×n are trainable diagonal parameter matrices.

It may seem that adding diagonal parameter matrices is redundant in passthrough networks. After all,
the state passthrough itself can be considered as a diagonal matrix applied to the state vector, which
is then additively combined to the new proposed state computed by the fπ function. However, since
the state passthrough completely skips over all non-linear activation functions, these formulations
are not equivalent. In particular, the low-rank plus diagonal parametrization may help in recurrent
neural networks which receive input at each time step, since they allow each component of the state
vector to directly control how much input signal is inserted into it at each step. We demonstrate
the effectiveness of this model in the sequence copy and sequential MNIST tasks described in the
experiments section.

3 EXPERIMENTS

The main content of this section reports several experiments on Low-rank and Low-rank plus diagonal
GRUs, and an experiment using these parametrizations on a LSTM for language modeling.

A preliminary experiment on Low-rank Highway Networks on the MNIST dataset is reported in
appendix A.1.

We applied the Low-rank and Low-rank plus diagonal GRU architectures to a subset of sequential
benchmarks described in the Unitary Evolution Recurrent Neural Networks article by Arjovsky et al.
(2015), specifically the memory task, the addition task and the sequential randomly permuted MNIST
task. For the memory tasks, we also considered two different variants proposed by Danihelka et al.
(2016) and Henaff et al. (2016) which are hard for the uRNN architecture. We chose to compare
against the uRNN architecture because it set state of the art results in terms of both data complexity
and accuracy and because it is an architecture with similar design objectives as low-rank passthrough
architectures, namely a low-dimensional parametrization and the mitigation of the vanishing gradient
problem, but it is based on quite different principles.

4



Under review as a conference paper at ICLR 2017

The GRU architecture (Cho et al., 2014b) is a passthrough recurrent neural network defined as

in(u, θ) = θin

fω(x(t− 1), t, u, θ) = σ(θUω · u(t) + θ(Wω) · x(t− 1) + θ(bω))

fγ(x(t− 1), t, u, θ) = σ(θUγ · u(t) + θ(Wγ) · x(t− 1) + θ(bγ))

fτ (x(t− 1), t, u, θ) = 1⊗n − fγ(x(t− 1), t, u, θ)

fπ(x(t− 1), t, u, θ) = tanh(θUπ · u(t) + θ(Wπ) · (x(t− 1)� fω(x(t− 1), t, u, θ)) + θ(bπ))

(6)

We turn this architecture into the Low-rank GRU architecture by redefining each of the θW matrices
as the product of two matrices with inner dimension d. For the memory tasks, which turned out to be
difficult for the low-rank parametrization, we also consider the low-rank plus diagonal parametrization.
We also applied the low-rank plus diagonal parametrization in the sequential permuted MNIST task
and a character-level language modeling task on the Penn Treebank corpus. For the language
modeling task, we also experimented with Low-rank plus diagonal LSTMs. Refer to appendix A.2
for model details.

3.0.1 MEMORY TASK

The input of an instance of this task is a sequence of T = N + 20 discrete symbols in a ten symbol
alphabet ai : i ∈ 0, . . . 9, encoded as one-hot vectors. The first 10 symbols in the sequence are "data"
symbols i.i.d. sampled from a0, . . . , a7, followed by N − 1 "blank" a8 symbols, then a distinguished
"run" symbol a9, followed by 10 more "blank" a8 symbols. The desired output sequence consists
of N + 10 "blank" a8 symbols followed by the 10 "data" symbols as they appeared in the input
sequence. Therefore the model has to remember the 10 "data" symbol string over the temporal gap of
size N , which is challenging for a recurrent neural network when N is large. In our experiment we
set N = 500, which is the hardest setting explored in the uRNN work. The training set consists of
100, 000 training examples and 10, 000 validation/test examples. The architecture is described by eq.
(6), with an additional output layer with a dense n× 10 matrix followed a (biased) softmax. We train
to minimize the cross-entropy loss.

We were able to solve this task using a GRU with full recurrent matrices with state size n = 128,
learning rate 1× 10−3, mini-batch size 20, initial bias of the carry functions (the "update" gates)
4.0, however this model has many more parameters, nearly 50, 000 in the recurrent layer only, than
the uRNN work which has about 6, 500, and it converges much more slowly than the uRNN. We
were not able to achieve convergence with a pure low-rank model without exceeding the number
of parameters of the fully connected model, but we achieved fast convergence with a low-rank plus
diagonal model with d = 50, with other hyperparameters set as above. This model has still more
parameters (39, 168 in the recurrent layer, 41, 738 total) than the uRNN model and converges more
slowly but still reasonably fast, reaching test cross-entropy < 1× 10−3 nats and almost perfect
classification accuracy in less than 35, 000 updates.

In order to obtain a fair comparison, we also train a uRNN model with state size n = 721, resulting
in approximately the same number of parameters as the low-rank plus diagonal GRU models. This
model very quickly reaches perfect accuracy on the training set in less than 2, 000 updates, but overfits
w.r.t. the test set.

We also consider two variants of this task which are difficult for the uRNN model. For both these
tasks we used the same settings as above except that the task size parameter is set at N = 100 for
consistency with the works that introduced these variants. In the variant of Danihelka et al. (2016), the
length of the sequence to be remembered is randomly sampled between 1 and 10 for each sequence.
They manage to achieve fast convergence with their Associative LSTM architecture with 65, 505
parameters, and slower convergence with standard LSTM models. Our low-rank plus diagonal GRU
architecture, which has less parameters than their Associative LSTM, performs comparably or better,
reaching test cross-entropy < 1× 10−3 nats and almost perfect classification accuracy in less than
30, 000 updates. In the variant of Henaff et al. (2016), the length of the sequence to be remembered
is fixed at 10 but the model is expected to copy it after a variable number of time steps randomly
chosen, for each sequence, between 1 and N = 100. The authors achieve slow convergence with a
standard LSTM model, while our low-rank plus diagonal GRU architecture achieves fast convergence,

5



Under review as a conference paper at ICLR 2017

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y 
(n

at
s)

Sequence copy with fixed lag N=500

LRD-GRU
URNN

0 100 200 300 400 500 600
Minibatch number (hundreds)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Cr
os

s-
en

tr
op

y 
(n

at
s)

Variable-length sequence copy with fixed lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 100 200 300 400 500 600 700 800 900
Minibatch number (hundreds)

0.00

0.05

0.10

0.15

0.20

Cr
os

s-
en

tr
op

y 
(n

at
s)

Sequence copy with variable lag N=100

LRD-GRU
LRD-GRU-WN
URNN

0 20 40 60 80 100 120 140 160
Minibatch number (hundreds)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
sq

ua
re

d 
er

ro
r

Addition T=750

0 1000 2000 3000 4000 5000
Minibatch number (hundreds)

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST

n=128, d=24
n=512, d=4

0 2000 4000 6000 8000 10000
Minibatch number (hundreds)

0

20

40

60

80

100

Ac
cu

ra
cy

 %

Permuted sequential MNIST (low-rank plus diagonal)

n=64, d=24
n=128, d=24
n=256, d=24
n=128 (baseline)

Figure 2: Top row and middle left: Low-rank plus diagonal GRU and uRNN on the sequence copy
tasks, cross-entropy on validation set. Middle right: Low-rank GRU on the addition task, mean
squared error on validation set. Bottom row: Low-rank GRU (left) and Low-rank plus diagonal GRU
(right) on the permuted sequential MNIST task, accuracy on validation set, horizontal line indicates
90% accuracy.

6



Under review as a conference paper at ICLR 2017

Table 1: Sequential permuted MNIST results
Architecture state size max rank params val. accuracy test accuracy

Baseline GRU 128 - 51.0 k 93.0% 92.8%
Low-rank GRU 128 24 20.2 k 93.4% 91.8%
Low-rank GRU 512 4 19.5 k 92.5% 91.3%
Low-rank plus diag. GRU 64 24 10.3 k 93.1% 91.9%
Low-rank plus diag. GRU 128 24 20.6 k 94.1% 93.5%
Low-rank plus diag. GRU 256 24 41.2 k 95.1% 94.7%

reaching test cross-entropy < 1× 10−3 nats and almost perfect classification accuracy in less than
38, 000 updates, and perfect test accuracy in 87, 000 updates.

We further train uRNN models with state size n = 721 on these variants of the memory task. We
found that the uRNN learns faster than the low-rank plus diagonal GRU on the variable length, fixed
lag task (Danihelka et al., 2016) but fails to converge within our training time limit on the fixed length,
variable lag task (Henaff et al., 2016).

Training the low-rank plus diagonal GRU on these tasks incurs sometimes in numerical stability
problems as discussed in appendix A.2. In order to systemically address these issues, we also trained
models with weight normalization (Salimans & Kingma, 2016) and weight row max-norm constraints.
These models turned out to be more stable and in fact converge faster, performing on par with the
uRNN on the variable length, fixed lag task.

Training curves are shown in figure 2 (top and middle left).

3.0.2 ADDITION TASK

For each instance of this task, the input sequence has length T and consists of two real-valued
components, at each step the first component is independently sampled from the interval [0, 1] with
uniform probability, the second component is equal to zero everywhere except at two randomly
chosen time step, one in each half of the sequence, where it is equal to one. The result is a single real
value computed from the final state which we want to be equal to the sum of the two elements of the
first component of the sequence at the positions where the second component was set at one. In our
experiment we set T = 750.

The training set consists of 100, 000 training examples and 10, 000 validation/test examples. We use
a Low-rank GRU with 2× n input matrix, n× 1 output matrix and (biased) identity output activation.
We train to minimize the mean squared error loss. We use state size n = 128, maximum rank d = 24.
This results in approximately 6, 140 parameters in the recurrent hidden layer. Learning rate was set at
1× 10−3, mini-batch size 20, initial bias of the carry functions (the "update" gates) was set to 4.

We trained on 14, 500 mini-batches, obtaining a mean squared error on the test set of 0.003, which is
a better result than the one reported in the uRNN article, in terms of training time and final accuracy.
The training curve is shown in figure 2 (middle right).

3.0.3 SEQUENTIAL MNIST TASK

This task consists of handwritten digit classification on the MNIST dataset with the caveat that the
input is presented to the model one pixel value at time, over T = 784 time steps. To further increase
the difficulty of the task, the inputs are reordered according to a random permutation (fixed for all the
task instances).

We use Low-rank and Low-rank plus diagonal GRUs with 1× n input matrix, n× 10 output matrix
and (biased) softmax output activation. Learning rate was set at 5× 10−4, mini-batch size 20, initial
bias of the carry functions (the "update" gates) was set to 5.

Results are presented in table 1 and training curves are shown in figure 2 (bottom row). All these
models except the one with the most extreme bottleneck (n = 512, d = 4) exceed the reported uRNN
test accuracy of 91.4%, although they converge more slowly (hundred of thousands updates vs. tens
of thousands of the uRNN). Also note that the low-rank plus diagonal GRU is more accurate than the

7



Under review as a conference paper at ICLR 2017

Table 2: Character-level language modeling results
Architecture dropout tied state size max rank params test per-char. perplexity

Baseline GRU No - 1000 - 3.11 M 2.96
Baseline GRU Yes - 1000 - 3.11 M 2.92
Baseline GRU Yes - 3298 - 33.0 M 2.77
Baseline LSTM Yes - 1000 - 4.25 M 2.92
Low-rank plus diag. GRU No No 1000 64 0.49 M 2.92
Low-rank plus diag. GRU No No 3298 128 2.89 M 2.95
Low-rank plus diag. GRU Yes No 3298 128 2.89 M 2.86
Low-rank plus diag. GRU Yes No 5459 64 2.69 M 2.82
Low-rank plus diag. GRU Yes Yes 5459 64 1.99 M 2.81
Low-rank plus diag. GRU No Yes 1000 64 0.46 M 2.90
Low-rank plus diag. GRU Yes Yes 4480 128 2.78 M 2.86
Low-rank plus diag. GRU Yes Yes 6985 64 2.54 M 2.76
Low-rank plus diag. LSTM Yes No 1740 300 4.25 M 2.86

full rank GRU with the same state size, while the low-rank GRU is slightly less accurate (in terms of
test accuracy), indicating the utility of the diagonal component of the parametrization for this task.

These are on par with more complex architectures with time-skip connections (Zhang et al., 2016)
(reported test set accuracy 94.0%). To our knowledge, at the time of this writing, the best result on
this task is the LSTM with recurrent batch normalization by Cooijmans et al. (2016) (reported test
set accuracy 95.2%). The architectural innovations of these works are orthogonal to our own and in
principle they can be combined to it.

3.0.4 CHARACTER-LEVEL LANGUAGE MODELING TASK

This standard benchmark task consist of predicting the probability of the next character in a sentence
after having observed the previous charters. Similar to Zaremba et al. (2014), we use the Penn
Treebank English corpus, with standard training, validation and test splits.

As a baseline we use a single layer GRU either with no regularization or regularized with Bayesian
recurrent dropout (Gal, 2015). Refer to appendix A.2 for details.

In our experiments we consider the low-rank plus diagonal parametrization, both with tied and untied
projection matrices. We set the state size and maximum rank to either reduce the total number of
parameters compared to the baselines or to keep the number of parameters approximately the same
while increasing the memory capacity. Results are shown in table 2.

Our low-rank plus diagonal parametrization reduces the model per-character perplexity (the base-2
exponential of the bits-per-character entropy). Both the tied and untied versions perform equally
when the state size is the same, but the tied version performs better when the number of parameters is
kept the same, presumably due to the increased memory capacity of the state vector. Our best model
has an extreme bottleneck, over a hundred of times smaller than the state size, while the word-level
language models trained by Józefowicz et al. (2016) use bottlenecks of four to eight times smaller
than the state size. We conjecture that this difference is due to our usage of the "plus diagonal"
parametrization. In terms of absolute perplexity, our results are worse than published ones (e.g.
Graves (2013)), although they may not be directly comparable since published results generally use
different training and evaluation schemes, such as preserving the network state between different
sentences.

In order to address these experimental differences, we ran additional experiments using LSTM
architectures, trying to replicate the alphabet and sentence segmentation used in Graves (2013),
although we could not obtain the same baseline performance even using the Adam optimizer (using
SGD+momentum yields even worse results). In fact, we obtained approximately the same perplexity
as our baseline GRU model with the same state size.

8



Under review as a conference paper at ICLR 2017

We applied the Low-rank plus diagonal parametrizations to our LSTM architecture maintaining the
same number of parameters as the baseline. We obtained notable perplexity improvements over the
baseline. Refer to appendix A.3 for the experimental details.

We performed additional exploratory experiments on word-level language modeling and subword-
level neural machine translation (Bahdanau et al., 2014; Sennrich et al., 2015) with GRU-based
architectures but we were not able to achieve significant accuracy improvements, which is not particu-
larly surprising given that in these models most parameters are contained in the token embedding and
output matrices, thus low-dimensional parametrizations of the recurrent matrices have little effect
on the total number of parameters. We reserve experimentation on character-level neural machine
translation (Ling et al., 2015; Chung et al., 2016; Lee et al., 2016) to future work.

4 CONCLUSIONS AND FUTURE WORK

We proposed low-dimensional parametrizations for passthrough neural networks based on low-rank
or low-rank plus diagonal decompositions of the n × n matrices that occur in the hidden layers.
We experimentally compared our models with state of the art models, obtaining competitive results
including a near state of the art for the randomly-permuted sequential MNIST task.

Our parametrizations are alternative to convolutional parametrizations explored by Srivastava et al.
(2015); He et al. (2015); Kaiser & Sutskever (2015). Since our architectural innovations are orthogonal
to these approaches, they can be in principle combined. Additionally, alternative parametrizations
could include non-linear activation functions, similar to the network-in-network approach of Lin et al.
(2013). We leave the exploration of these extensions to future work.

REFERENCES

Arjovsky, Martin, Shah, Amar, and Bengio, Yoshua. Unitary evolution recurrent neural networks. CoRR,
abs/1511.06464, 2015. URL http://arxiv.org/abs/1511.06464.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural machine translation by jointly learning to
align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/1409.0473.

Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo. Learning long-term dependencies with gradient descent
is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

Cho, Kyunghyun, van Merriënboer, Bart, Bahdanau, Dzmitry, and Bengio, Yoshua. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014a.

Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar, Bougares, Fethi, Schwenk, Holger, and Bengio,
Yoshua. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014b.

Chung, Junyoung, Cho, Kyunghyun, and Bengio, Yoshua. A character-level decoder without explicit segmenta-
tion for neural machine translation. arXiv preprint arXiv:1603.06147, 2016.

Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç., and Courville, A. Recurrent Batch Normalization. ArXiv
e-prints, March 2016.

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., and Graves, A. Associative Long Short-Term Memory.
ArXiv e-prints, February 2016.

Gal, Yarin. A theoretically grounded application of dropout in recurrent neural networks. arXiv preprint
arXiv:1512.05287, 2015.

Glorot, Xavier, Bordes, Antoine, and Bengio, Yoshua. Deep sparse rectifier neural networks. In International
Conference on Artificial Intelligence and Statistics, pp. 315–323, 2011.

Graves, Alex. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex and Schmidhuber, Jürgen. Framewise phoneme classification with bidirectional lstm and other
neural network architectures. Neural Networks, 18(5):602–610, 2005.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Geoffrey E. Speech recognition with deep recurrent neural
networks. CoRR, abs/1303.5778, 2013. URL http://arxiv.org/abs/1303.5778.

9

http://arxiv.org/abs/1511.06464
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1303.5778


Under review as a conference paper at ICLR 2017

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385, 2015.

Henaff, M., Szlam, A., and LeCun, Y. Orthogonal RNNs and Long-Memory Tasks. ArXiv e-prints, February
2016.

Hochreiter, Sepp. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische Universität
München, 1991.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Iyyer, Mohit, Boyd-Graber, Jordan, Claudino, Leonardo, Socher, Richard, and Daumé III, Hal. A neural network
for factoid question answering over paragraphs. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 633–644, 2014.

Józefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer, Noam, and Wu, Yonghui. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410, 2016.

Kaiser, Lukasz and Sutskever, Ilya. Neural gpus learn algorithms. CoRR, abs/1511.08228, 2015. URL
http://arxiv.org/abs/1511.08228.

Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

Le, Quoc V, Jaitly, Navdeep, and Hinton, Geoffrey E. A simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

LeCun, Yann, Huang, Fu Jie, and Bottou, Leon. Learning methods for generic object recognition with invariance
to pose and lighting. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 2, pp. II–97. IEEE, 2004.

Lee, Jason, Cho, Kyunghyun, and Hofmann, Thomas. Fully character-level neural machine translation without
explicit segmentation. arXiv preprint arXiv:1610.03017, 2016.

Lin, Min, Chen, Qiang, and Yan, Shuicheng. Network in network. arXiv preprint arXiv:1312.4400, 2013.

Ling, Wang, Trancoso, Isabel, Dyer, Chris, and Black, Alan W. Character-based neural machine translation.
arXiv preprint arXiv:1511.04586, 2015.

Sak, Hasim, Senior, Andrew W, and Beaufays, Françoise. Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In INTERSPEECH, pp. 338–342, 2014.

Salimans, Tim and Kingma, Diederik P. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. arXiv preprint arXiv:1602.07868, 2016.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909, 2015.

Sennrich, Rico, Haddow, Barry, and Birch, Alexandra. Edinburgh neural machine translation systems for wmt
16. arXiv preprint arXiv:1606.02891, 2016.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Srivastava, Rupesh Kumar, Greff, Klaus, and Schmidhuber, Jürgen. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Sun, Chen, Shetty, Sanketh, Sukthankar, Rahul, and Nevatia, Ram. Temporal localization of fine-grained actions
in videos by domain transfer from web images. In Proceedings of the 23rd Annual ACM Conference on
Multimedia Conference, pp. 371–380. ACM, 2015.

10

http://arxiv.org/abs/1511.08228


Under review as a conference paper at ICLR 2017

Tang, Yichuan. Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239, 2013.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5 - rmsprop„ 2012.

Vinyals, Oriol, Kaiser, Lukasz, Koo, Terry, Petrov, Slav, Sutskever, Ilya, and Hinton, Geoffrey. Grammar as a
foreign language. arXiv preprint arXiv:1412.7449, 2014.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

Zhang, Saizheng, Wu, Yuhuai, Che, Tong, Lin, Zhouhan, Memisevic, Roland, Salakhutdinov, Ruslan, and Bengio,
Yoshua. Architectural complexity measures of recurrent neural networks. arXiv preprint arXiv:1602.08210,
2016.

A APPENDIX: EXPERIMENTAL DETAILS

A.1 LOW-RANK HIGHWAY NETWORKS

As a preliminary exploratory experiment, we applied the low-rank and low-rank plus diagonal
Highway Network architecture to the classic benchmark task of handwritten digit classification on
the MNIST dataset, in its permutation-invariant (i.e. non-convolutional) variant.

We used the low-rank architecture described by equations 3 and 4, with T = 5 hidden layers, ReLU
activation function, state dimension n = 1024 and maximum rank (internal dimension) d = 256.
The input-to-state layer is a dense 784× 1024 matrix followed by a (biased) ReLU activation and
the state-to-output layer is a dense 1024× 10 matrix followed by a (biased) identity activation. We
did not use any convolution layer, pooling layer or data augmentation technique. We used dropout
(Srivastava et al., 2014) in order to achieve regularization. We further applied L2-regularization with
coefficient λ = 1× 10−3 per example on the hidden-to-output parameter matrix. We also used batch
normalization (Ioffe & Szegedy, 2015) after the input-to-state matrix and after each parameter matrix
in the hidden layers. Initial bias vectors are all initialized at zero except for those of the transform
functions in the hidden layers, which are initialized at −1.0. We trained to minimize the sum of the
per-class L2-hinge loss plus the L2-regularization cost (Tang, 2013). Optimization was performed
using Adam (Kingma & Ba, 2014) with standard hyperparameters, learning rate starting at 3× 10−3

halving every three epochs without validation improvements. Mini-batch size was equal to 100. Code
is available online1.

We obtained perfect training accuracy and 98.83% test accuracy. While this result does not reach
the state of the art for this task (99.13% test accuracy with unsupervised dimensionality reduction
reported by Tang (2013)), it is still relatively close. We also tested the low-rank plus diagonal
Highway Network architecture of eq. 5 with the same settings as above, obtaining a test accuracy of
98.64%. The inclusion of diagonal parameter matrices does not seem to help in this particular task.

A.2 LOW-RANK GRUS

In our experiments (except language modeling) we optimized using RMSProp (Tieleman & Hinton,
2012) with gradient component clipping at 1. Code is available online2. Our code is based on the
published uRNN code3 (specifically, on the LSTM implementation) by the original authors for the
sake of a fair comparison. In order to achieve convergence on the memory task however, we had to
slightly modify the optimization procedure, specifically we changed gradient component clipping
with gradient norm clipping (with NaN detection and recovery), and we added a small ε = 1× 10−8

term in the parameter update formula. No modifications of the original optimizer implementation
were required for the other tasks.

In order to address the numerical instability issues in the memory tasks, we also consider a variant
of our Low-rank plus diagonal GRU where apply weight normalization as described by Salimans &
Kingma (2016) to all the parameter matrices except the output one and the diagonal matrices. All

1https://github.com/Avmb/lowrank-highwaynetwork
2https://github.com/Avmb/lowrank-gru
3https://github.com/amarshah/complex_RNN

11

https://github.com/Avmb/lowrank-highwaynetwork
https://github.com/Avmb/lowrank-gru
https://github.com/amarshah/complex_RNN


Under review as a conference paper at ICLR 2017

these matrices have trainable scale parameters, except for the projection matrices. We further apply an
hard constraint on the matrices row norms by clipping them at 10 after each update. We disable NaN
detection and recovery during training. The rationale behind this approach, in addition to the general
benefits of normalization, is that the low-rank parametrization potentially introduces stability issues
because the model is invariant to multiplying a row of an R-matrix by a scalar s and dividing the
corresponding column of the L-matrix by s, which in principle allows the parameters of either matrix
to grow very large in magnitude, eventually resulting in overflows or other pathological behavior.
The weight row max-norm constraint can counter this problem. But the constraint alone could make
the optimization problem harder by reducing and distorting the parameter space. Fortunately we
could counter this by weight normalization which makes the model invariant to the row-norms of the
parameter matrices.

In the language modeling experiment, for consistency with existing code, we used a variant of the
GRU where the reset gate is applied after the multiplication by the recurrent proposal matrix rather
than before. Specifically:

in(u, θ) = θin

fω(x(t− 1), t, u, θ) = σ(θUω · u(t) + θ(Wω) · x(t− 1) + θ(bω))

fγ(x(t− 1), t, u, θ) = σ(θUγ · u(t) + θ(Wγ) · x(t− 1) + θ(bγ))

fτ (x(t− 1), t, u, θ) = 1⊗n − fγ(x(t− 1), t, u, θ)

fπ(x(t− 1), t, u, θ) = tanh(θUπ · u(t) + (θ(Wπ) · x(t− 1))� fω(x(t− 1), t, u, θ) + θ(bπ))

(7)

The character vocabulary size if 51, we use no character embeddings. Training is performed with
Adam with learning rate 1× 10−3. Bayesian recurrent dropout was adapted from the original LSTM
architecture of Gal (2015) to the GRU architecture as in Sennrich et al. (2016).

Our implementation is based on the "dl4mt" tutorial4 and the Nematus neural machine translation
system 5. The code is available online 6.

A.3 LOW-RANK LSTMS

For our LSTM experiments, we modified the implementation of LSTM language model with Bayesian
recurrent dropout by Gal (2015)7. In order to match the setup of Graves (2013) more closely, we
used a vocabulary size of 49, no embedding layer and one LSTM layer. We found no difference on
the baseline model with using peephole connections and not using them, therefore we did not use
them on the Low-rank plus diagonal model. We use recurrent dropout and the Adam optimizer with
learning rate 2× 10−4.

The baseline LSTM model is defined by the gates:

in(u, θ) = 0⊗n̂

fω(x(t− 1), t, u, θ) = σ(θUω · u(t) + θ(Wω) · x̃(t− 1) + θ(bω))

fγ(x(t− 1), t, u, θ) = σ(θUγ · u(t) + θ(Wγ) · x̃(t− 1) + θ(bγ))

fτ (x(t− 1), t, u, θ) = σ(θUτ · u(t) + θ(Wτ ) · x̃(t− 1) + θ(bτ ))

fπ(x(t− 1), t, u, θ) = tanh(θUπ · u(t) + θ(Wπ) · x̃(t− 1) + θ(bπ))

(8)

with the state components evolving as:
x̂(t) = fπ(x(t− 1), t, u, θ)� fτ (x(t− 1), t, u, θ) + x̂(t− 1)� fγ(x(t− 1), t, u, θ)

x̃(t) = fω(x(t− 1), t, u, θ)� tanh(x̂(t))
(9)

The low-rank plus diagonal parametrization is applied on the recurrence matrices θW? as in the GRU
models.

The code is available online8.
4https://github.com/nyu-dl/dl4mt-tutorial
5https://github.com/rsennrich/nematus
6https://github.com/Avmb/dl4mt-lm/tree/master/lm
7https://github.com/yaringal/BayesianRNN
8https://github.com/Avmb/lowrank-lstm

12

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/rsennrich/nematus
https://github.com/Avmb/dl4mt-lm/tree/master/lm
https://github.com/yaringal/BayesianRNN
https://github.com/Avmb/lowrank-lstm

	Overview
	Model
	Passthrough networks
	Low-rank passthrough networks
	Low-rank plus diagonal passthrough networks

	Experiments
	Memory task
	Addition task
	Sequential MNIST task
	Character-level language modeling task


	Conclusions and future work
	Appendix: Experimental details
	Low-rank Highway Networks
	Low-rank GRUs
	Low-rank LSTMs


