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Abstract

In this paper, we propose a novel unsupervised learning method to learn the brain
dynamics using a deep learning architecture named residual D-net. As it is often the
case in medical research, in contrast to typical deep learning tasks, the size of the
resting-state functional Magnetic Resonance Image (rs-fMRI) datasets for training
is limited. Thus, the available data should be very efficiently used to learn the
complex patterns underneath the brain connectivity dynamics. To address this issue,
we use residual connections to alleviate the training complexity through recurrent
multi-scale representation. We conduct two classification tasks to differentiate early
and late stage Mild Cognitive Impairment (MCI) from Normal healthy Control
(NC) subjects. The experiments verify that our proposed residual D-net indeed
learns the brain connectivity dynamics, leading to significantly higher classification
accuracy compared to previously published techniques.

1 Introduction

Alzheimer’s Disease (AD) is the most common degenerative brain disease associated with dementia
in elder people [1], and it is characterized by a progressive decline of memory, language and cognitive
skills. The transition from cognitive health to dementia flows throw different stages, and it may
require decades until the damage is noticeable [2].

Unfortunately, the precise biological mechanisms behind the AD remain unknown, to a large extent,
and this makes the development of an effective treatment difficult. Moreover, the costs of Alzheimer’s
care constitutes a substantial burden on families, which exacerbates through the evolution of the
disease [3]. For these reasons, early detection is crucial to prevent, slow down and, hopefully, stop
the development of the AD.

Towards this goal, several studies point out that an intermediate stage of cognitive brain dysfunction,
referred as Mild Cognitive Impairment (MCI), is a potential precursor of AD [3] (especially with
respect to memory problems, referred as amnesic MCI). Although the final transition from MCI to
AD varies per individual, a recent systematic review of 32 available studies reported that at least 3
out 10 patients with MCI developed the AD over the period of five or more years.

During the early stages of the AD and MCI, the brain operates so that to allow the individuals to
function normally by inducing abnormal neuronal activity, that compensates for the progressive loss
of neurons. These fluctuations can be measured using rs-fMRI, which is a powerful non-invasive
technique to examine the brain behavior. Therefore, the rs-fMRI provides valuable information that
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Table 1: Demographics of the healthy control subjects (NC), patients with eMCI and patients with
LMCI

NC eMCI LMCI

Number of Subjects 36 31 26
Male/Female 14/22 15/16 15/11
Number of Scans 100 100 77
Male/Female 37/63 58/42 41/36
Age (mean±SD) 72.7±4.5 72.4±3.8 74.3±3.4

allows to study the brain connectivity dynamics and, potentially, to detect individuals with AD or
MCI from healthy subjects.

Nowadays, several methods have been proposed to classify subjects with MCI from healthy subjects
using fMRI data [4]. The most basic approach consists of a direct study of the mean Functional
Connectivity (FC). For example, features from the FC matrix [5] or graph theoretical approach [6]
are proposed to perform the classification task. However, two practical limitations restrict these
approaches: first, the manual feature designing requires an extensive domain knowledge of the brain
connectivity dynamics and, second, the limited number of the available data samples makes it difficult
to find a proper model that will generalize in different datasets.

On the other hand, a more sophisticated approach is proposed in [7] to address these two problems:
this method automatically learns the features from the data using a Deep Auto-Encoder (DAE) by
avoiding potential human biases. Nevertheless, the DAE does not consider any information regarding
the brain connectivity dynamics, which is crucial to understand the AD.

Accordingly, any alternative deep learning method must simultaneously consider the structure and
the dynamics of the brain functional connectivity, for automatically extracting significant features
from the data. However, since complex deep learning architectures usually require a large number of
training samples, the lack of sufficient data constitutes the major practical limitation of such methods.

For all these reasons, in this paper, we introduce a recurrent multi-scale deep neuronal network,
named residual D-net, to analyze the brain behavior. The main novelty of the presented architecture
is that it allows us to unravel the brain connectivity dynamics, but, efficiently learning with a limited
number of samples, which constitutes the most common scenario in practice.

Therefore, we applied our proposed residual D-net to learn the brain connectivity dynamics of our
subjects. Then, we feed the learned brain dynamic features into a classifier to distinguish subjects
with MCI from healthy individuals.

2 Materials and Preprocessing

In this study, we use a public rs-fMRI cohort from the Clinical Core of Alzheimer’s Disease Neu-
roimaging Initiative (ADNI)1, which has established a competitive collaboration among academia
and industry investigation focused on the early identification and intervention of AD [8].

Among the different datasets of ADNI (including the latest studies ADNI go and ADNI 2), there are
data sets referring to patient with early stage of Mild Cognitive Impairment (eMCI), and patients with
an advanced stage of the condition referred as Late stage Mild Cognitive Impairment (LMCI). In this
paper, we report studies for both datasets separately.

2.1 ADNI Cohorts

The final used cohort comprises 277 scans from 36 Normal healthy Control (NC) subjects, 31 patients
with eMCI and 26 patients with LMCI (see Table (1)). We distinguish between scans and subjects
because some subjects have several scans at different points; the same person has undergone the scan
at different times. This consideration is crucial: otherwise, we can introduce potential bias that affects
the accuracy of the method.

1Availiable at http://adni.loni.usc.edu/
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With respect to the data acquisition, all the rs-fMRI scans were collected at different medical centers
using a 3 Tesla Philips scanners following the same acquisition protocol [9]: Repetition Time (TR) =
3000 ms, Echo Time (TE) = 30 ms, flip angle = 80◦, matrix size 64×64, number of slices = 48 and
voxel thickness = 3.313 mm. Each scan was performed during 7 minutes producing a total number of
140 brain volumes.

2.2 Preprocessing

The functional images were preprocessed using the Data Processing Assistant for Resting-State fMRI
(DPARSF) toolbox2 and the SPM 12 package3 following standard preprocessing steps:

– First, we discarded the first 10 volumes of each scan to avoid T1 equilibrium effects and we
applied a slice-timing correction to the slice collected at TR/2 to minimize T1 equilibrium errors
across each TR.

– After correcting the acquisition time, we realigned each time-series using a six-parameter
rigid-body spatial transformation to compensate for head movements [10]. During this step, we
excluded any scanner that exhibited a movement or rotation in any direction bigger than 3mm
or 3◦ respectively.

– Then, we normalized the corrected images over the Montreal Neurological Institute (MNI) space
and resampled to 3 mm isotropic voxels. The resulted images were detrended in time through a
linear approximation and spatially smoothed using a Gaussian filtering with FWHM = 4 mm.

– Finally, we removed the nuisance covariates of the white matter and the cerebrospinal fluid to
avoid further effects and focused on the signal of the grey matter, and we band-pass filtered
(0.01-0.08 Hz) the remaining signals to reduce the effects of motion and non-neuronal activity
fluctuations.

2.3 Brain network analysis

In order to investigate the behavior of the brain functional connectivity, we labeled each brain volume
into 116 Regions of Interest (ROIs), using the Automated Anatomical Labeling (AAL) atlas4. This
atlas divides the brain into macroscopic brain structures: 45 ROIs for each hemisphere and 26
cerebellar ROIs. In this study, we excluded the 26 cerebellar ROIs, because theses areas are mainly
related to motor and cognitive functional networks [11].

Then, we estimated a representative time course by averaging the intensity of all the voxel within
each ROI, and we normalized the values in the range -1 to 1. Finally, we folded all the time courses
into a matrix R ∈ R90×130, where each row contains the time evolution of one specific ROI.

3 Proposed methods

In this paper, we propose a novel residual D-net framework to model the brain connectivity dynamics.
First, the selective brain functional connectivity dynamics, used as input for the residual D-net is
presented. Then, the details of residual D-net will be described.

3.1 Selective Brain Functional Connectivity Dynamics

In order to capture the brain connective dynamics in the rs-fMRI, we examine the time-varying
functional connectivity (FC) variability via windowing correlation matrices [12], which provides a
fair estimate of the natural dynamics of the functional brain connectivity.

However, our goal is to identify individuals that will potentially develop AD. Consequently, we
restricted our study of the whole-brain dynamics to just a few areas that may suffer damage due to
the AD, which, also, reduces the pattern complexity of the brain functional connectivity.

2DPARSF: Available at http://rfmri.org/DPARSF
3SPM 12: Available at http://www.fil.ion.ucl.ac.uk/spm
4AAL documentation available at http://www.gin.cnrs.fr/en/tools/aal-aal2/
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Figure 1: Residual D-net architecture

In this way, severals studies have pointed that certain brain areas are more likely to be affected by the
AD. These areas are localized in the Frontal Lobe [13], the Hypocampus [14] and the Temporal Lobe
[14], [15] . Therefore, we limited our study of the brain connectivity dynamics to 28 ROIs that are
vulnerable to AD.

Thus, using this specific set of ROIs and following the method described in [12], for each scan (Ri),
with i = 1, 2, . . . , N , where N is the total number of analyzed scans, we estimated the dynamic FC
through a sliding window approach, and we computed each covariance matrix from a windowed
segment of Ri. We applied a tapered window created by convolving a rectangle (with = 10 TRs=30)
with a Gaussian (σ = 4TRs) and a sliding window in steps of 2 TRs, resulting in a total number of 56
windows.

Accordingly, the result of each scan contains a sequence of 56 covariance matrices that encode the
connectivity dynamics of the studied ROIs. These sequential matrices comprise the FC dynamics of
the 28 ROIs, and we will use them as an input to the proposed method. Figure (4.a) shows examples
of input sequences of these covariance matrices.

3.2 Residual D-net

The proposed model needs to understand the dynamics of brain FC; that is, how the pattern within
the covariance matrix changes along time. Furthermore, the model should be very efficient to learn
the dynamics given a limited number of training data.

To address these issues, the proposed residual D-net has three major properties that allow the model
to learn with relatively few training samples, while retaining its capacity to learn complex dynamics.
Figure (1) shows the main architecture of the proposed residual D-net, which is formed by three main
components: up residual block, down residual block (RES_U/D_Block) and a residual convolutional
long short-term memory block (RES_cLSTM).

RES_U/D_Block: The residual network (resNet) [16] is a competitive deep architecture capable to
produce a detailed decomposition of the input data. The residual connection in the resNet constrains
the network to learn a residual representation, so that to facilitate the training. We exploit this property
to learn complex patterns in the input, while keeping the training to be simple. In addition, we add an
“average pooling” layer and “up convolution” layer, to express the multi-scale representation. The
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Figure 2: Major component of the residual D-net: Donw/up Residual Block and Residual convLSTM
Block

formulations of each down/up residual block can be expressed as follows:

xl+1
t = avgpool(F l

d(x
l
t) + xlt), (1)

yl+1
t = F l

u([ŷ
l
t, z

l
t]) + ylt, (2)

where xlt and ylt are the inputs of the lth RES_D/U_Block, respectively. Each block has a bypass
identity connection to fit the residual mapping from the input. We denote each convolutional layer
in the block as F l

d(x
l
t) and F l

u(y
l
t) in Figure (2), which are composed of two 3 × 3 convolutional

layers and we employ the exponential linear units (ELUs) [17] as the nonlinear activation function.
The major difference lies in in their “up/down sampling" layer. In the RES_D_BLOCK, a average
pooling layer is attached to down sample the input. In the RES_U_BLOCK, we use a up-conv layer
for up-sampling (ŷlt) the input and it is concatenated with zlt, which comes from the high resolution
feature map in the upper RES_cLSTM Block.

RES_cLSTM Block: The convolutional LSTM [18] is a well-known Recurrent Neural Network
(RNN) model, capable of capturing spatial-temporal features in a video sequence. As we described
above, the brain dynamics is represented as a sequence of images. Thus, the use of a convolutional
LSTM is fully justified by the nature of our task. Moreover, the use of the residual connection,
together with the convolutional LSTM, facilitates the training, while retaining the spatial-temporal
information. The connection was designed in a way similar to existing residual LSTM models
[19, 20, 21] with two concatenated LSTM blocks with identity connection as shown in Figure (2).
The formulation of the Residual Convolutional LSTM block can be expressed as follows:

zl+1
t = hl2t + zlt, (3)

hl2t = Gl(zlt, h
l1
t−1, h

l2
t−1). (4)

Here, zlt is the input of the lth RES_cLSTM Block and hl1t−1, hl2t−1 represents hidden states of the
convolutional LSTM layer from previous t− 1 time step. The function Gl(zlt, h

l1
t−1, h

l2
t−1) represents

the lth two-layered convolutional LSTM that maps dynamics of the input pattern into the current
hidden states(H l

t : [h
l1
t , h

l2
t ]). Similarly to the residual block, all convolutional layer uses 3× 3 size

filter.

Structure of residual D-net: Using the residual blocks as components, we build a 2-depth U-net
architecture for multi-scale representation. The U-net framework [22] was developed for dealing
with deep representative learning tasks with few training samples. We adopt the same framework to
take advantage of the rich feature representation and the efficient learning scheme. In addition, we
add a recurrent flow to capture the dynamic behavior, so that the architecture forms D-shape.

As shown in Figure (1), The input xl=0
t comprises 28× 28 images of the correlation map at t time

step. RES_D_Block decreases the input size by half and increases the feature map by two starting
from the initial 16-feature map size. The feature maps are contracting until they reach the last
RES_cLSTM block. These abstract embeddings (zlastt ) are finally used later on for the classification.
During the expansion path, the feature map from the middle-depth layer, zmiddle

t , is concatenated via
a skip-connection. This multi-scale way of training allows to learn the complex patterns of the input
sequences and to capture the dynamic changes in the hidden state of the convolutional LSTM.
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Figure 3: Training scheme of the (a) unsupervised pre-training and (b) supervised fine-tuning using
the residual D-net.

3.3 Unsupervised pre-training and fine-tuning

First, we train our residual D-net with sequences of correlation maps by predicting a few steps ahead
of the sequences. Given T -time step input sequences, residual D-net predicts the output until next
2T time points (x̃T+1,...,2T ). By predicting the future steps, model can be trained unsupervised way
[23], see Figure (3). We use mean square error (MSE) of prediction as the loss, and the adam
[24] optimizer for updating the parameter with learning rate 0.0005. In Figure (4.b), we can see an
example of the predicted sequences, and it shows that unsupervised learning of the residual D-net
learns the dynamic behavior of the human brain.

After unsupervised training, we take all the output of the last layer of RES_cLSTM block (zlastt )
for classification task. During the classification learning, the parameters in the contracting
path(2×(RES_D_BLOCK + RES_cLSTM)) can be fine-tuned with concatenated softmax-classifier
such as Figure (3.b). And the final decision will be made by averaging the result from classifier as
follows:

logit =
1

T

N∑
t=1

softmax(wcl × zlastt + bcl). (5)

Here, wcl and bcl are the softmax-classifier projection weights and bias, respectively. We use the
binary cross-entropy as a loss function to fine-tune the architecture with a learning rate 0.00001. We
found that involving unsupervised pre-training is crucial, in order to avoid over-fitting during the
training of the networks, see Figure (5). After the fine-tuning, the classifier learns the differences
between the two dynamic pattern in each class.

(b) Target sequences

(a) Input sequences (c) Predictions

Figure 4: (a) shows the sequences of the dynamic functional connectivity that used for input, and (b)
shows the target sequences to be predicted and (c) represents the sequences of the predictions from
residual D-net.

4 Performance Evaluation

We conducted two classification experiments (NC vs. eMCI and NC vs. LMCI) to evaluate the
proposed residual D-net and compare it with three baselines techniques. For this, we performed
a five-fold subject-wise cross-validation to avoid using the same subject. Each validation set was
used for selecting the optimal hyper-parameters for the classification model. The performance was
measured by the total accuracy, precision, and recall on the test set.
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Table 2: Values of the Accuracy (Acc), Precision (Pre) and Recall (Rec) for each five-fold subject-wise
cross-validation for the eMCI dataset.

SFC+SVM DFC+SVM DAE+HMM Res. D-net

CV Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

1 57.1 52.0 68.4 50.0 46.2 63.2 59.5 54.5 63.2 71.4 62.1 94.7
2 52.5 61.1 47.8 42.5 50.0 30.4 45.0 53.8 30.4 70.0 66.7 95.7
3 27.8 36.8 33.3 63.9 78.6 52.4 63.9 65.4 81.0 72.2 72.0 85.7
4 50.0 48.0 57.1 43.2 40.0 38.1 43.2 41.7 47.6 72.7 66.7 85.7
5 36.8 33.3 50.0 42.1 38.5 62.5 52.6 45.5 62.5 65.8 56.0 87.5

Total 45.5 45.9 51.0 48.0 48.0 48.0 52.5 52.3 56.0 70.5 64.7 90.0

Table 3: Values of the Accuracy (Acc), Precision (Pre) and Recall (Rec) for each five-fold subject-wise
cross-validation for the LMCI dataset.

SFC+SVM DFC+SVM DAE+HMM Res. D-net

CV Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

1 50.0 44.4 42.1 50.0 41.7 26.3 38.1 37.9 57.9 73.8 68.2 78.9
2 48.5 44.4 25.0 54.5 55.6 31.3 60.6 80.0 25.0 75.8 75.0 75.0
3 74.1 85.7 50.0 33.3 25.0 25.0 51.9 46.7 58.3 66.7 60.0 75.0
4 61.1 47.1 61.5 50.0 27.3 23.1 61.1 46.7 53.8 72.2 61.5 61.5
5 48.7 40.0 35.3 61.5 57.1 47.1 56.4 50.0 52.9 64.1 55.6 88.2

Total 55.4 48.5 41.6 50.8 41.4 31.2 53.1 46.3 49.4 70.6 63.4 76.6

4.1 Baselines

Static Functional Connectivity (SFC) + SVM: Zhang et al. [5] suggest five specific pairs of the
Pearson’s correlation coefficients on each raw dataset (R ∈ R90×130), assuming that the FC can be
used to distinguish the MCI subjects from the NC. The authors explicitly selected these features after
applying a two-sample T-test on 40 subjects.

In this paper, we further investigated twenty alternative coefficients using Fisher feature selection
[25], and we fed the selected features to a linear Support Vector Machine (SVM) classifier to perform
the classification task.

Dynamic Functional Connectivity (DFC) + SVM: In this experiment, in order to consider the
brain dynamics, we used a sliding rectangular window (width: 30 TRs) and a 5 TRs stride to estimate
the functional connectivity maps Σ(w) ∈ R90×90 in each window(w = 1, . . . , 20). Then, according
to [26], we project our data into a K × 20-dimensional feature map and then, we selected the best
100 features using Fisher feature selection, and we measured the performance with a linear SVM
classifier.

Deep Auto-Encoder (DAE) + HMM: Suk et al. [7] propose an unsupervised feature learning
using a DAE. First, they trained a four-layer DAE (hidden layers: 200-100-50-2) using as an input all
the ROIs directly. Afterward, for each specific time instance, they converted the information of all the
ROIs (a 116 real vector) into a 2-dimensional feature map. Then, they fit these 2-dimensional feature
maps into two Hidden Markov Models (HMM) to model the NC and the MCI classes. Similarly,
we implemented this method but using 6 hidden states with 2-mixtures of Gaussian HMM via the
Baum-Welch algorithm.

4.2 Discussion and Results

As we discussed during the description of the experiment, we adopted a five-fold subject-wise cross-
validation, in order to ensure the reliability of the different methods. Table (2) and Table (3) show the
results associated with the accuracy, precision and recall obtained for the different methods, for the
eMCI and LMCI dataset respectively.
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Figure 5: Cross-entropy errors on the LMCI dataset obtained by the proposed method without
pre-training (a) and with pre-training (b). The dot lines represent the actual loss errors obtained for
each specific cross-validation sets, and the continuous line represents the mean value among all the
cross-validation datasets.

The main conclusion is that all the baseline techniques turned out significantly inferior results. First,
the inferior performance of SFC+SVM is expected because it does not consider any brain dynamics.
Moreover, a further analysis turned out that this method performed well on the training set, in contrast
to the test set. This observation evidences that the method fails to generalize among different datasets.

On the other hand, although the DFC+SVM takes into account the time evolution of the FC, the
method does not learn the relationships within the brain dynamics and, consequently, fails to perform
the classification task.

Regarding to the DAE+HMM, the major limitation of this approach is that is not an end-to-end
learning method. That is, although it incorporates an HMM that tries to model the dynamics, the
DAE does not capture any information from the brain connectivity dynamics. Leading to a inferior
performance.

In contrast, further analysis during the training and the pre-training have shown that our proposed
method effectively learns the brain dynamics. Thus, Figure (4) shows the original and the predicted
covariance matrices, which assembles the FC brain dynamics. Observe that our proposed approach
captures and reproduces the true dynamics of the brain behavior.

This explains why the proposed method exhibits the best performance and it properly generalizes
among the different cross-validation sets.

Pre-training vs. Overfitting

Considering the limited number of samples of the studied datasets, the primary risk of our proposed
method is that of overfitting. However, we faced this challenge by introducing the residual D-net
architecture, and also by pre-training the model prior to the classification task.

Although we have already discussed the advantages the residual D-net architecture, we illustrate the
benefits of the pre-training in Figure (5), where we plotted the loss errors for the LMCI dataset with
and without pre-training.

Observe that the model overfits without pre-training (see Figure (5.a)); that is, we can not guarantee
that the method had generalized correctly, making it impossible to establish any proper stopping
criterion.

However, the behavior of the loss curves radically changes after pre-training the model (see
Figure (5.b)). Now, the method has converged and we can define a proper stopping criterion.

Figure (5) only shows the results for the LMCI dataset, but we have observed the same effects in the
eMCI dataset as well.
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5 Conclusions

In this paper, we presented a new method named residual D-net to identify MCI from NC subjects.
In contrast to the previous methods, proposed residual D-net can be efficiently trained with few
number of training samples, while unravels the brain connectivity dynamics in unsupervised learning.
Furthermore, the proposed pre-training approach robustifies the generalization performance of the
proposed method and offers an adequate selection of a stopping criterion in practice.
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