
Under review as a conference paper at ICLR 2018

NEURAL COMPOSITIONAL DENOTATIONAL SEMAN-
TICS FOR QUESTION ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Answering compositional questions requiring multi-step reasoning is challenging
for current models. We introduce an end-to-end differentiable model for inter-
preting questions, which is inspired by formal approaches to semantics. Each
span of text is represented by a denotation in a knowledge graph, together with a
vector that captures ungrounded aspects of meaning. Learned composition modules
recursively combine constituents, culminating in a grounding for the complete
sentence which is an answer to the question. For example, to interpret not green,
the model will represent green as a set of entities, not as a trainable ungrounded
vector, and then use this vector to parametrize a composition function to perform a
complement operation. For each sentence, we build a parse chart subsuming all
possible parses, allowing the model to jointly learn both the composition operators
and output structure by gradient descent. We show the model can learn to represent
a variety of challenging semantic operators, such as quantifiers, negation, disjunc-
tions and composed relations on a synthetic question answering task. The model
also generalizes well to longer sentences than seen in its training data, in contrast
to LSTM and RelNet baselines. We will release our code.

1 INTRODUCTION

Compositionality is a mechanism by which the meanings of complex expressions are systematically
determined from the meanings of their parts, and has been widely assumed in the study of both natural
languages (Montague, 1973), as well as programming and logical languages, as a means for allowing
speakers to generalize to understanding an infinite number of sentences. Popular neural network
approaches to question answering use a restricted form of compositionality, typically encoding a
sentence word-by-word from left-to-right, and finally executing the complete sentence encoding
against a knowledge source (Perez et al., 2017). Such models can fail to generalize from training
sentences in surprising ways. Inspired by linguistic theories of compositional semantics, we instead
build a latent tree of interpretable expressions over a sentence, recursively combining constituents
using a small set of neural modules. When tested on longer questions than are found in the training
data, we find that our model achieves higher performance than baselines using LSTMs and RelNets.

Our approach resembles Montague semantics, in which a tree of interpretable expressions is built
over the sentence, with nodes combined by a small set of composition functions. However, both the
structure of the sentence and the neural modules that handle composition are learned by end-to-end
gradient descent. To achieve this, we define the parametric form of small set of neural modules, and
then build a parse chart over each sentence subsuming all possible trees. Each node in the chart
represents a span of text with a distribution over groundings (in terms of booleans and knowledge
base nodes and edges), as well as a vector representing aspects of the meaning that have not yet been
grounded. The representation for a node is built by taking a weighted sum over different ways of
building the node (similarly to Maillard et al. (2017)).

Typical neural network approaches to grounded question answering first encode a question from
left-to-right with a recurrent neural network (RNNs), and then evaluate the encoding against an
encoding of the knowledge source (for example, a knowledge base or image) (Santoro et al., 2017).
In contrast to classical approaches to compositionality, constituents of complex expressions are not
given explicit interpretations in isolation. For example, in Which cubes are large or green?, an RNN
encoder will not explicitly build an interpretation for the expression large or green. We show that

1

Under review as a conference paper at ICLR 2018

what is left of a red thing or not cylindrical
EV

E

EV

E

E

R

E
E

VE

E
E

�

E
E

above

above

above

left

above

left

left

left

���

Figure 1: A correct parse for a question given the knowledge graph on the right, using our model.
We show the type for each node, and its denotation in terms of the knowledge graph. The words or
and not are represented by vectors, which parameterize composition modules. The denotation for the
complete question represents the answer to the question. Nodes here have types E for sets of entities,
R for relations, V for ungrounded vectors, EV for a combination of entities and a vector, and φ for
semantically vacuous nodes. While we show only one parse tree here, our model builds a parse chart
subsuming all trees.

such approaches can generalize poorly when tested on more complex sentences than they were trained
on. In contrast, our approach imposes strong independence assumptions that give a linguistically
motivated inductive bias. In particular, it enforces that phrases are interpreted independently of
surrounding words, allowing the model to generalize naturally to interpreting phrases in different
contexts. In the previous example, large or green will be represented as a particular set of entities in
a knowledge graph, and be intersected with the set of entities represented by the cubes node.

Another perspective on our work is as a method for learning the layouts of Neural Module Networks
(NMNs) (Andreas et al., 2016b). Work on NMNs has focused on how to construct the structure of the
network, variously using rules, parsers and reinforcement learning (Andreas et al., 2016a; Hu et al.,
2017). Our end-to-end differentiable model jointly learns structures and modules by gradient descent.

2 MODEL OVERVIEW

Our task is to answer a question q = w1..|q|, with respect to a Knowledge Graph (KG) consisting
of nodes E (representing entities) and labelled directed edgesR (representing relationship between
entities). In our task, answers are either booleans, or specific subsets of nodes from the KG.

Our model builds a parse for the sentence, in which phrases are grounded in the KG, and a small set of
composition modules are used to combine phrases, resulting in a grounding for the complete question
sentence that answers the question. For example, in Figure 1, the phrases not and cylindrical are
interpreted as a function word and an entity set, and then not cylindrical is interpreted by computing
the complement of the entity set. The node at the root of the parse tree is the answer to the question.

We describe a compositional neural model that answers such questions by:

1. Grounding individual tokens in a Knowledge Graph. Tokens can either be grounded as
particular sets of entities and relations in the KG, as ungrounded vectors, or marked as
being semantically vacuous. For each word, we learn parameters that are used to compute a
distribution over semantic types and corresponding denotations in a KG (§ 4.1).

2. Combining representations for adjacent phrases into representations for larger phrases, using
trainable neural composition modules (§ 3.2). This produces a denotation for the phrase.

3. Assigning a binary-tree structure to the question sentence, which determines how words
are grounded, and which phrases are combined using which modules. We build a parse
chart subsuming all possible structures, and train a parsing model to increase the likelihood
of structures leading to the correct answer to questions. Different parses leading to a
denotation for a phrase of type t are merged into an expected denotation, allowing dynamic
programming (§ 4).

4. Answering the question, with the most likely grounding of the phrase spanning the sentence.

2

Under review as a conference paper at ICLR 2018

3 COMPOSITIONAL SEMANTICS

3.1 SEMANTIC TYPES

Our model classifies spans of text into different semantic types to represent their meaning as explicit
denotations or ungrounded vectors. All phrases are assigned a distribution over semantic types. The
semantic type determines how a phrase is grounded, and which composition modules can be used to
combine it with other phrases. A phrase spanning wi..j has a denotation Jwi..jKtKG for each semantic
type t. For example, in Figure 1, red thing corresponds to a set of entities, left corresponds to a set of
relations, and not is treated as an ungrounded vector.

The semantic types we define can be classified into the three different categories. Below we describe
these semantic types and their corresponding representations.

Grounded Semantic Types: Spans of text that can be fully grounded in the KG.

1. Entity (E): Spans of text that can be grounded to a set of entities in the KG, for example:
red sphere or large cube. E-type span grounding is represented as a soft-attention value for
each entity, [pe1 , . . . , pe|E|], where 0 ≤ pei ≤ 1. This can be viewed as a soft version of a
logical set-valued denotation, which we refer to as a ‘soft entity set’.

2. Relation (R): Spans of text that can be grounded to a set of relations from the KG, for
example: left of or not right of or above. R-type span grounding is represented by a soft
adjacency matrix A ∈ R|E|×|E| where Aij = 1 denotes a directed edge from ei → ej .

3. Truth (T): Spans of text that can be interpreted as having a True/False denotation, for
example: Is anything red?, Is one ball green and are no cubes red? T-type span grounding
is represented using a real-value ptrue, 0 ≤ ptrue ≤ 1, that denotes the probability of the
span being True.

Ungrounded Semantic Types: Spans of text whose meaning cannot be grounded in the KG.

1. Vector (V): This type is used for spans representing functions that cannot yet be grounded
in the KG, for example words such as and or every. These spans are represented using
4 different real-valued vectors v1 ∈ R2, v2 ∈ R3, v3 ∈ R4, v4 ∈ R5 that are used to
parameterize different composition modules described below in § 3.2.

2. Vacuous (φφφ): Spans that are considered semantically vacuous, but are necessary syntacti-
cally, e.g. of in left of a cube. During composition, these nodes act as identity functions.

Partially-Grounded Semantic Types: Spans of text that can only be partially grounded in the
knowledge graph, such as and red or are four spheres. Here, we represent the span by a combination
of a grounding and vectors, representing grounded and ungrounded aspects of meaning respectively.
The grounded component of the representation will typically combine with another fully grounded
representation, and the ungrounded vectors will parameterize the composition module. We define 3
semantic types of this kind: EV, RV and TV, corresponding to the combination of entities, relations
and boolean groundings with an ungrounded vector. Here, the word represented by the vectors can be
viewed as a binary function, one of whose arguments has been supplied.

3.2 COMPOSITION MODULES

Next, we describe how we compose phrase representations (from § 3.1) to create representations for
larger phrases. We define a small number of generic composition modules, that take as input two
constituents of text with their corresponding semantic representations (grounded representations and
ungrounded vectors), and outputs the semantic type and corresponding representation of the larger
constituent. The composition modules are parameterized by the trainable word vectors.

These can be divided into several categories:

Composition modules resulting in fully grounded denotations: Described in Figure 2.

3

Under review as a conference paper at ICLR 2018

large red
EE

E
pei = �

 2
4

w1

w2

b

3
5 ·

2
4

pL
ei

pR
ei

1

3
5
!

E + E → E: This module performs a function on a
pair of soft entity sets, parameterized by the model’s
global parameter vector [w1, w2, b] to produce a new
soft entity set. The composition function for a sin-
gle entity’s resulting attention value is shown. Such
a composition module can be used to interpret com-
pound nouns and entity appositions. For example, the
composition module shown above learns to output the
intersection of two entity sets.

not cylindrical
EV

E
pei

= �

✓
v1 ·

pR

ei

1

�◆

V + E→ E: This module performs a function on a
soft entity set, parameterized by a word vector, to
produce a new soft entity set. For example, the word
not learns to take the complement of a set of entities.
The entity attention representation of the resulting
span is computed by using the indicated function that
takes the v1 ∈ R2 vector of the V constituent as a
parameter argument and the entity attention vector of
the E constituent as a function argument.

small or purple

E

EEV
pei = �

v2 ·

2
4

pL
ei

pR
ei

1

3
5
!

EV + E→ E: This module combines two soft entity
sets into a third set, parameterized by the v2 word
vector. This composition function is similar to a lin-
ear threshold unit and is capable of modeling various
mathematical operations such as logical conjunctions,
disjunctions, differences etc. for different values of v2.
For example, the word or learns to model set union.

left of a red cube

E
ER pei

= max
ej

Aji · pR
ej

R + E→ E: This module composes a set of relations
(represented as a single soft adjacency matrix) and
a soft entity set to produce an output soft entity set.
The composition function uses the adjacency matrix
representation of the R-span and the soft entity set
representation of the E-span.

EV

T

is anything cylindrical

True

ptrue = �

v1
3

"X

ei

�

v3
3

v4
3

�
·

pR

ei

1

�!#
+ v2

3

!

V + E→ T: This module maps a soft entity set onto
a soft boolean, parameterized by word vector (v3).
The module counts whether a sufficient number of
elements are in (or out) of the set. For example, the
word any should test if a set is non-empty.

ptrue = �

v1
4

"X

ei

�

 2
4

v3
4

v4
4

v5
4

3
5 ·

2
4

pL
ei

pR
ei

1

3
5
!#

+ v5
4

!False

EEV

T

is every cylinder blue

EV + E→ T: This module combines two soft entity
sets into a soft boolean, which is useful for modelling
generalized quantifiers. For example, in is every cylin-
der blue, the module can use the inner sigmoid to test
if an element ei is in the set of cylinders (pLei ≈ 1)
but not in the set of blue things (pRei ≈ 0), and then
use the outer sigmoid to return a value close to 1 if the
sum of elements matching this property is close to 0.

ptrue = �

v2 ·

2
4

pL
true

pR
true

1

3
5
!

are 2 balls red and is every cube blue

T

TTV

True

False

False

TV + T → T: This module maps a pair of soft
booleans into a soft boolean using the v2 word vector
to parameterize the composition function. Similar to
EV + E→ E, this module facilitates modeling a range
of boolean set operations. Using the same functional
form for different composition functions, allows our
model to use the same ungrounded word vector (v2)
for compositions that are semantically analogous.

Aij = �

v2 ·

2
4

AL
ij

AR
ij

1

3
5
!

left of or above

R
RRV

RV + R→ R: This module composes a pair of soft
set of relations to a produce an output soft set of re-
lations. For example, the relations left and above are
composed by the word or to produce a set of relations
such that entities ei and ej are related if either of the
two relations exists between them. The functional
form for this composition is similar to EV + E→ E
and TV + T→ T modules.

Figure 2: Composition Modules that compose two constituent span representations into the represen-
tation for the combined larger span, using the indicated equations.

4

Under review as a conference paper at ICLR 2018

Composition with φφφ-typed nodes: Phrases with type φφφ are treated as being semantically transpar-
ent identity functions. Phrases of any other type can combined with these with no change to their
type or representation.

Composition modules resulting in partially grounded denotations: We define several simple
modules that combine fully grounded phrases with ungrounded phrases, by deterministically taking
the union of the representations, giving phrases with partially grounded representations (§ 3.1).
These modules are useful for when words act as binary functions; here they combine with their first
argument. For example, in Figure 1, or and not cylindrical combine to make a phrase containing both
the vectors for or and the entity set for not cylindrical.

4 PARSING MODEL

Here, we describe how our model classifies question tokens into different semantic type spans and
compute their representations (§ 4.1), recursively uses the composition modules defined above to
parse the question appropriately into a soft latent tree that provides the answer (§ 4.2). The model is
trained end-to-end using only question-answer supervision (§ 4.3).

4.1 LEXICAL REPRESENTATION ASSIGNMENT

Each token in the question sentence is assigned a distribution over the semantic types, and given
a grounding for each type. Tokens can only be assigned the E, R, V, and φφφ semantic types. For
example, the token cylindrical in the question in Fig. 1 is assigned a distribution over the 4 semantic
types (one shown) and for the E type, the representation computed is the set of cylindrical entities.

Semantic Type Distribution for Tokens: To compute the semantic type distribution, our model
represents each word w in the word vocabulary V , and each semantic type t using an embedding
vector; vw, vt ∈ Rd. The semantic type distribution is assigned with a softmax:

p(t|wi) ∝ exp(vt · vwi) (1)

Grounding for Tokens: For each of the four semantic type assignments for question tokens, we
need to compute/assign their corresponding representations.

1. E-Type Representation: Each entity e ∈ E , is represented using an embedding vector
ve ∈ Rd based on the concatenation of vectors for its properties. For each token w, we use
its word vector to find the probability of each entity being part of the E-Type grounding:

pwei = σ(vei · vw) ∀ ei ∈ E (2)

For example, in Fig. 1, the word red will be grounded as all the red entities.

2. R-Type Representation: Each relation r ∈ R, is represented using an embedding vector
vr ∈ Rd. For each token wi in the question, we first compute a distribution over relations it
could refer to, and then use this distribution to compute the expected adjacency matrix that
forms the R-type representation for this token.

p(r|wi) ∝ exp(vr · vwi
) (3)

Awi =
∑

r∈R
p(r|wi) ·Ar (4)

For example, the word left in Fig. 1 is grounded as the subset of edges with the label ‘left’.

3. V-Type Representation: For each word w ∈ V , we learn four vectors v1 ∈ R2, v2 ∈
R3, v3 ∈ R4, v4 ∈ R5, and use these as the representation for words with the V-Type.

4. φφφ-Type Representation: This type is used for semantically vacuous words, which do not
require a representation.

5

Under review as a conference paper at ICLR 2018

4.2 PARSING QUESTIONS

To learn the correct structure for applying composition modules, we use a simple parsing model. We
build a parse-chart over the question encompassing all possible trees by applying all composition
modules, similar to a standard CRF-based PCFG parser using the CKY algorithm. Each node in
the parse-chart, for each span wi..j of the question, is represented as a distribution over different
semantic types with their corresponding representations. This distribution is computed by weighing
the different ways of composing the span’s constituents.

Phrase Semantic Type Potential: Each node in the parse-chart is associated with a potential value
ψ(i, j, t), that is the score assigned by the model to the t semantic type for the wi..j span. This is
computed from all possible ways to form the span wi..j with type t. For a particular composition of
span wi..k of type t1 and wk+1..j of type t2, using the t1 + t2 → t module, the score is:

ψ(i, j, k, t1 + t2 → t) =

[
ψ(i, k, t1) · ψ(k + 1, j, t2) · exp

(∑

x

f (t1+t2→t)x (i, j, k|q)
)]

(5)

where, f (t1+t2→t)x (i, j, k|q) are six feature functions; a trainable weight for each word per module in
the vocabulary, that correspond to: f1: word that appears before the start of the span wi−1; f2: first
word in the span wi; f3: last word in the left constituent wk; f4: first word in the right constituent
wk+1; f5: last word in the right constituent wj ; and f6: word that appears after the span wj+1.

The token semantic type potential of wi, ψ(i, i, i, t1 + t2 → t), is the same as p(t|wi) (Eq. 1).

The final t-type potential of wi..j is computed by summing over scores from all possible compositions:

ψ(i, j, t) =

j−1∑

k=i

∑

(t1+t2→t)
∈Modules

ψ(i, j, k, t1 + t2 → t) (6)

Combining Phrase Representations: To compute the span wi..j’s denotation with type t,
Jwi..jKtKG, we compute an expected output representation from all possible compositions.

Jwi..jKtKG =
1

ψ(i, j, t)

j−1∑

k=i

∑

(t1+t2→t)
∈Modules

ψ(i, j, k, t1 + t2 → t) ∗ Jwi..k..jKt1+t2→tKG (7)

where Jwi..jKtKG, is the t-type representation of the span wi..j , Jwi..k..jKt1+t2→tKG is the representation
resulting from the composition of wi..k with wk+1..j using the t1 + t2 → t composition module.

Answer Grounding: By recursively computing the phrase semantic-type potentials and represen-
tations, we can infer the semantic type distribution of the complete question sentence (Eq. 8) and the
resulting grounding for different semantic type t, Jw1..|q|KtKG.

p(t|q) ∝ ψ(1, |q|, t) (8)

The answer-type (boolean or subset of entities) for the question is computed using:

t∗ = argmax
t∈T,E

p(t|q) (9)

The corresponding grounding is Jw1..|q|Kt
∗

KG, which answers the question.

4.3 TRAINING OBJECTIVE

Given a dataset D of (question, answer, knowledge-graph) tuples, {qi, ai,KGi}i=|D|i=1 , we train our
model to maximize the log-likelihood of the correct answers. Answers are either booleans, or specific
subsets of entities from the KG. We denote the semantic type of the answer as at. If the answer is
boolean, a ∈ {0, 1}, otherwise is a subset of entities from the KG, i.e. a = {ej}. The model’s answer
to a question is found by taking its representation of the complete question, containing a distribution
over types and the representation for each type. We maximize the following objective:

6

Under review as a conference paper at ICLR 2018

L =
∑

i

log p(ai|qi,KGi) (10)

=
∑

i

[(
1ait=T

[
log(ptrue)

ai(1− ptrue)(1−a
i)
])

︸ ︷︷ ︸
Questions with boolean answers

+

(
1ait=E

|E i|
[
log

∏

eij∈ai
peij

∏

eij /∈ai
(1− peij)

])

︸ ︷︷ ︸
Questions with entity set answers

]

(11)

We also add L2-regularization for the scalar parsing features introduced in § 4.2.

5 DATASET

We generate a dataset of question-answers based on the CLEVR dataset (Johnson et al., 2017), which
contains knowledge graphs containing attribute information of objects and relations between them.

We generate a new set of questions for this data, as existing questions contain some biases that can
be exploited by models (Johnson et al. (2017) found that many spatial relation questions can be
answered only using absolute spatial information and many long questions can be answered correctly
without performing all steps of reasoning), and many questions are over 40 words long, which is
intractable given that the size of our computation graph is cubic in the question length. Future work
should explore scaling our approach to longer questions. We generate 75K questions for training and
37.5K for validation.

Our question set tests various challenging semantic operators. These include conjunctions (e.g. Is
anything red or is anything large?), negations (e.g. What is not spherical?), counts (e.g. Are five
spheres green?), quantifiers (e.g. Is every red thing cylindrical?), and relations (e.g. What is left of
and above a cube?). We employ some simple tests to remove trivial biases from the dataset.

We create two test sets: one drawn from the same distribution as the training data (37.5K), and
another containing longer questions than the training data (22.5K).

Our COMPLEX QUESTIONS test set contains the same words and constructions, but chained into
longer questions. For example, it contains questions such as What is a cube that is right of a metallic
thing that is beneath a blue thing? and Are two red things that are above a sphere metallic?. These
questions require more multi-step reasoning to solve.

6 EXPERIMENTS

In this section we describe our experimentation setting, the baseline models we compare to, and
the various experiments demonstrating the ability of our model to answer compositional questions
referring to KG and its ability to generalize to unseen longer questions and new attribute combinations.

6.1 EXPERIMENTATION SETTING

Here we describe the training details of our model and the baseline models.

Representing Entities: Each entity in the CLEVR dataset consists of 4 attributes. For each
attribute-value, we learn an embedding vector and concatenate the 4-embedding vectors to form the
representation for the entity.

Training Details: Training the model is complicated by the large number of poor local minima, as
the model needs to learn both good syntactic structures and the complex semantics of neural modules.

To simplify training, we use Curriculum Learning (Bengio et al., 2009) to pre-train the model on an
easier subset of questions. We use a 2-step schedule where we first train our model on simple attribute
match (What is a red sphere?), attribute existence (Is anything blue?) and boolean composition (Is
anything green and is anything purple?) questions and in the second step on all questions jointly.

7

Under review as a conference paper at ICLR 2018

Model Boolean Questions Entity Set Questions Relation Questions Overall

LSTM (NO KG) 50.7 14.4 17.5 27.2
LSTM (NO RELATION) 88.5 99.9 15.7 84.9
RELATION NETWORK 85.6 89.7 97.6 89.4
Our Model 99.9 100 100.0 99.9

Table 1: Results for Short Questions: Performance of our model compared to baseline models on
the Short Questions test set. The LSTM (NO KG) has accuracy close to chance, showing that the
questions lack trivial biases.Our model almost perfectly solves all questions showing its ability to
learn challenging semantic operators, and parse questions only using weak end-to-end supervision.

We tune the hyper-parameters using validation accuracy. We train using SGD with learning rate
of 0.5 and mini-batch size of 4, regularization constant of 0.3. When assigning the semantic type
distribution to the words at the leaves, we add a small positive bias of +1 for φφφ-type and a small
negative bias of −1 for the E-type score before the softmax. Our trainable parameters are: question
word embeddings (64-dimensional), relation embeddings (64-dimensional), entity attribute-value
embeddings (16-dimensional), four vectors per word for V-type representations, six scalar feature
scores per module per word for the parsing model, and the global parameter vector for the E+E→E
module.

Baseline Models: We use three baseline models for comparison. A simple LSTM (NO KG) model
that encodes the question using an LSTM network and answers questions without access to the KG.
Another LSTM based model, LSTM (NO RELATION), that has access only to the entities of the KG
but not the relationship information between them. Finally, we train a RELATION NETWORK (Santoro
et al., 2017) augmented model, which achieved state-of-the-art performance on the CLEVR dataset
using image state descriptions. Details about the baseline models are given in the Appendix section.

6.2 EXPERIMENTS

Short Questions Performance: In Table 1, we see that our model is able to perfectly answer all
the questions in the test set. This demonstrates our model can learn challenging semantic operators
using composition modules, as well as learn to parse the questions from only using weak end-
to-end supervision. The RELATION NETWORK also achieves good performance, particularly on
questions involving relations, but is weaker than our model on some question types. The LSTM (NO
RELATION) model also achieves good performance on questions not involving relations, which are
out of scope for the model.

Complex Question Performance: Table 2 shows results on complex questions, which are con-
structed by combining components of shorter questions. We use the same models as in Table 1, which
were trained and developed only on shorter questions. Answering longer questions requires complex
multi-hop reasoning, and the ability to generalize from the language seen in its training data to new
types of questions. Results show that all baselines achieve close to random performance on this task,
despite high accuracy for shorter questions. This shows the challenges in generalizing RNN encoders
beyond their training data. In contrast, the strong inductive bias from our model structure allows the
model to generalize to complex questions much more easily than RNN encoders.

Generalization to Unseen Attribute Combination: We also measure how well models generalize
to unseen attribute combinations in knowledge graphs (using the COGENT subset of CLEVR). For
example, the test set contains ‘blue spheres’ that are not found in the training set. None of the models
showed a significant reduction in performance in this setting.

Error Analysis: Analyzing the errors of our model, we find that most errors are due to incorrect
assignments of structure, rather than semantic errors from the modules. For example, in the question
Are four red spheres beneath a metallic thing small?, our model produces a parse where it composes
metallic thing small into a single node instead of composing red spheres beneath a metallic thing
into a single node. Future work should use more sophisticated parsing models.

8

Under review as a conference paper at ICLR 2018

Model Non-Relation Questions Relation Questions Overall

LSTM (NO KG) 46.0 39.6 41.4
LSTM (NO RELATION) 62.2 49.2 52.2
RELATION NETWORK 51.1 38.9 41.5
Our Model 81.8 85.4 84.6

Table 2: Results for Complex Questions: All baseline models fail to generalize to questions
requiring longer chains of reasoning than seen during training. Our model substantially outperforms
the baselines, showing its ability to perform complex multi-hop reasoning, and generalize from its
training data. Analysis suggests that most errors from our model are due to assigning incorrect
structures, not mistakes by the composition modules.

7 RELATED WORK

Many approaches have been proposed to perform question-answering against structured knowledge
sources. Semantic parsing models have attempted to learn structures over pre-defined discrete
operators, to produce logical forms that can be executed to answer the question. Early work trained
using gold-standard logical forms (Zettlemoyer & Collins, 2005; Kwiatkowski et al., 2010), whereas
later efforts have only used answers to questions (Liang et al., 2011; Krishnamurthy & Kollar, 2013;
Pasupat & Liang, 2015). A key difference is that our model must learn semantic operators from data,
which may be necessary to model the fuzzy interpretations of some function words like many or few.

Another similar line of work is neural program induction models, such as Neural Programmer (Nee-
lakantan et al., 2016) and Neural Symbolic Machine (Liang et al., 2017). These models learn to
produce programs composed of predefined operators using weak supervision to answer questions
against semi-structured tables.

Neural module networks have recently been proposed for learning semantic operators (Andreas et al.,
2016b) for question answering. This model assumes that the structure of the semantic parse is given,
and must only learn a set of operators. Dynamic Neural Module Networks (D-NMN) extend this
approach by selecting from a small set of candidate module structures (Andreas et al., 2016a). In
contrast, our approach learns a model over all possible structures for interpreting a question.

Our work is most similar to the most recently proposed N2NMN (Hu et al., 2017) model, an end-to-
end version of D-NMN. This model learns both semantic operators and the layout in which to compose
them. However, optimizing the layouts requires reinforcement learning, which is challenging due to
the high variance of policy gradients, whereas our approach is end-to-end differentiable.

8 CONCLUSION

We have introduced a model for answering questions requiring compositional reasoning that combines
ideas from compositional semantics with end-to-end learning of composition operators and structure.
We demonstrated that the model is able to learn a number of complex composition operators from
end task supervision, and have shown that the linguistically motivated inductive bias imposed by
the structure of the model allows it to generalize well beyond its training data. Future work should
explore scaling the model to other question answering tasks.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. In HLT-NAACL, 2016a.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In CVPR,
pp. 39–48, 2016b.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48. ACM,
2009.

9

Under review as a conference paper at ICLR 2018

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. CoRR, abs/1704.05526, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In CVPR, July 2017.

Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Connecting natural
language to the physical world. TACL, 1:193–206, 2013.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon Goldwater, and Mark Steedman. Inducing proba-
bilistic ccg grammars from logical form with higher-order unification. In EMNLP, 2010.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus, and Ni Lao. Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision. In ACL, 2017.

Percy Liang, Michael I Jordan, and Dan Klein. Learning dependency-based compositional semantics.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pp. 590–599. Association for Computational Linguistics,
2011.

Jean Maillard, Stephen Clark, and Dani Yogatama. Jointly learning sentence embeddings and syntax
with unsupervised tree-lstms. CoRR, abs/1705.09189, 2017. URL http://arxiv.org/abs/
1705.09189.

Richard Montague. The proper treatment of quantification in ordinary English. In K. J. J. Hin-
tikka, J. Moravcsic, and P. Suppes (eds.), Approaches to Natural Language, pp. 221–242. Reidel,
Dordrecht, 1973.

Arvind Neelakantan, Quoc V. Le, Martı́n Abadi, Andrew McCallum, and Dario Amodei. Learning a
natural language interface with neural programmer. CoRR, abs/1611.08945, 2016.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
ACL, 2015.

Ethan Perez, Harm de Vries, Florian Strub, Vincent Dumoulin, and Aaron C. Courville. Learning
visual reasoning without strong priors. CoRR, abs/1707.03017, 2017. URL http://arxiv.
org/abs/1707.03017.

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy P. Lillicrap. A simple neural network module for relational reasoning.
CoRR, abs/1706.01427, 2017. URL http://arxiv.org/abs/1706.01427.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. UAI, 2005.

10

http://arxiv.org/abs/1705.09189
http://arxiv.org/abs/1705.09189
http://arxiv.org/abs/1707.03017
http://arxiv.org/abs/1707.03017
http://arxiv.org/abs/1706.01427

Under review as a conference paper at ICLR 2018

APPENDIX

BASELINE MODELS

LSTM (NO KG)

We use a LSTM network to encode the question as a vector q. We also define three other parameter
vectors, t, e and b that are used to predict the answer-type P (a = T) = σ(q · t), entity attention value
pei = σ(q · e), and the probability of the answer being True ptrue = σ(q · b).

LSTM (NO RELATION)

Similar to LSTM (NO RELATION), the question is encoded using a LSTM network as vector q.
Similar to our model, we learn entity attribute-value embeddings and represent each entity as the
concatenation of the 4 attribute-value embeddings, vei . Similar to LSTM (NO RELATION), we also
define the t parameter vector to predict the answer-type. The entity-attention values are predicted as
pei = σ(vei · q). To predict the probability of the boolean-type answer being true, we first add the
entity representations to form b =

∑
ei

vei , then make the prediction as ptrue = σ(q · b).

RELATION NETWORK AUGMENTED MODEL

The original formulation of the relation network module is as follows:

RN(q,KG) = fφ

(∑

i,j

gθ(ei, ej , q)

)
(12)

where ei, ej are the representations of the entities and q is the question representation from an LSTM
network. The output of the Relation Network module is a scalar score value for the elements in the
answer vocabulary. Since our dataset contains entity-set valued answers, we modified the module in
the following manner.

We concatenate the object pair representations with the representations of the pair of directed
relationships between them1. We then use the Relation Network module to produce an output
representation for each entity in the KB, in the following manner:

RNei = fφ

(∑

j

gθ(ei, ej , r
1
ij , r

2
ij , q)

)
(13)

Similar to the LSTM baselines, we define a parameter vector t to predict the answer-type as:
P (a = T) = σ(q · t) (14)

P (a = E) = 1− P (a = T) (15)

To predict the probability of the boolean type answer being true, we define a parameter vector b and
predict as following:

ptrue = σ

(
b ·
∑

ei

RNei

)
(16)

To predict the entity-attention values, we use a separate attribute-embedding matrix to first generate
the output representation for each entity, eouti , then predict the output attention values as follows:

pei = σ

(
RNei · eouti

)
(17)

We tried other architectures as well, but this modification provided the best performance on the
validation set. We also tuned the hyper-parameters and found the setting from Santoro et al. (2017)
to work the best based on validation accuracy. We used a different 2-step curriculum to train the
RELATION NETWORK module, in which we replace the Boolean questions with the relation questions
in the first-schedule and jointly train on all questions in the subsequent schedule.

1In the CLEVR dataset, between any pair of entities, only 2 directed relations, left or right, and above or
beneath are present.

11

	Introduction
	Model Overview
	Compositional Semantics
	Semantic Types
	Composition Modules

	Parsing Model
	Lexical Representation Assignment
	Parsing Questions
	Training Objective

	Dataset
	Experiments
	Experimentation Setting
	Experiments

	Related Work
	Conclusion

