
Workshop track - ICLR 2018

PROTOTYPE MATCHING NETWORKS FOR LARGE-
SCALE MULTI-LABEL CLASSIFICATION

Jack Lanchantin, Arshdeep Sekhon, Ritambhara Singh, & Yanjun Qi
University of Virginia, Department of Computer Science
{jjl5sw, as5cu, rs3zz, yanjun}@virginia.edu

ABSTRACT

One of the fundamental tasks in understanding genomics is the problem of pre-
dicting Transcription Factor Binding Sites (TFBSs). With more than hundreds of
Transcription Factors (TFs) as labels, genomic-sequence based TFBS prediction is
a challenging multi-label classification task. There are two major biological mech-
anisms for TF binding: (1) sequence-specific binding patterns on genomes known
as “motifs” and (2) interactions among TFs known as “co-binding effects”. In
this paper, we propose a novel deep architecture, the Prototype Matching Network
(PMN) to mimic TF binding mechanisms. Our PMN model automatically extracts
prototypes for each TF through a novel prototype-matching loss. We use the notion
of a set of prototypes and an LSTM to learn how TFs interact and bind to genomic
sequences. On a TFBS dataset with 2.1 million genomic sequences, the PMN
significantly outperforms baselines and validates our design choices empirically.
The proposed architecture is accurate, and also models the underlying biology.

1 INTRODUCTION

To understand genomics, and in turn diseases such as cancer, predicting and understanding Tran-
scription Factor Binding Sites (TFBSs) is essential. Transcription Factors (TFs) are proteins which
bind (i.e., attach) to DNA and control whether a gene is expressed or not. TFs are known to bind
to sequence-specific patterns on genomes, known as “motifs”. If a TF binds in the absence of its
motif, or it does not bind in the presence of its motif, then it is likely there are external causes such as
interactions with other TFs, known as co-binding effects (Wang et al., 2012). Thus, when designing a
genomic-sequence based TFBS predictor, we should consider both: (1) how to automatically extract
“motif”-like features and (2) how to model the co-binding patterns and consider such patterns in
predicting TFBSs. We address both by proposing the prototype matching network (PMN).

To extract motif-like features, we implement a CNN encoder, as commonly used in TFBS prediction.
To model the dependencies among output labels, we introduce a combinationLSTM, which updates
the encoder representation of the input conditioned on the output labels. The combinationLSTM
models how the embedding of a test sample matches to a combination of relevant prototypes. Using
multiple “hops”, the combinationLSTM updates the embedding of the input sequence by searching
for which TFs (prototypes) are relevant in the label combinations. Instead of explicitly modeling
interactions among labels, we try to use the combinationLSTM to mimic the underlying biology. The
combinationLSTM tries to learn prototype embedding and represent high-order label interactions
through a weighted sum of prototype embeddings.

y

x f

^

[h  ; r  ]K           K

combinationLSTM

TF1 TF2 TF3 TF4

Prototypes

p
1

p
2

p
3

p
4

x̂ r

p
1

p
2

p
3

p
4

∑

MatchinghLSTM
^k

k

x^

p
1

p
2

p
3

p
4

w1 w3 w4
kkk

One hop of the combinationLSTM

[h  ; r  ]k           k

w2
k

k =1 k =2 k =3 k =4 k =5

∑

[ ]

hk

Figure 1: Prototype Matching Network Model. Left: overview. Right: combinationLSTM internals
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2 PROTOTYPE MATCHING NETWORKS

Model Overview (Figure 1) Given DNA sequence x (composed of letters A,C,G,T) of length T , we
want to classify x as a positive or negative binding site for each transcription factor TF1, ..., TF` (i.e.
multi-label binary classification). To do this, we seek to update x by matching it to a set of ` learned
TF prototype vectors, {p1, ..., p`}, where each prototype loosely represents the TF label. Since TFs
may bind or not bind based on other TFs, we model the interactions among TFs before prediction.

Embedding The Sequence and Prototypes The input sequence x ∈ R4×t is encoded using a
function f (3-layer CNN, which has shown to be sufficient for genomic feature extraction) to produce
sequence embedding x̂ ∈ Rd. i.e. x̂ = f(x). The prototypes are produced by a multiplication of the
identity matrix I and a learned lookup table matrix W ∈ R|TFs|×d. P = IW , where each vector pi
in matrix P is a prototype. Prototypes are forced to correspond to specific TFs using a prototype loss.

LSTM to learn Label Interactions and Update the Sequence Embedding The main idea is that
we want to update the sequence embedding x̂ conditioned on matching against the prototypes. Since
interactions among TFs influence binding, we cannot simply match the sequence to the prototypes.
To obtain TF interactions, we use a combinationLSTM, similar to the attention LSTM in Vinyals et al.
(2016). The combinationLSTM uses K “hops” to process the prototypes p1, p2, ..., p` by matching
against an updated sequence embedding ĥk. The hops allow the combinationLSTM to update the
output vector based on which TFs match simultaneously. At each hop, the LSTM accepts a constant
x̂, a concatenation of the previous LSTM hidden state hk−1 and read vector rk−1, as well as the
previous LSTM cell output ck−1. r0 is initialized with the mean of all prototype vectors, 1

|p|
∑|p|
i pi.

The output hidden state ĥk is matched against each prototype using cosine similarity. Since this
similarity is in the range [-1,1], we feed this output through a sigmoid function to produce the
similarity score wki at hop k in (0,1). The read vector rk is updated by a weighted sum of the
prototype vectors using the matching scores. At each hop, hk is updated using the current LSTM
output hidden state and sequence embedding:

ĥk, ck = LSTM(x̂, [hk−1; rk−1], ck−1) (1)

rk =

|p|∑
i=1

wki pi (2)

wki = 1/
(
1 + e−εc(ĥ

k,pi)
)

(3)

where c(u, v) is cosine similarity, and ε is a hyperparameter of the sigmoid function that pushes the
similarity output closer to 0 or 1 (we use ε=20). In the TFBS task, eq. 2 is the important factor for
modelling TF combinations because rk can model multiple prototypes matching at once through a
linear combination. Furthermore, K hops is needed because a certain TF binding may influence other
TFs in a sequential manner. I.e, if TFi matches to ĥk in the first hop, rk is then used to output ĥk+1

which can match to TFj at the next hop. ĥk+1 is a joint representation of x̂ and the current matched
prototypes, represented by rk, and the LSTM fine-tunes wk in order to find TF binding combinations.

The final output ŷ ∈ R|TFs| is computed from a concatenation of the final hidden state and read
vectors [hK ; rK ] after the Kth hop using a linear transform: o = W ([hK ; rK ]). An element-wise
sigmoid function is then applied to get a probability of binding for each TF: ŷ = 1/(1 + e−o).

Classification and Prototype Matching Loss Functions To classify a sequence, we use a binary
cross entropy loss between each label yi for TFi, and the corresponding TFi output ŷi, as the
classification loss, Lc. We also introduce a prototype matching loss Lp, which forces a prototype to
correspond to a specific TF since prototypes are learned from random initializations. The prototype
matching loss uses an L2 loss between the true label yi for TFi and the final matching weight wKi
between updated sequence hK and prototype pi. This loss forces a prototype to match to all of its
positive binding sequences. The loss is computed from the final weights, wK , after K hops, which
allows the LSTM to attend to certain TFs at different hops before the final loss, modeling the co-
binding of TFs. λ controls the amount that each prototype is mapped to a specific TF. λ=0 corresponds
to random prototypes. The final loss L is a summation of the classification and prototype matching:
L = −Lc − λLp, where Lc =

∑|p|
i (yilogŷi + (1− yi)log(1− ŷi)), and Lp =

∑|p|
i (yi − wKi )2.
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Table 1: TFBS Prediction on 86 TFs. Shows PMN vs. two CNN baselines (single- and multi-label)

Model auROC auPR Recall at 50% FDR

Mean Std. % Increase
over single Mean Std. %Increase

over single Mean Std. %Increase
over single

CNN (single-label) 0.820 0.072 - 0.263 0.123 - 0.224 0.198 -
CNN (multi-label) 0.831 0.055 1.37 0.257 0.113 -2.52 0.215 0.186 -4.00
PMN (λ=1), no LSTM 0.830 0.057 1.30 0.267 0.116 1.22 0.231 0.197 3.09
PMN (λ=1), softmax att 0.834 0.057 1.70 0.272 0.115 3.36 0.243 0.194 8.48
PMN (λ=0), sigmoid att 0.837 0.055 2.13 0.271 0.113 3.00 0.229 0.186 1.92
PMN (λ=0.5), sigmoid att 0.839 0.055 2.38 0.272 0.113 3.36 0.235 0.187 4.73
PMN (λ=1), sigmoid att 0.840 0.054 2.45 0.270 0.114 2.47 0.234 0.187 4.17

Connecting to Previous Studies Our method is motivated by the prototype-matching theory (Wallis
et al., 2008), where instead of searching for exact features to match against, the model tests an
unseen sample against a set of prototypes using a defined similarity metric to make a classification.
Snell et al. (2017) introduced prototypical networks for zero and one-shot learning, which assumes
that the data points belonging to a particular class cluster around a single prototype. Krotov &
Hopfield (2016) show that pattern recognition is likely a combination of both feature-matching and
prototype-matching. Our method models both the patterns of prototypes and the interactions among
prototypes. In another line of work, Vinyals et al. (2015) and Vinyals et al. (2016) introduced the
Matching Net for processing input sets where they use an orderless LSTM, similar to ours. Our
model, however, learns the memory of the set and focuses on the large-scale multi-label classification
tasks. The idea of refining the query based on a set of memory items (documents) has been explored
similarly in Munkhdalai & Yu (2016) for QA (through a vanilla LSTM). To our knowledge, the PMN
is the first work to use the memory-augmented NN model for multi-label prediction.

3 EXPERIMENTS AND RESULTS

Dataset We constructed our dataset from ChIP-seq experiments from Consortium et al. (2012). We
then extracted the 200-length windows surrounding the peak locations for 86 transcription factors in
the GM12878 cell line. Our training, validation, and test sets contain 1.44M, 330K, 300K sequences,
respectively. Each sample has an average of ∼ 5 positive labels (i.e., TFs binding).

Model Variations To test the PMN model on our TFBS dataset, we constructed 4 model variations:
1. CNN: As in Zhou & Troyanskaya (2015) and Lanchantin et al. (2016), we use a baseline 3-layer
CNN model. This architecture is used as the encoder f for all variations. We also implement a
baseline single-task CNN which assumes no shared dependencies among TFs.
2. PMN, no LSTM: We use eq. 2-3, except that we replace ĥk in eq. 3 with x̂ since there is no
LSTM. The output o is then a concatenation of r and x̂. We still use the full prototype loss (λ=1).
3. PMN, sigmoid att: The full PMN model utilizes the CNN plus the combinationLSTM in eq.
1 over K hops (We use K = 5 since each sample has on average 5 positive labels). We tested 3
variations of the prototype loss (λ=0, λ=0.5, λ=1), where λ=0 represents random prototypes.
4. PMN, softmax att: We replaced the sigmoid (eq. 3) from k=0 to k=K-1 with softmax (typically
used in attention models), and then a sigmoid for the final multi-label output at step K.

TFBS Classification Results (Table 1) We evaluate our methods using area under ROC curve
(auROC), area under the precision-recall curve (auPR), and recall at 50% false discovery rate. The
joint CNN (multi-label) model outperformed the single label CNN models in auROC. The joint
model’s improvement over single-task was not significant (p-value < 0.05) based on a one-tailed
pairwise t-test, presumably because the joint model finds joint motifs, but doesn’t model interactions
among TF labels. The PMN model outperformed both baseline CNN models in all 3 metrics, and
was significant using a one-tailed pairwise t-test. We hypothesize that the combinationLSTM module
accurately models co-binding better, leading to an increase in performance. We found that using
the prototype loss, λ > 0, resulted in an improvement over random prototypes. We further plan to
explore different similarity measures and prototype loss weights. Additionally, we plan to explore
the interpretability of the prototypes as representations of classes, possibly in a generative manner.
In conclusion, we found that our PMN method to update the input sequence based on output label
dependencies can significantly improve mutli-label classification.
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