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ABSTRACT

One of the most fundamental, and yet relatively less explored, goals in transfer
learning is the efficient means of selecting top candidates from a large number of
previously trained models (optimized for various “source” tasks) that would per-
form the best for a new “target” task with a limited amount of data. In this paper,
we undertake this goal by developing a novel task-similarity metric (BeST) and an
associated method that consistently performs well in identifying the most trans-
ferrable source(s) for a given task. In particular, our design employs an innovative
quantization-level optimization procedure in the context of classification tasks that
yields a measure of similarity between a source model and the given target data.
The procedure uses a concept similar to early stopping (usually implemented to
train deep neural networks (DNNs) to ensure generalization) to derive a function
that approximates the transfer learning mapping without training. The advantage
of our metric is that it can be quickly computed to identify the top candidate(s) for
a given target task before a computationally intensive transfer operation (typically
using DNNs) can be implemented between the selected source and the target task.
As such, our metric can provide significant computational savings for transfer
learning from a selection of a large number of possible source models. Through
extensive experimental evaluations, we establish that our metric performs well
over different datasets and varying numbers of data samples.

1 INTRODUCTION

Transfer Learning Pan and Yang (2010) Weiss et al. (2016) is a method to increase the efficacy of
learning a target task by transferring the knowledge contained in a different but related source task.
It is known that the effectiveness of supervised learning depends on the amount of labeled data.
However, for various practical problems (e.g., medical imaging), collecting large quantities of la-
beled data might not be easy, as data collection and labeling is a tedious, expensive, and sometimes
infeasible task (data is scarce, e.g., rare medical diseases). By employing transfer learning, we can
enhance performance even with limited labeled data. Talking specifically of image classification,
research in Oquab et al. (2014) showed how image representations learned with convolutional neu-
ral networks (CNNs) on large-scale annotated datasets can be efficiently transferred to other visual
recognition tasks with limited data. The work in Yosinski et al. (2014) studied the impact of trans-
ferring features learned in different CNN layers and Long et al. (2015) describes how deeper layers
can be more effectively transferred to a target CNN. The core idea of transfer learning is that differ-
ent models trained for different sets of classes might learn some common features about the image
in the initial layers that are not too task-specific. Recent studies show how transfer learning can be
performed for CNNs by initializing the target neural network using feature-learned source CNN and
adding a few dense layers to map the source model output to target labels.

From the literature Yosinski et al. (2014), it is evident that the choice of source model affects the
target task performance as not every source shares similarities with the target, with some sources
resulting in a phenomenon called negative transfer Wang et al. (2019). In transfer learning research
the usual question is - given a source and target task, how to transfer? In contrast, in this work,
we are trying to answer - given a target task and many different source tasks, which source to
choose for best transfer? With the increasing availability of pre-trained learning models for a variety
of classification tasks, it is now more important to assess the similarity between many existing
source models S1, S2, ...Sn and a new target task T to find the best matching source task. The
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straightforward approach for source selection is to train the target model using each source to find
its accuracy. However, this is generally time-consuming given the complexity of large-scale neural
networks. This calls for a quick task similarity metric that will help us rank a group of candidate
source tasks without computationally intense neural network training for each of them. Specifically,
this metric must measure the potential of a source model to be favorably utilizable by a given target
task. We do not aim to propose the metric as an alternative to training but rather as a pre-processing
step before training with the best source. Moreover, for it to be useful, we would like the metric to
have the following properties –

• Reliable in identifying good pairs: The metric provides an accurate and reliable ranking
for source models with high transfer learning performance (e.g., > 90% accuracy).

• Time efficient: Metric calculation should provide significant computational savings result-
ing in less time taken as compared to training a transfer learning model.

• Architecture indifferent: The metric does not use any knowledge of the architecture of
the layers added on top of the pre-trained model. Hence, it should perform equally well if
compared against different architectures if they have near-optimal accuracy performance.

In this work, we undertake this challenge for the scenario where source and target tasks are image
classifiers. Our contributions can be summarized as — We propose a novel quantization-based
approach to measure relatedness between a given source-target task pair to evaluate transfer learning
performance. Our results show that our method can accurately rank source tasks for source models
with a high transfer learning accuracy. We have a novel way to use the concept of generalization and
early stopping, typically used in neural network training, to a problem outside the typical use case.

2 RELATED WORK

Quantization as a technique is not new to machine learning as it has been used to reduce the com-
putational and memory costs of running inference by representing the weights and activations with
low-precision data types like 8-bit integers instead of the usual 32-bit floating point. Several works
Courbariaux et al. (2015); Gupta et al. (2015); Micikevicius et al. (2018), Gholami et al. (2021),
talk about breakthroughs of half-precision and mixed-precision training. However, to the best of
our knowledge, our approach to using quantization to transform model softmax output to evalu-
ate task-transferability is novel. Authors in Dwivedi and Roig (2019) propose an approach to use
Representation Similarity Analysis (RSA) to obtain a similarity score among tasks by computing
correlations between models trained on different tasks. A study for automated source selection for
transfer learning in CNNs using an entropy-based transferability measure is presented in Afridi et al.
(2018). Methods like NCE Tran et al. (2019) and LEEP Nguyen et al. (2020) use the source and
target labels to estimate transfer performance. In reality, we often do not have access to the source
data but only to the source model as considered in our setup. Other methods like LogME You et al.
(2021), GBC Pándy et al. (2022) and H-score Bao et al. (2019) use the source model embeddings
and target data to estimate transferability. The work in Dai et al. (2019) evaluates transferability for
Named Entity Recognition (NER) tasks in NLP. However, the method used domain-specific knowl-
edge of NLP tasks, and hence cannot be generalized for other tasks (e.g., image classification). A
similarity measure based on a restricted Boltzmann machine is proposed in Bou Ammar et al. (2014)
to automatically select the best source task for transfer in the context of reinforcement learning.

3 SYSTEM MODEL

Transfer learning architecture and training: For many pre-trained models in real-world applica-
tions (e.g., ChatGPT, etc.), we have no access to the structures or parameters of the model. In such
scenarios, we have to treat the source model as a black-box, i.e., we can only access the input and
output of the source model. Therefore, we implement transfer learning as illustrated in Figure 1,
where we append a custom model after the output of the source model to form the target model. The
custom model is trained to minimize cross-entropy loss on training data Dtr using Adam optimizer.
Early stopping is used to stop the training when the loss on validation dataDval no longer decreases.

Models: The source and target models, denoted by fs : X source 7→ Y source and ft : X target 7→ Y target,
are mappings from the source input set X source to source output set Y source and target input set
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Figure 1: Transfer Learning architecture as concatenation of black-box source with a custom model.

X target to target output set Y target respectively. We assume that elements in both X source and X target

are of the same dimension (e.g., images of the same size). This ensures that the target input can
be directly fed to the source model without any pre-processing step. Unless stated otherwise, we
assume the source and target models are m-ary and n-ary classifiers (generally m ≥ n). The source
output set is a set of softmax vectors and for a m-ary classifier, can be defined as Y source = {p =
(p1, p2, ..., pm)|

∑m
i=1 pi = 1, pi ≥ 0 ∀i}. The target output set is a set of labels and for a n-ary

classification, Y target = {1, 2, ..., n}. The custom model, denoted by fc : Y source 7→ Y target, maps the
source output set Y source to the target output set Y target.

Dataset: We assume that we do not have access to the source data but only the target data de-
noted by D = {Dtr,Dval,Dt}, where Dtr = {Xtr, Y tr}, Dval = {Xval, Y val}, and Dt = {Xt, Y t}
represents the train, validation and test datasets. Xtr = {xtr

1 , ..., xtr
ntr}, Xval = {xval

1 , ..., xval
nval},

Xt = {xt
1, ..., x

t
nt} denote the list of input data samples, while Y tr = {ytr1 , ..., ytrntr}, Y val =

{yval1 , ..., yvalnval}, and Y t = {yt1, ..., ytnt} denote the list of their respective labels. Here, ntr, nval, and
nt denote the number of data samples for the three datasets respectively. We have assumed that the
distribution of class labels for all n classes is uniform1 i.e. Pr(Y tr = i) = 1/n,∀i ∈ {1, 2, ..., n}.
Transferability: The ability of a source model to enhance performance on a target task is referred
to as transferability. It depends on the source model fs, the custom model fc, the target data D, the
optimizer parameters (parameters for Adam) and the training methodology. Given that we fixed the
optimizer and the training methodology, transferability is represented as a function T (fs, fc,D) and
defined as the prediction accuracy of the trained target model on the unseen target test data Dt.

4 OUR METHOD: BEST

Problem Statement: Given a set of p pre-trained source models S = {f1
s , f

2
s , ..., f

p
s } and a target

dataset D, say Ti = T (f i
s, fc,D) represents the ground truth of transferability for ith source. We

want to define a transferability measure that takes the source model and target dataset as input, such
that if Mi represents the score given by the measure for ith source, the transferability ranks of the
source models according to {Mi}pi=1 are very close to the ranks calculated using {Ti}pi=1.

To avoid using traditional neural network training to get the transferability of a source model fs to
a target dataset D, we need to derive an analytical function corresponding to the custom model fc,
that maximizes the prediction accuracy on target data. To ensure that its architecture-indifferent, it
should only using the distribution of softmax output2 and target labels. Given that we have limited
target data samples, the estimation of this continuous distribution is imprecise.

To understand the need for quantization, assume that the source and target models are binary clas-
sifiers, and consider a ‘hardmax’ case where the softmax output [p1, p2] is transformed to a 2 × 1
one-hot discrete vector. In this case, there are only 4 choices for the custom model mapping (binary
input to binary output) and it is easy to formulate the accuracy of each choice based on the estimation

1We do not want the custom model to be biased towards learning features for the input of a particular class.
2Produced when target input is fed to the source model.
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of the discrete joint distribution. However, we lose the precision of information3 in the transforma-
tion to one-hot vectors, affecting the accuracy of the mapping. The quantization approach helps us
use the best of both worlds, where instead of mapping the softmax to a one-hot ‘hard’ vector, we can
perform a custom transformation to a desired precision. It helps reduce our setup from a real-valued
mapping (softmax to finite label) to a quantized mapping (one-hot vector to finite label) resulting in
easier analytical analysis as it is a discrete function with a finite number of options.

Our algorithm (BeST) for best pre-trained source model selection calculates the optimal quantization
level and corresponding metric for each model using target train and validation data. The source
model with the highest metric is the model most suitable for the target task. The key part of this
algorithm is how the metric is calculated and how well it can represent the performance of transfer
learning. In Subsection 4.1, we define the quantization function for any m-ary source to n-ary target
and Subsection 4.2 talks about the necessary notations and definitions. Subsection 4.3 talks about the
variation of train and validation accuracies as the quantization level increases. Finally, in Subsection
4.4 we present the definition of our transferability metric and the algorithm to compute it.

4.1 NOVEL QUANTIZATION APPROACH

For an input x ∈ X source, the corresponding source softmax output fs(x) ∈ Y source represented as
p = [p1, p2, ..., pm], can be transformed to a one-hot vector with quantization level q (or q-quantized
for shorthand) using the quantization function Q(p, q) = pq , where pq is a q(m−1) × 1 vector and
pqi is 0 at every index i except at index i′ given by Equation 1, where pqi′ = 1.

i′ =

{
⌊pjq⌋qj−2 ; if ∃j ∈ {2, 3, ...m} s.t. pj = 1∑m

j=2⌊pjq⌋qj−2 + 1 ; o.w.
(1)

We use the fact that we only need (m − 1) values to uniquely characterize a softmax vector with
m entries as the sum of values is 1. Figure 2 tries to explain the quantization process through an
example where the source model is a ternary classifier and we transform it to a quantization level
q=3. The vector [p2, p3] = [0.7, 0.2] can be imagined to being mapped to a 2-D grid, where each
dimension corresponds to representing one of pj’s and is divided into 3 bins (q=3). The one-hot
matrix can be unwrapped into a one-hot vector as in Figure 2. This can be extended to any m × 1
softmax vector being mapped to a (m−1)-D grid and we can always obtain a one-hot representation.

Figure 2: Quantization function explained through an example of a 3-class source model and q=3.

4.2 MATHEMATICAL FORMULATION

LetHq = {X ∈ {0, 1}q(m−1)

:
∑q(m−1)

i=1 Xi = 1} denote the set of q(m−1)×1 one-hot vectors. Con-
sider set of all possible mappingsFq = {πq |πq : Hq 7→ Y target} from quantized source output setHq

to binary target label setY target. SinceHq contains one-hot vectors,Fq can be equivalently defined as
Fq = {πq |πq : Z+

≤q(m−1) 7→ Y target}, where πq = [πq
1, π

q
2, ..., π

q
q(m−1) ], π

q
i ∈ Z+

n . Define q-quantized
training and validation datasets denoted byDtr

q = {Xtr
q , Y tr} andDval

q = {Xval
q , Y val} respectively,

where Xtr
q = Q(fs(X

tr), q) and Xval
q = Q(fs(X

val), q) represent the list of transformed input vec-
tors for training and validation input data Xtr and Xval. Let (X ∈ X target, Y ∈ Y target) denote ran-
dom variables for the target input and label respectively. Assume that P (q) = Pr(Xq|Y ) represents

3[0.1, 0.9] and [0.4, 0.6] both have the same hardmax representation of [0,1].
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(a) Obtain policy (b) Apply policy

Figure 3: Policy πq
∗ explained through example with source and target models as binary classifiers.

the discrete conditional probability distribution of random variables representing q-quantized source
output Xq = Q(fs(X), q) and target label Y . Since Xq is a one-hot vector, we can equivalently
define P (q) = Pr(X̄q|Y ), where X̄q = i if Xq,i = 1. Let P̂ tr(q) = P̂r(X̄q|Y ) represent empirical es-
timation of P (q) using dataset Dtr

q and denote P̂ tr
i,j(q) = P̂r(X̄q = i|Y = j), i ∈ Z+

q(m−1) , j ∈ Z+
n .

We define the training accuracy Atr(πq) as the mapping accuracy of πq on quantized training
dataset Dtr

q . It depends on the estimate of joint distribution P̂r(X̄q = i, Y = πq
i ) and using the

uniform distribution assumption for samples per class, can be expressed as Equation 2.

Atr(πq) =

q(m−1)∑
i=1

P̂r(X̄tr
q = i, Y tr = πq

i ) =
1

n

q(m−1)∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i ) (2)

Let πq
∗ represent the function that maximizes Atr(πq) for a fixed q. Hence, Atr(πq

∗) and optimal
function πq

∗ are given in Equation 3 and 4 respectively.

Atr(πq
∗) = max

πq∈Fq

1

n

q(m−1)∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i ) =
1

n

q(m−1)∑
i=1

max
πq
i

P̂ tr
i,πq

i
(q) (3)

πq
∗,i =

argmax
j

P̂ tr
i,j(q) ; if unique argmax exists

rk ; if there are k options for argmax
(4)

where πq
∗,i = rk means that there are k options for argmax and the function πq

∗ would map to a
uniform random choice between these k classes. For each quantization level q, once we have the
policy πq

∗ that maximizes accuracy on Dtr
q , its prediction accuracy on the validation dataset Dval

q

denoted by Aval(πq
∗) can be empirically calculated as Aval(πq

∗) = (
∑nval

i=1 1(πq
∗,j = yvali ))/nval,

where j = argmaxxval
q,i . Figure 3 explains the process through an example considering the source

and target models as binary classifiers i.e. m=n=2. Figure 3a explains obtaining πq
∗ from the 2-D

matrix representing the conditional probability P̂ tr(q) for q = 8. The entries in πq
∗ are the argmax

of the rows in the matrix and ‘tie’ represents no unique argmax. Figure 3b explains applying the
policy πq

∗ to target input where the predicted target label is the entry corresponding to the index in
the one-hot quantized vector with 1. For ‘tie’, ŷ = 0 or 1 with equal probability.

4.3 QUANTIZATION TRADE-OFF

Referring to Figure 3a, imagine a balls-in-bins system, where the matrix represents the fraction of
balls (quantized outputs) falling into 8 bins for two different kinds of balls (i.e. two target classes).
Consider the first highlighted bin, where 10% of the data with target label 2 will be misclassified as
label 1 resulting in reduced accuracy. Observe that there are a few rows with more ‘overlap’ than
others (e.g., [0.3, 0.1] has more overlap than [0, 0.1]), where more overlap means more samples are

5
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(a) MNIST-MNIST Tar=(1,2) (b) CIFAR10-CIFAR10 Tar=(1,2)

Figure 4: Train-validation accuracy tradeoff where source and target tasks are binary classifiers.
Tar=(1,2) and Src=(2,8) denote that the target and source tasks are to classify images of classes
indexed 1 and 2, and 2 and 8 of the respective dataset (MNIST or CIFAR10).

misclassified. As q increases, the softmax vectors are mapped to unique one-hot representations,
resulting in the inputs, that earlier belonged to a the same bin, now belonging to different bins. This
decreases the overlap in rows and resulting in increase in Atr(πq

∗).

However, extremely large q results in most of the bins receiving no balls at all. This means for the
majority of the rows, the policy will predict a randomly chosen label out of the n target labels result-
ing in poor validation accuracy. Figure 4a and 4b illustrate this variation of Atr(πq

∗) and Aval(πq
∗)

vs q for MNIST-MNIST and CIFAR10-CIFAR10 setups, which mean the source and target tasks
are classifiers trained on MNIST and CIFAR10 datasets respectively. Here as the quantization level
increases, Atr(πq

∗) increases but corresponding Aval(πq
∗) first increases and then starts decreasing.

Theorem 4.1. Given that the source and target models are binary classifiers and the source softmax
output is represented as a random vector p = [p1, p2], if true conditional probability distributions

f1 = f(p2|Y=1) and f2 = f(p2|Y=2) are bounded, then as q →∞, E[Aval(πq
∗)]

P−→ 1/2.

Theorem 4.1 says that if the underlying true conditional probability distributions of random variables
(p2|Y = 1) and (p2|Y = 2) are bounded, then the expected validation performance on the given
validation datasetDval for policy that maximizes accuracy on target training data is as good as a coin
flip policy (50% accuracy) as the quantization level goes to ∞ (proof in Appendix A). This result
can be extended to a general m-ary source to binary target case as representation of m-ary softmax
with quantization q is mathematically equivalent to a binary softmax with quantization q(m−1).

4.4 METRIC DEFINITION AND BEST ALGORITHM

Exploiting the trade-off explained in the previous section, we want to select a quantization level q∗
that maximizes the validation accuracy Aval(πq

∗) and this maximum accuracy, denoted as Aval(πq∗
∗ )

is defined as our metric. This approach to choose q∗ s.t. for q > q∗ the validation performance starts
degrading, is analogous to early stopping in neural network training where we stop the training if
the validation loss starts increasing. We need an upper bound on the search set for q for practical
implementation. Through simulations under various settings, we observed that q∗ ∈ (2, (nval/n))
as when q > (nval/n), the number of samples is way less than the number of rows (q(m−1)) in the
estimation of P (q). Mathematically, q∗ and our metric M are expressed in Equation 5.

q∗ = argmax
q∈(2,(nval/n)); q∈N

Aval(πq
∗); M = Aval(πq∗

∗ ) (5)

Plots for different source-target pairs for different datasets in Figure 4 suggest that Aval(πq
∗) behaves

approximately as an unimodal function (more in Appendix E). Hence, we can use ternary-search
as a heuristic to find q∗ using Algorithm 1. In step 1, we ensure that there are an equal number of
samples from each target class and step 2 initializes the left and right variables bounding the search
space for q∗. Steps 3-16 uses ternary search to update the left and right pointers to calculate and
compare Aval(πq

∗) to come closer to q∗. The search stops if the difference between the left and right
pointer is within tolerance or if the maximum number of steps (max steps) is reached. Finally, the
metric is the average of Aval values for the policy πq

∗ at the final left and right quantization levels.

6
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Algorithm 1: BeST: Quantisation based Task-Similarity Metric

Input: fs,Dtr = {Xtr, Y tr},Dval = {Xval, Y val}, tolerance, max steps
Output: M

1 Dtr,Dval ← modified Dtr,Dval s.t. number of samples for each target class is equal;
2 L← 2, R← nval/n = num of samples per class in Dval;
3 while (|L−R| > tolerance) and (step < max steps) do
4 m1 ← ⌊L+ (R− L)/3⌋, m2 ← ⌊L− (R− L)/3⌋;
5 (Dtr

m1
,Dval

m1
) and (Dtr

m2
,Dval

m2
)← quantized version of datasets (Dtr,Dval) at q = m1,m2;

6 Calculate P̂ tr(m1) and P̂ tr(m2) using Dtr
m1

and Dtr
m2

;
7 πm1

∗ ← optimal policy using P̂ tr(m1), πm2
∗ ← optimal policy using P̂ tr(m2);

8 Calculate Aval(πm1
∗ ) and Aval(πm2

∗ ) using πm1
∗ and πm1

∗ to predict on Dval
m1

and Dval
m2

;
9 Lval ← Aval(πm1

∗ ) , Rval ← Aval(πm2
∗ );

10 if Lval < Rval then
11 L← m1;
12 else
13 R← m2;
14 end
15 step← step + 1;
16 end
17 (Dtr

L ,Dval
L ) and (Dtr

R ,Dval
R )← quantized version of datasets (Dtr,Dval) at q = L,R;

18 Calculate P̂ tr(L) and P̂ tr(R) using Dtr
L and Dtr

R ;
19 πL

∗ ← optimal function using P̂ tr(L); πR
∗ ← optimal function using P̂ tr(R);

20 Calculate Aval(πL
∗ ) and Aval(πR

∗ ) using πL
∗ and πR

∗ to predict on Dval
L and Dval

R ;

21 M ← Aval(πL
∗ ) +Aval(πR

∗ )

2

5 EXPERIMENTS

Figure 5: Comparison of ranks predicted by metric and ground truth for 3-class source to 2-class
target transfer in MNIST-MNIST TL setup with ∼ 500 data samples using 5-layer custom model.

Datasets and experimental settings: The experiments assess our metric’s effectiveness in rank-
ing source models with classifiers trained on two datasets – MNIST and CIFAR10. We consider 3
transfer learning setups (TL setups) – MNIST-MNIST, CIFAR10-CIFAR10 and CIFAR10-MNIST,
where the first and second datasets correspond to the dataset source and target models are trained
on. To emulate the limited data setup, we use tl-frac parameter where tl-frac=0.01 means choose
a random subset with only 1% of the entire dataset (100 samples for 10000 sample dataset). Prac-
tically, tl-frac=0.01, 0.03, and 0.05 corresponds to around 50, 150, and 250 data samples per class
with 80%-20% split for train and validation. In every transfer learning setup, we assess 45 unique
source models for a specific target (details in Appendix C), ranking them across 20 iterations, using
a different subset in each iteration to avoid data-specific bias in the evaluation. For our metric calcu-
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lation using Algorithm 1, tolerance and max-steps parameters are set to 5 and 20 steps respectively.
Tar/Src=(i, j) is used as shorthand to denote the target (or source) model trained to classify images
from classes indexed i and j (e.g., Tar=(1, 2) in MNIST-MNIST refers to classifying digits 0 and 1).

Model architectures and metric evaluations: We train different source models for a given dataset
using a fixed model architecture (Appendix B) to ensure a fair comparison. We consider a fully
connected DNN for our custom model with 2-layer and 5-layer architectures (Appendix B), to show
that our metric is architecture-indifferent. Early stopping stops the training if the validation error
doesn’t decrease by 0.01 in the next 20 epochs. We introduce an accuracy threshold parameter to
select a subset of 45 source models to run our experiments for a given target task (e.g., threshold=0.9
means all source models with transfer learning accuracy > 90% are chosen). To avoid the true
rankings being hypersensitive to small differences in transfer learning accuracy, rank i assigned to
a source model by our metric is counted correct if its transfer learning accuracy is within 3% of
the transfer learning accuracy of the source with true rank i. We evaluate the ranking performance
of our metric on the fraction of accurate rankings, the mean deviation of predicted ranks from true
ranks, and the factor of time savings from training the custom model.

Figure 5 presents a comparison between the true ranks of various source models (red) with the pre-
dicted ranks (green and blue) in a transfer learning setup where source models are ternary classifiers
and the target task is to classify images of digits 2 and 7. The metric values for the green curve use
the brute-force method to find the optimal q∗ and ranks. Observe that the ranks according to ternary
search and brute-force search are very close, supporting our unimodal approximation in Section 4.4.
Observe that one of the best source models to transfer from is the one trained to classify the digits
(0,2,7) and (1,2,7), which is intuitive as these already know how to classify digits 2 and 7.

5.1 BINARY CLASSIFIERS

We first evaluate the basic setup where the source and target are binary classifiers. Figure 6 shows
the fraction of correct ranks assigned using our metric as compared to the true ranks, as threshold
parameter changes for different TL setups using the 5-layer custom model. We can observe that
the fraction of correct ranks increases with an increase in threshold, with the best performance for
source models with transfer learning accuracy of > 90%. This means that our metric works better
in ranking good transfer learning pairs.

(a) MNIST-MNIST Tar=(1,2) (b) CIFAR10-CIFAR10 Tar=(2,3) (c) CIFAR10-MNIST Tar=(1,2)

Figure 6: Fraction of accurate ranks Vs threshold for different dataset sizes for 5-layer custom
model.

Figure 7 shows the fraction of correct ranks for high threshold with different tl-frac values using
2 different target tasks for each TL setup for both custom models. Figures 7a, 7b, 7c suggest that
our metric consistently performs well when ranking source models with > 80% transfer learning
accuracy across all 3 TL setups and different target tasks. Observe that generally the performance
of 5-layer custom model (maroon and dark green) is higher than that of 2-layer (red and green)
since 5-layer has more capability to achieve the optimal generalization performance. However, the
performance for both custom models are > 60% across TL setups indicating that the ranks assigned
by the metric are not a random guess. Both Figures 6 and 7 suggest that the fraction of correct ranks
increase with the datasize (tl-frac) across the 3 TL setups for different target tasks for each threshold.

Table 1 presents details on the mean and standard deviation of the deviation in ranks for MNIST-
MNIST TL setup. We can observe that the mean deviation decreases with an increase in tl-frac
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(a) MNIST-MNIST (b) CIFAR10-CIFAR10 (c) CIFAR10-MNIST

Figure 7: Rank similarity performance of metric for source tasks with high TL accuracy for given
target tasks for varying data sizes (given by tl-frac) using both 2-layer and 5-layer custom model.

i.e. data size, and also with an increase in threshold. This aligns with our earlier observation that
our metric performs the best for source models with > 90% transfer learning accuracy. For thresh-
old=0.9, we can particularly observe that even using just 100 samples (tl-frac=0.01) the predicted
ranks are off by less than 2 ranks on average, which reduces even further to less than 1 rank when
using 500 samples (tl-frac=0.05). The small standard deviation values suggest that there is less
variability in the deviation of ranks establishing consistent performance across source-target pairs.

Table 1: Statistics for deviation of predicted ranks from true ranks for MNIST-MNIST TL Setup
with target task to classify images of digits 1 and 3.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
Custom Model Threshold 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

2-layer Mean 8.52 5.14 0.85 8.11 5.34 0.81 8.44 5.53 0.67
Std 1.4 1.2 0.59 1.35 1.18 0.65 1.75 1.21 0.54

5-layer Mean 8.8 6.22 1.27 6.17 4.01 0.49 4.41 3.15 0.18
Std 1.48 0.95 0.58 1.62 1.26 0.51 1.50 1.22 0.26

One of the most important aspects of evaluating our metric’s performance is the computational
savings offered compared to traditional training. A comparison of the average time taken to calculate
our metric and the time taken to train a target model for a particular TL setup is presented in Table
2 (we used M3 MacBook Pro with 24 GB RAM). Here time taken is a measurement of CPU time
given in seconds (not wall time). The CPU time measures the sum of the total time taken by all the
CPU cores in use and is the true cost of computation as it is not affected by multi-core computation.
Our metric provides significant time savings for each TL setup, with as high as 57 times faster
computation. We observe that the computational benefits are reflected across data sizes indicating
robustness. We also observe that the time taken by the metric scales sub-linearly with the data size
(tl-frac) which suggests that it can work with a large number of samples.

Table 2: Improvement in time taken for metric calculation vs target neural network training for all 3
TL setups for 5-layer custom model for binary classifier case. Values given in CPU seconds.

MNIST-MNIST CIFAR10-CIFAR10 CIFAR10-MNIST
Tar=(2,4) Tar=(1,2) Tar=(2,4)

tl-frac NN Metric Eff. NN Metric Eff. NN Metric Eff.
0.01 4.49 0.11 ×41 7.71 0.17 ×44 11.12 0.25 ×45
0.03 12.76 0.23 ×57 24.84 0.48 ×52 29.65 0.76 ×39
0.05 12.39 0.27 ×46 23.68 0.58 ×41 34.81 0.89 ×39

5.2 MULTI-CLASS CASE

We now consider the results for the multiclass case where we consider 3 settings – 3-class source to
binary target, 4-class source to binary target, and 4-class source to 3-class target. Similar to Figure
7, we present the fraction of correct rank statistics in Figure 8 for the multiclass case for the 5-layer
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custom model, where the x-axis represents the TL setup with a specific target task. To demonstrate
that our metric works best when identifying the best-performing source-target pairs, we consider
high threshold values (0.9 for Figure 8a and 8b and 0.85 for 8c). However, note that we omitted
the CIFAR10-MNIST plot for Figure 8c since the maximum transfer learning accuracy for 4-class
source to 3-class target was around 75% (maybe need a larger custom model to achieve better). We
can observe in each of Figures 8a, 8b, 8c, the fraction of correct ranks increases with an increase in
tl-frac (light to dark bar plots). Table 3 presents the time-saving statistics for the multiclass case for
MNIST-MNIST setup for the 5-layer custom model. We observe that the metric provides significant
computational savings even for multiclass cases, with around ×50 less time taken for tl-frac=0.01.
However, the factor of improvement changes significantly with an increase in tl-frac, where for 4-
class source to 3-class target, the benefit drops for ×51 improvement to ×5 (still good) when tl-frac
goes from 0.01 to 0.05. Note that in Algorithm 1, at each step of the ternary search, the computation
cost to calculate P̂ tr(q) is proportional to q(m−1) for m-ary source. Hence, for binary source, the
cost is proportional to q (m=2) but for 3-class and 4-class source, the cost scales as q2 and q3

respectively. Recall that the search space for q∗ depends on the nval, which depends on dataset size
(tl-frac). Hence, as tl-frac increases, the time improvement decreases non-linearly. More statistics
on rank deviation for binary and multiclass cases are presented in Appendix D.1 and D.2.

(a) 3-class source to binary target (b) 4-class source to binary target (c) 4-class source to ternary target

Figure 8: Rank similarity performance of metric for source tasks with high TL accuracy for varying
data sizes (tl-frac) across TL setups using 5-layer custom model in multiclass case.

Table 3: Improvement in time taken for metric vs target neural network training for MNIST-MNIST
TL Setup for 5-layer custom model for multi-class case. Values given in CPU seconds.

3-class Src, 2-class Tar 4-class Src, 2-class Tar 4-class Src, 3-class Tar
Tar=(2,8) Tar=(2,8) Tar=(2,3,8)

tl-frac NN Metric Eff. NN Metric Eff. NN Metric Eff.
0.01 5.24 0.11 ×48 4.75 0.10 ×47 6.41 0.13 ×51
0.03 11.19 0.21 ×53 8.04 0.32 ×25 11.59 0.71 ×16
0.05 12.03 0.32 ×38 11.53 0.75 ×15 15.85 2.89 ×5

6 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of selecting best pre-trained source model for transfer learn-
ing for a given target task with limited data. We propose BeST, a novel quantization-based task-
similarity metric to measure transferability without needing a classical training process. The exper-
imental results on different datasets show that the metric can accurately rank and predict the best
pre-trained source model from a given group of models. It is shown that the metric is indifferent
to the architecture of the custom model used until all of them have near-optimal performance. The
performance of our metric increases with an increase in the number of data samples. We also show
that our metric provides significant time savings over training a neural network for transfer learning
implementation. There are certain limitations when scaling to multiclass cases where the compu-
tation time increases non-linearly with an increase in the number of data samples for transfer from
source classifying a large number of classes. A possible future direction is to refine the method to
overcome scalability challenges.
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A PROOF OF THEOREM 4.1

Proof. For binary classifiers, the softmax output of the source model can be represented as p =
[p1, p2] and since p1 + p2 = 1, we can only use p2 to quantize p and represent as a one-hot vec-
tor. Here, quantization to level q is intuitively equal to dividing the interval [0,1] into q parts and
indicating the bin where p2 falls through a one-hot vector. Let f1 = f(p2|Y=1) and f2 = f(p2|Y=2)

denote true underlying continous time conditional distribution of random variables (p2|Y = 1) and
(p2|Y = 2) respectively. Denote Pi,j(q) = P (X̄q = i|Y = j), i ∈ {1, .., q} and j ∈ {1, 2}, where
P (q) is the true conditional probability distribution of random variable (X̄q|Y ) . Then Pi,1(q) and
Pi,2(q) is given by Equation 6.

Pi,1(q) =

∫ i/q

(i−1)/q

f1(x) dx, Pi,2(q) =

∫ i/q

(i−1)/q

f2(x) dx (6)

Assume that P̂ tr(q) and P̂ val(q) represent the estimation of P (q) using the dataset Dtr
q and Dval

q

calculated as – P̂ tr
i,j(q) = N tr

i,j(q)/n
tr; P̂ val

i,j (q) = Nval
i,j (q)/nval, where N tr

i,j(q) and Nval
i,j (q)

represent number of samples with label Y = j for which the one-hot quantized vector has 1 at
index i using Dtr and Dval respectively. Using the definition of N tr(q) and Nval(q), we can say
N tr

i,j(q) ∼ Bin(ntr, Pi,j(q)) and Nval
i,j (q) ∼ Bin(nval, Pi,j(q)), we have E[P̂ tr

i,j(q)] = Pi,j(q) and

E[P̂ val
i,j (q)] = Pi,j(q).

For binary case, we can modify Equation 3 and 4 to Equation 7 and 8. Here πq
∗,i = r means that for

row i, P̂ tr
i,1(q) = P̂ tr

i,2(q) or equivalently N tr
i,1(q) = N tr

i,2(q).

Atr(πq
∗) = max

πq∈Fq

1

2

q∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i ) =
1

2

q∑
i=1

max
πq
i

P̂ tr
i,πq

i
(7)

πq
∗,i =

argmax
j
{P̂ tr

i,1(q), P̂
tr
i,2(q)} ; if unique argmax exists

r ; if there both columns are equal
(8)

It is given that the densities f1(x) and f2(x) are bounded i.e. f1(x), f2(x) ≤ B. This means 0 ≤
Pi,1, Pi,2 ≤ B/q. For simplicity of notation, we write Aval(πq

∗) as Aval(q), showing dependency on
q. Using the definition to calculate Aval(q), E[Aval(q)] for dataset Dval can be expressed as a sum
of two terms Aval

1 (q) and Aval
2 (q) as in Equation 9, where Aval

1 (q) and Aval
2 (q) are contributions

from rows with P̂ tr
i,1(q) ̸= P̂ tr

i,2(q) and rows with P̂ tr
i,1(q) = P̂ tr

i,2(q) respectively. We know that
0 ≤ Aval(q), Aval

1 (q), Aval
2 (q) ≤ 1.

E[Aval(q)] = Aval
1 (q) +Aval

2 (q) (9)

Aval
1 (q) and Aval

2 (q) can be expressed as in Equation 10 and 11.

Aval
1 (q) =

1

2

{
q∑

i=1

P̂ val
i,πq

∗,i
. 1(πq

∗,i ̸=r)

}
(10)

Aval
2 (q) =

1

4

{
q∑

i=1

(P̂ val
i,1 + P̂ val

i,2 ) . 1(πq
∗,i=r)

}
(11)

Since Aval
1 (q) is non-negative, we can use the markov inequality to write for any ϵ > 0 -

Pr(Aval
1 (q) > ϵ/2) ≤ E[Aval

1 (q)]

ϵ/2
(12)
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Focusing on the E[Aval
1 (q)] -

E[Aval
1 (q)] =

1

2
E

(
q∑

i=1

P̂ val
i,πq

∗i
. 1(πq

∗,i ̸=r)

)

=
1

2

q−1∑
i=0

E
(
P̂ val
i,πq

∗,i
. 1(πq

∗,i ̸=r)

)
=

1

2

q∑
i=1

(
Pi,1 Pr(π

q
∗,i = 1) + Pi,2 Pr(π

q
∗,i = 2)

)
=

1

2

q∑
i=1

(
Pi,1 Pr(N

tr
i,1 > N tr

i,2) + Pi,2 Pr(N
tr
i,1 < N tr

i,2)
)

(13)

For sake of simplicity we will denote ntr i.e. the number of samples for target training data, as
simply n as we do not need nval in the proof. We need to find upper bounds on Pr(N tr

i,0 > N tr
i,1)

and Pr(N tr
i,1 < N tr

i,2) as given below.

Pr(N tr
i,1 > N tr

i,2) =

n−1∑
k=0

Pr(N tr
i,1 > k) Pr(N tr

i,2 = k))

≤ Pr(N tr
i,1 > 0)

n−1∑
k=0

Pr(N tr
i,2 = k))

= (1− Pr(N tr
i,1 = 0))(1− Pr(N tr

i,2 = n))

≤ (1− Pr(N tr
i,1 = 0))

= (1− (1− Pi,1)
n)

≤
(
1−

(
1− B

q

)n)
(14)

Similarly for Pr(N tr
i,1 < N tr

i,2) -

Pr(N tr
i,2 > N tr

i,1) =

n−1∑
k=0

Pr(N tr
i,2 > k) Pr(N tr

i,1 = k))

≤ Pr(N tr
i,2 > 0)

n−1∑
k=0

Pr(N tr
i,1 = k))

= (1− Pr(N tr
i,2 = 0))(1− Pr(N tr

i,1 = n))

≤ (1− Pr(N tr
i,2 = 0))

= (1− (1− Pi,2)
n)

≤
(
1−

(
1− B

q

)n)
(15)

Using upper bound on Pi,1, Pi,2 and equations 14 and 15 we can write -

E[Aval
1 (q)] ≤ 1

2

q∑
i=1

(
B

q

(
1−

(
1− B

q

)n)
+

B

q

(
1−

(
1− B

q

)n))
= B

(
1−

(
1− B

q

)n)
(16)

Using equation 16 in equation 12 we get -

Pr(Aval
1 (q) > ϵ/2) ≤

2B

(
1−

(
1− B

q

)n)
ϵ

(17)
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Now for any given δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) where Q(ϵ, δ) =

B(
1−

(
1− ϵδ

B

)1/n
) , we have -

Pr(Aval
1 (q) > ϵ/2) ≤ δ

2
(18)

Now to get similar inequality on Aval
2 (q), define Aval

3 (q) = 1/2 − Aval
2 (q). Since Aval

3 (q) is non-
negative we can use markov inequality to write for any ϵ > 0.

Pr(Aval
3 (q) > ϵ/2) ≤ E[Aval

3 (q)]

ϵ/2
(19)

Focusing on the E[Aval
3 (q)] -

E[Aval
3 (q)] =

1

4
E

(
2−

q∑
i=1

(P̂ val
i,1 + P̂ val

i,2 ) . 1(πq
∗,i=r)

)

=
1

4
E

(
q∑

i=1

(P̂ val
i,1 + P̂ val

i,2 )(1− 1(πq
∗,i=r))

)

=
1

4

q∑
i=1

E
(
(P̂ val

i,1 + P̂ val
i,2 )(1− 1(πq

∗,i=r))
)

=
1

4

q∑
i=1

(Pi,1 + Pi,2) Pr(π
q
∗,i ̸= r)

=
1

4

q∑
i=1

(Pi,1 + Pi,2)(Pr(N
tr
i,1 > N tr

i,2) + Pr(N tr
i,1 < N tr

i,2))

≤ 1

4

q∑
i=1

(
2B

q

((
1−

(
1− B

q

)n)
+

(
1−

(
1− B

q

)n)))
= B

(
1−

(
1− B

q

)n)
(20)

Now for any given δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) where Q(ϵ, δ) =

B(
1−

(
1− ϵδ

B

)1/n
) , we have -

Pr(Aval
3 (q) > ϵ/2) ≤ δ

2
(21)

Now combining equations 18 and 21 we can write, for any ϵ, δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) =

B(
1−

(
1− ϵδ

4B

)1/n
) , we can write -
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Pr(|E[Aval(q)]− 1

2
| > ϵ) = Pr(|Aval

1 (q) +Aval
2 (q)− 1

2
| > ϵ)

≤ Pr(|Aval
1 (q)− 0|+ |Aval

2 (q)− 1

2
| > ϵ)

≤ Pr(|Aval
1 (q)− 0| > ϵ/2) + +Pr(|Aval

2 (q)− 1

2
| > ϵ/2)

= Pr(Aval
1 (q) > ϵ/2) + Pr(

1

2
−Aval

2 (q) > ϵ/2)

= Pr(Aval
1 (q) > ϵ/2) + Pr(Aval

3 (q) > ϵ/2)

=
δ

2
+

δ

2
= δ (22)

Remark. Since we are dealing with probabilities, for δ > 1 equation 22 will always be satisfied for
any q. Hence, practically we deal with 0 < δ ≤ 1. Also, in the proof we used the fact that ϵδ ≤ 4B

so that Q(
ϵ

2
,
δ

2
) is well defined and we don’t take nth root of a negative number.

B ARCHITECTURES FOR SOURCE AND CUSTOM MODEL

The neural network architectures used to build the CNN for the source models trained on MNIST
and CIFAR10 are given in Table B.1 and B.2 respectively. The 2-layer and 5-layer architecture used
for the custom model is given in Table B.3.

Table B.1: CNN architecture for Source Tasks using MNIST.

Layer Type Parameters Activation
Conv2D 1 filters=32, kernel=(3x3) relu

Max-Pooling 1 pool-size=(2x2) -
Conv2d 2 filters=64, kernel=(3x3) relu

Max-Pooling 2 pool-size=(2x2) -
Flatten - -

Dropout probability=0.5 -
Output classes=m softmax

Table B.2: CNN architecture for Source Tasks using CIFAR-10.

Layer Type Parameters Activation
Conv2D 1 filters=32, kernel=(3x3) relu
Conv2D 2 filters=32, kernel=(3x3) relu

Max-Pooling 1 pool-size=(2x2) -
Conv2d 3 filters=64, kernel=(3x3) relu
Conv2d 4 filters=64, kernel=(3x3) relu

Max-Pooling 2 pool-size=(2x2) -
Flatten - -
Dense neurons=128 relu
Output classes=m softmax

C EXPERIMENTAL SETTINGS

As explained in Section 5, for each target task for any of the 3 TL setups, we consider 45 different
pre-trained source models. The specifics of which 45 source models are selected for each TL setup

16
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Table B.3: DNN architecture for Transfer Learning Models.

Layer Type Neurons Activation
2-layer

Dense 10 relu
Output n softmax

5-layer
Dense 10 relu
Dense 20 relu
Dense 40 relu
Dense 10 relu
Output n softmax

for source classifiers with different numbers of classes are explained below. Recall that both MNIST
and CIFAR10 have 10 classes.

Binary source models: When the source model is a binary classifier, we choose all possible unique
combinations of choosing 2 classes out of 10 to define the source models. Note that classifying data
of classes 1 and 5 and 5 and 1 are considered the same source model. Let Src = (i, j) denote that the
source model is trained to classify images from classes indexed i and j where i, j ∈ {1, 2, .., 10}
and i ̸= j (e.g., Src=(1,2) for MNIST means source model to classify digits 0 and 1 as the 1st class
corresponds to digit 0 and so on). Then the set of 45 source models can be represented as a set of
tuples S = {(1, 2), (1, 3), ....(2, 3), (2, 4), ..., (9, 10)}.
3-class source models: Let Src = (i, j, k) denote that the source model is trained to classify
images from classes indexed i, j and k where i, j, k ∈ {1, 2, .., 10} and i ̸= j ̸= k (e.g.,
Src=(1,2,3) for MNIST means source model to classify digits 0, 1 and 2). When the source model
is a ternary classifier, there are more than 45 unique combinations of choosing 3 classes out of
10. We choose the first 45 unique combinations of 3 classes defined in the order given by set
S = {(1, 2, 3), (1, 2, 4), ..., (2, 3, 4), (2, 3, 5), ...(2, 4, 6)}.
4-class source models: Let Src = (i, j, k, l) denote that the source model is trained to classify
images from classes indexed i, j, k and l where i, j, k, l ∈ {1, 2, .., 10} and i ̸= j ̸= k ̸= l
(e.g., Src=(1,2,3,4) for MNIST means source model to classify digits 0, 1, 2 and 3). We choose
the first 45 unique combinations of 4 classes out of 10, defined in the order given by set S =
{(1, 2, 3, 4), (1, 2, 3, 5), ..., (1, 3, 4, 5), (1, 3, 4, 6), ...(1, 3, 7, 9)}.

D RANK DEVIATION STATISTICS

D.1 BINARY CASE

The statistics on the deviation of the predicted rank from the true ranks similar to Table 1 is presented
for CIFAR10-CIFAR10 and CIFAR10-MNIST TL setups in Table D.1 and D.2 respectively. We can
observe that for a threshold of 0.8 i.e. ranking source models with a transfer learning accuracy of
> 80%, the average deviation of ranks is less than 1 rank for CIFAR10-CIFAR10 setup and less
than 2 ranks for CIFAR10-MNIST respectively. This holds across different data sizes, varying from
as low as ∼ 100 samples (tl-frac=0.01) to ∼ 500 samples (tl-frac=0.05), in both 2-layer and 5-layer
custom model architectures.

Table D.1: Statistics for deviation of predicted ranks from true ranks for CIFAR10-CIFAR10 TL
Setup with target task to classify images of aeroplane and automobile.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
TL Model Threshold 0.5 0.7 0.8 0.5 0.7 0.8 0.5 0.7 0.8

2-layer Mean 6.11 1.56 0.31 5.45 1.64 0.14 6.55 1.65 0.14
Std 1.28 0.72 0.40 1.58 0.72 0.24 1.43 0.93 0.24

5-layer Mean 7.47 1.81 0.34 6.19 1.55 0.15 5.93 1.43 0.13
Std 2.10 0.65 0.30 2.13 0.8 0.27 1.55 0.63 0.23
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Table D.2: Statistics for deviation of predicted ranks from true ranks for CIFAR10-MNIST TL Setup
with target task to classify images of digits 0 and 1.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
TL Model Threshold 0.5 0.7 0.8 0.5 0.7 0.8 0.5 0.7 0.8

2-layer Mean 4.90 1.45 0.50 3.76 1.46 0.56 2.92 1.05 0.41
Std 1.06 0.69 0.50 0.9 0.59 0.47 1.42 0.66 0.57

5-layer Mean 5.24 1.93 0.83 3.62 1.56 0.44 3.38 1.29 0.26
Std 1.12 0.49 0.46 1.28 0.67 0.50 1.55 0.95 0.41

D.2 MUTLICLASS CASE

Similar to the binary case, we present the rank deviation statistics (mean and standard deviation) for
MNIST-MNIST TL setup for 3-class source to 2-class target, 4-class source to 2-class target, and
4-class source to 3-class target in Table D.3. As observed in the binary case, the metric performs best
for source models with high transfer learning accuracy i.e. high threshold (highlighted in bold). For
threshold=0.9, the mean rank deviation is less than 1 rank which shows the ability of our metric to
rank the source well across different multiclass transfer learning settings. The mean rank deviation
also decreases with an increase in dataset size (tl-frac) as expected. We can also observe that the
standard deviation of the rank deviations is less than 2 i.e. individual rank deviations are not too far
from the average.

Table D.3: Statistics for deviation of predicted ranks from true ranks for MNIST-MNIST TL Setup
for multiclass case.

3-class to 2-class 4-class to 2-class 4-class to 3-class
Tar=(2,8) Tar=(2,8) Tar=(2,3,8)

tl-frac Threshold 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.01 Mean 7.49 5.99 1.01 5.89 5.22 1.57 7.42 4.25 0.15
Std 1.99 1.73 0.92 1.70 1.53 1.39 2.03 1.05 0.26

0.03 Mean 4.24 4.18 0.60 3.82 3.81 0.45 4.99 3.69 0.03
Std 1.23 0.95 0.51 0.85 0.83 0.47 1.51 1.29 0.12

0.05 Mean 2.90 2.84 0.47 3.09 3.09 0.29 4.8 3.42 0.07
Std 0.98 0.94 0.34 0.79 0.79 0.43 1.83 1.72 0.21

E STATISTICS TO JUSTIFY UNIMODAL APPROXIMATION

Table E.1: Statistics to compare the difference for MNIST-MNIST TL setup using 5-layer custom
model.

tl-frac Stats 2-class Src to 2-class Tar 3-class Src to 2-class Tar
Tar=(2,4) Tar=(2,8)

0.01 Mean 0.041 0.045
Std 0.021 0.025

0.03 Mean 0.024 0.027
Std 0.014 0.014

0.05 Mean 0.017 0.019
Std 0.011 0.010

One of the key aspects of our algorithm design is the unimodal approximation for variation of
Aval(πq

∗) vs q in the search space q ∈ (2, nval/n). This approximation allows us to avoid cal-
culating Aval(πq

∗) at every q and instead use ternary search to find the maximum Aval(πq
∗). To

justify the approximation, we present the mean and standard deviation of the absolute value of the
difference in calculated metric (i.e. the maximum Aval(πq

∗)) using brute force search and ternary
search in Table E.1. Observe that the mean difference (in bold) for 2-class source to 2-class target
and 3-class source to 2-class target has a maximum value of ∼ 0.05 for tl-frac=0.01 (100 samples
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case). This means on average, the best Aval(πq
∗) found by ternary search differs at max by 5% as

compared to the one calculated by brute-force. Observe that the mean decreases with an increase in
dataset size (tl-frac) with a value as low as < 0.02 (i.e. < 2% accuracy difference) for 500 sam-
ples (tl-frac=0.05). The small standard deviation suggests that the actual difference is close to the
mean difference. The low average difference suggests that the unimodal approximation is a reason-
able approximation as ternary search gives a value very close to the brute-force value while giving
significant time savings.

F CORRELATION STATISTICS

In addition to the evaluation of our metric in Section 5 using the fraction of correct ranks as illus-
trated in Figures 6, 7 and 8, in this section we also evaluate the performance of our metric using
standard statistical correlation coefficients namely - Pearson, Spearman and Kendall’s Tau.

Figure F.1, F.2 and F.3 presents the correlation values for Pearson, Spearman, and Kendall’s Tau
correlation coefficients respectively, as dataset size (tl-frac parameter) changes. Each figure has 4
subfigures, representing the correlation data for 4 cases - 1) 2-class Source to 2-class Target, 2) 3-
class Source to 2-class Target, 3) 4-class Source to 2-class Target, and 4) 4-class Source to 3-class
Target. Within each subfigure, the legend, ‘CIFAR10-MNIST Tar=(1,2)’ for example, indicates the
transfer learning setup where the source model has been trained to classify images from CIFAR10
while the target task is to learn to classify images from MNIST belonging to the 1st and 2nd classes
(i.e. images of digits 0 and 1).

As explained in Section 5, for each target task, we use 45 unique pre-trained source models and for
each source, we evaluate the transfer learning performance after training and calculate our metric
using Algorithm 1. The correlation statistics presented are the average of the correlation values over
20 runs, where for each run, the correlation is measured between two lists of 45 items each (as there
are 45 sources).

(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.1: Pearson Correlation values

The Pearson coefficient measures the correlation directly between the transfer accuracy and the
metric values. However, Spearman and Kendall’s Tau coefficient measures the correlation between
the rankings deduced from these values and not the values directly. Recall that our metric aimed to
rank the source models accurately according to their transferability for a particular target task.
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(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.2: Spearman Correlation values

(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.3: Kendall’s Tau Correlation values

From all these figures, we can observe that the correlation values for all three correlation methods
are high indicating that our metric values and the rankings provided are highly correlated with the
transfer learning accuracy. We can also observe that the correlation values increase as the dataset
size increases (tl-frac parameter goes from 0.01 to 0.05). This is in line with our expectation as
performance improves with the availability of more data.
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G EXPERIMENTS WITH IMAGENETTE DATASET

Imagenette Howard (2019) is a smaller, curated subset of the ImageNet dataset designed to speed
experiments and make them more accessible for research and practice. It contains only 10 classes of
images: tench, English springer, cassette player, chain saw, church, French horn, garbage truck,
gas pump, golf ball, and parachute. The images used are 64 × 64 pixels. We can call this
setup the ‘Imagenette-Imagenette’ transfer learning setup (nomenclature similar to MNIST-MNIST,
CIFAR10-CIFAR10, etc.), where both the source and target models are to classify images from the
Imagenette dataset.

We present the results for a binary classification case in which both source and target models are
binary classifiers in the Imagenette dataset, trying to classify images from 2 out of the 10 classes
in the dataset. The source model architecture used is the same as that used for CIFAR10 (Table
B.2) and the 5-layer custom model (as in Table B.3) is used to build and train the target model. To
demonstrate the variation of results with dataset size, we used 3 tl-frac values - 0.1, 0.3, and 0.5
(corresponding to ∼ 150, ∼ 450, and ∼ 750 samples). We used 10 runs for each source-target pair
(each run has a different subset of target data) instead of the 20 runs used for the earlier setups.

G.1 VISUALIZATION OF COMPARISON OF RANK BY METRIC VS TRUE RANK

Similar to Figure 5, the comparison of ranks given by the true transfer performance (test accuracy
after training target model using a particular source), metric calculated using brute force, and metric
calculated using our ternary search approach, as given in Algorithm 1, is presented in Figure G.1
using ∼ 150 samples and Figure G.2 using ∼ 750 samples4. Tar=(1,2) indicates that the target task
here is to classify images from the 1st and 2nd classes in Imagenette (tench and English springer).

Figure G.1: Comparison of ranks predicted by metric and ground truth for 2-class source to 2-class
target transfer in Imagenette-Imagenette transfer setup (Tar=(1,2)) using ∼ 150 data samples.

Figure G.2: Comparison of ranks predicted by metric and ground truth for 2-class source to 2-class
target transfer in Imagenette-Imagenette transfer setup (Tar=(1,2)) using ∼ 750 data samples.

4Observe that the order of source models (x-axis) change with the change is the size of the dataset as the
transfer learning accuracy changes.
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The x-axis contains the source models represented by a tuple where, for example, the ‘2,4’ indicates
that the source model is trained to classify images from 2nd and 4th class in Imagenette (English
springer and chain saw). We omit the names of the classes to avoid crowding in the figures.

Again, we can observe a very small deviation between the metric value calculated using brute force
(green) and the values calculated using ternary search (blue) in both figures. This results in the
rankings given by the metric using ternary search being very similar to those given by the metric
calculated using brute force (supporting our unimodal approximation)

If we look at the most transferable source for the target task used (Tar=(1,2)) in Figure G.1 and G.2
i.e. source to classify images from classes (1,2), (1,4), (1,9), etc., we can observe that all of them
have one class in common with the target task. It makes intuitive sense that a source model that can
classify images from classes indexed 1 and 4 should be able to classify images from classes 1 and
2 (target task) pretty well as it already knows how to classify images from class 1. The result also
aligns with our intuition that the best transferable source should be the one that classifies the same
classes as the target i.e. (1,2) here.

G.2 FRACTION OF ACCURATE RANK PREDICTIONS

Similar to Figure 6, the fraction of correct ranks for different threshold values is presented in Figure
G.3. We can observe that for both the target tasks (Tar=(1,2) in Figure G.3a and Tar(2,3) in Figure
G.3b), as observed with the other datasets in Section 5, the fraction of correct ranks improve as we
evaluate for higher threshold i.e. evaluate for source models with higher transfer learning accuracy.
We can also observe that the fraction of correct ranks improves for a given threshold as the dataset
size increases (tl-frac increases).

(a) Tar=(1,2) (b) Tar=(2,3)

Figure G.3: Fraction of accurate ranks Vs threshold for Imagenette-Imagenette Transfer Setup for
different dataset sizes using 5-layer custom model.

G.3 TIME IMPROVEMENT STATISTICS

Table G.1: Improvement in time taken for metric calculation vs target neural network training for
Imagenette-Imagenette TL setups for 5-layer custom model for binary classifier case. Values given
in CPU seconds.

Tar=(1,2) Tar=(2,3)
tl-frac Training Metric Eff. Training Metric Eff.

0.1 46.35 0.94 ×48 48.69 0.96 ×51
0.3 112.98 2.64 ×42 115.73 2.66 ×43
0.5 180.84 4.35 ×41 178.19 4.37 ×41

The comparison of the time taken to train a target model using a pre-trained source to evalu-
ate the transfer accuracy versus time taken to calculate the proposed transferability metric for the
Imagenette-Imagenette transfer setup for two target tasks (Tar=(1,2) and Tar=(2,3)) is given in Table
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G.1. Similar to the results in Table 2 and 3, we can observe that our calculating our metric provides
significant time savings as compared to finding the transfer performance through training, with im-
provements (Eff. column) of around× 40 and more. We can also observe that the time improvement
is reflected for different dataset sizes (tl-frac). With an increase in dataset size, there is a decrease
in time efficiency but the decrease is non-linear. The computational improvements offered by our
metric for a larger dataset like Imagenette suggest that the results are scalable and not limited to
smaller datasets like MNIST and CIFAR10.

H VARIATION WITH DIFFERENT RANDOM SEED FOR PRE-TRAINED SOURCE

The pre-trained source model is trained once for each source task to be used multiple times for
different target data and target models. Hence, it is important to demonstrate that the results are not
sensitive to a particular source network initialization parameter. In this section, we present results
considering sources trained on 5 different random seeds.

(a) MNIST-MNIST Src=(2,8), Tar=(1,2) (b) CIFAR10-CIFAR10 Src=(2,3), Tar=(1,2)

Figure H.1: Train-validation accuracy tradeoff for 5 different random seeds used to initialize the
source model before training. The source and target tasks are binary classifiers.

(a) Fraction correct ranks across different random
seeds

(b) Average and Standard Deviation across differ-
ent random seeds

Figure H.2: Train-validation accuracy tradeoff for 5 different random seeds used to initialize the
source model before training. The source and target tasks are binary classifiers. The target task is to
classify images from classes airplane and automobile (Tar=(1,2))

Similar to Figure 4, we present the variation of Atr(πq
∗) and Aval(πq

∗) vs quantization level q for
5 different random seeds in Figure H.1a and H.1b. Figure H.1a presents the variation for MNIST-
MNIST transfer setup with source model to classify digits 1 and 7 (Tar=(2,8)5) while the target task
is to classify digits 0 and 1 (Tar=(1,2)). Similarly, Figure H.1b presents the variation for CIFAR10-
CIFAR10 transfer setup with source model to classify images from classes index 2 and 3 (Src=(2,3))

5Digit 1 is the 2nd and 7 is the 8th class in MNIST
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and the target task is to classify images from classes index 1 and 2 (Tar=(1,2)) in CIFAR10. We can
observe that the structure of the variations remains the same across different random seeds. We can
also observe the same unimodal-like structure for all 5 random seeds.

Specifically, for the CIFAR10-CIFAR10 transfer setup using the 5-layer custom model, the fraction
of accurate ranks vs threshold for different random seeds is presented in Figure H.2a. Figure H.2b
presents the average and the standard deviation for each threshold value across the 5 random seeds.
We can observe Figure H.2a that though there is some variation for values across random seeds (as
expected), the overall trend is similar which implies that the results in Section 5 are not a conse-
quence of a particular network initialization. From Figure H.2b, we can observe that the standard
deviation of the fraction of correct ranks is not significant (<5%) and the average fraction of cor-
rect rank predictions increase when we use a higher threshold i.e. select source models with higher
transfer learning performance.
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