
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEST - A NOVEL SOURCE SELECTION METRIC FOR
TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the most fundamental, and yet relatively less explored, goals in transfer
learning is the efficient means of selecting top candidates from a large number of
previously trained models (optimized for various “source” tasks) that would per-
form the best for a new “target” task with a limited amount of data. In this paper,
we undertake this goal by developing a novel task-similarity metric (BeST) and an
associated method that consistently performs well in identifying the most trans-
ferrable source(s) for a given task. In particular, our design employs an innovative
quantization-level optimization procedure in the context of classification tasks that
yields a measure of similarity between a source model and the given target data.
The procedure uses a concept similar to early stopping (usually implemented to
train deep neural networks (DNNs) to ensure generalization) to derive a function
that approximates the transfer learning mapping without training. The advantage
of our metric is that it can be quickly computed to identify the top candidate(s) for
a given target task before a computationally intensive transfer operation (typically
using DNNs) can be implemented between the selected source and the target task.
As such, our metric can provide significant computational savings for transfer
learning from a selection of a large number of possible source models. Through
extensive experimental evaluations, we establish that our metric performs well
over different datasets and varying numbers of data samples.

1 INTRODUCTION

Transfer Learning Pan and Yang (2010) Weiss et al. (2016) is a method to increase the efficacy of
learning a target task by transferring the knowledge contained in a different but related source task.
It is known that the effectiveness of supervised learning depends on the amount of labeled data.
However, for various practical problems (e.g., medical imaging), collecting large quantities of la-
beled data might not be easy, as data collection and labeling is a tedious, expensive, and sometimes
infeasible task (data is scarce, e.g., rare medical diseases). By employing transfer learning, we can
enhance performance even with limited labeled data. Talking specifically of image classification,
research in Oquab et al. (2014) showed how image representations learned with convolutional neu-
ral networks (CNNs) on large-scale annotated datasets can be efficiently transferred to other visual
recognition tasks with limited data. The work in Yosinski et al. (2014) studied the impact of trans-
ferring features learned in different CNN layers and Long et al. (2015) describes how deeper layers
can be more effectively transferred to a target CNN. The core idea of transfer learning is that differ-
ent models trained for different sets of classes might learn some common features about the image
in the initial layers that are not too task-specific. Recent studies show how transfer learning can be
performed for CNNs by initializing the target neural network using feature-learned source CNN and
adding a few dense layers to map the source model output to target labels.

From the literature Yosinski et al. (2014), it is evident that the choice of source model affects the
target task performance as not every source shares similarities with the target, with some sources
resulting in a phenomenon called negative transfer Wang et al. (2019). In transfer learning research
the usual question is - given a source and target task, how to transfer? In contrast, in this work,
we are trying to answer - given a target task and many different source tasks, which source to
choose for best transfer? With the increasing availability of pre-trained learning models for a variety
of classification tasks, it is now more important to assess the similarity between many existing
source models S1, S2, ...Sn and a new target task T to find the best matching source task. The

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

straightforward approach for source selection is to train the target model using each source to find
its accuracy. However, this is generally time-consuming given the complexity of large-scale neural
networks. This calls for a quick task similarity metric that will help us rank a group of candidate
source tasks without computationally intense neural network training for each of them. Specifically,
this metric must measure the potential of a source model to be favorably utilizable by a given target
task. We do not aim to propose the metric as an alternative to training but rather as a pre-processing
step before training with the best source. Moreover, for it to be useful, we would like the metric to
have the following properties –

• Reliable in identifying good pairs: The metric provides an accurate and reliable ranking
for source models with high transfer learning performance (e.g., > 90% accuracy).

• Time efficient: Metric calculation should provide significant computational savings result-
ing in less time taken as compared to training a transfer learning model.

• Architecture indifferent: The metric does not use any knowledge of the architecture of
the layers added on top of the pre-trained model. Hence, it should perform equally well if
compared against different architectures if they have near-optimal accuracy performance.

In this work, we undertake this challenge for the scenario where source and target tasks are image
classifiers. Our contributions can be summarized as — We propose a novel quantization-based
approach to measure relatedness between a given source-target task pair to evaluate transfer learning
performance. Our results show that our method can accurately rank source tasks for source models
with a high transfer learning accuracy. We have a novel way to use the concept of generalization and
early stopping, typically used in neural network training, to a problem outside the typical use case.

2 RELATED WORK

Quantization as a technique is not new to machine learning as it has been used to reduce the com-
putational and memory costs of running inference by representing the weights and activations with
low-precision data types like 8-bit integers instead of the usual 32-bit floating point. Several works
Courbariaux et al. (2015); Gupta et al. (2015); Micikevicius et al. (2018), Gholami et al. (2021),
talk about breakthroughs of half-precision and mixed-precision training. However, to the best of
our knowledge, our approach to using quantization to transform model softmax output to evalu-
ate task-transferability is novel. Authors in Dwivedi and Roig (2019) propose an approach to use
Representation Similarity Analysis (RSA) to obtain a similarity score among tasks by computing
correlations between models trained on different tasks. A study for automated source selection for
transfer learning in CNNs using an entropy-based transferability measure is presented in Afridi et al.
(2018). Methods like NCE Tran et al. (2019) and LEEP Nguyen et al. (2020) use the source and
target labels to estimate transfer performance. In reality, we often do not have access to the source
data but only to the source model as considered in our setup. Other methods like LogME You et al.
(2021), GBC Pándy et al. (2022) and H-score Bao et al. (2019) use the source model embeddings
and target data to estimate transferability. The work in Dai et al. (2019) evaluates transferability for
Named Entity Recognition (NER) tasks in NLP. However, the method used domain-specific knowl-
edge of NLP tasks, and hence cannot be generalized for other tasks (e.g., image classification). A
similarity measure based on a restricted Boltzmann machine is proposed in Bou Ammar et al. (2014)
to automatically select the best source task for transfer in the context of reinforcement learning.

3 SYSTEM MODEL

Transfer learning architecture and training: For many pre-trained models in real-world applica-
tions (e.g., ChatGPT, etc.), we have no access to the structures or parameters of the model. In such
scenarios, we have to treat the source model as a black-box, i.e., we can only access the input and
output of the source model. Therefore, we implement transfer learning as illustrated in Figure 1,
where we append a custom model after the output of the source model to form the target model. The
custom model is trained to minimize cross-entropy loss on training data Dtr using Adam optimizer.
Early stopping is used to stop the training when the loss on validation dataDval no longer decreases.

Models: The source and target models, denoted by fs : X source 7→ Y source and ft : X target 7→ Y target,
are mappings from the source input set X source to source output set Y source and target input set

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Transfer Learning architecture as concatenation of black-box source with a custom model.

X target to target output set Y target respectively. We assume that elements in both X source and X target

are of the same dimension (e.g., images of the same size). This ensures that the target input can
be directly fed to the source model without any pre-processing step. Unless stated otherwise, we
assume the source and target models are m-ary and n-ary classifiers (generally m ≥ n). The source
output set is a set of softmax vectors and for a m-ary classifier, can be defined as Y source = {p =
(p1, p2, ..., pm)|

∑m
i=1 pi = 1, pi ≥ 0 ∀i}. The target output set is a set of labels and for a n-ary

classification, Y target = {1, 2, ..., n}. The custom model, denoted by fc : Y source 7→ Y target, maps the
source output set Y source to the target output set Y target.

Dataset: We assume that we do not have access to the source data but only the target data de-
noted by D = {Dtr,Dval,Dt}, where Dtr = {Xtr, Y tr}, Dval = {Xval, Y val}, and Dt = {Xt, Y t}
represents the train, validation and test datasets. Xtr = {xtr

1 , ..., xtr
ntr}, Xval = {xval

1 , ..., xval
nval},

Xt = {xt
1, ..., x

t
nt} denote the list of input data samples, while Y tr = {ytr1 , ..., ytrntr}, Y val =

{yval1 , ..., yvalnval}, and Y t = {yt1, ..., ytnt} denote the list of their respective labels. Here, ntr, nval, and
nt denote the number of data samples for the three datasets respectively. We have assumed that the
distribution of class labels for all n classes is uniform1 i.e. Pr(Y tr = i) = 1/n,∀i ∈ {1, 2, ..., n}.
Transferability: The ability of a source model to enhance performance on a target task is referred
to as transferability. It depends on the source model fs, the custom model fc, the target data D, the
optimizer parameters (parameters for Adam) and the training methodology. Given that we fixed the
optimizer and the training methodology, transferability is represented as a function T (fs, fc,D) and
defined as the prediction accuracy of the trained target model on the unseen target test data Dt.

4 OUR METHOD: BEST

Problem Statement: Given a set of p pre-trained source models S = {f1
s , f

2
s , ..., f

p
s } and a target

dataset D, say Ti = T (f i
s, fc,D) represents the ground truth of transferability for ith source. We

want to define a transferability measure that takes the source model and target dataset as input, such
that if Mi represents the score given by the measure for ith source, the transferability ranks of the
source models according to {Mi}pi=1 are very close to the ranks calculated using {Ti}pi=1.

To avoid using traditional neural network training to get the transferability of a source model fs to
a target dataset D, we need to derive an analytical function corresponding to the custom model fc,
that maximizes the prediction accuracy on target data. To ensure that its architecture-indifferent, it
should only using the distribution of softmax output2 and target labels. Given that we have limited
target data samples, the estimation of this continuous distribution is imprecise.

To understand the need for quantization, assume that the source and target models are binary clas-
sifiers, and consider a ‘hardmax’ case where the softmax output [p1, p2] is transformed to a 2 × 1
one-hot discrete vector. In this case, there are only 4 choices for the custom model mapping (binary
input to binary output) and it is easy to formulate the accuracy of each choice based on the estimation

1We do not want the custom model to be biased towards learning features for the input of a particular class.
2Produced when target input is fed to the source model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of the discrete joint distribution. However, we lose the precision of information3 in the transforma-
tion to one-hot vectors, affecting the accuracy of the mapping. The quantization approach helps us
use the best of both worlds, where instead of mapping the softmax to a one-hot ‘hard’ vector, we can
perform a custom transformation to a desired precision. It helps reduce our setup from a real-valued
mapping (softmax to finite label) to a quantized mapping (one-hot vector to finite label) resulting in
easier analytical analysis as it is a discrete function with a finite number of options.

Our algorithm (BeST) for best pre-trained source model selection calculates the optimal quantization
level and corresponding metric for each model using target train and validation data. The source
model with the highest metric is the model most suitable for the target task. The key part of this
algorithm is how the metric is calculated and how well it can represent the performance of transfer
learning. In Subsection 4.1, we define the quantization function for any m-ary source to n-ary target
and Subsection 4.2 talks about the necessary notations and definitions. Subsection 4.3 talks about the
variation of train and validation accuracies as the quantization level increases. Finally, in Subsection
4.4 we present the definition of our transferability metric and the algorithm to compute it.

4.1 NOVEL QUANTIZATION APPROACH

For an input x ∈ X source, the corresponding source softmax output fs(x) ∈ Y source represented as
p = [p1, p2, ..., pm], can be transformed to a one-hot vector with quantization level q (or q-quantized
for shorthand) using the quantization function Q(p, q) = pq , where pq is a q(m−1) × 1 vector and
pqi is 0 at every index i except at index i′ given by Equation 1, where pqi′ = 1.

i′ =

{
⌊pjq⌋qj−2 ; if ∃j ∈ {2, 3, ...m} s.t. pj = 1∑m

j=2⌊pjq⌋qj−2 + 1 ; o.w.
(1)

We use the fact that we only need (m − 1) values to uniquely characterize a softmax vector with
m entries as the sum of values is 1. Figure 2 tries to explain the quantization process through an
example where the source model is a ternary classifier and we transform it to a quantization level
q=3. The vector [p2, p3] = [0.7, 0.2] can be imagined to being mapped to a 2-D grid, where each
dimension corresponds to representing one of pj’s and is divided into 3 bins (q=3). The one-hot
matrix can be unwrapped into a one-hot vector as in Figure 2. This can be extended to any m × 1
softmax vector being mapped to a (m−1)-D grid and we can always obtain a one-hot representation.

Figure 2: Quantization function explained through an example of a 3-class source model and q=3.

4.2 MATHEMATICAL FORMULATION

LetHq = {X ∈ {0, 1}q(m−1)

:
∑q(m−1)

i=1 Xi = 1} denote the set of q(m−1)×1 one-hot vectors. Con-
sider set of all possible mappingsFq = {πq |πq : Hq 7→ Y target} from quantized source output setHq

to binary target label setY target. SinceHq contains one-hot vectors,Fq can be equivalently defined as
Fq = {πq |πq : Z+

≤q(m−1) 7→ Y target}, where πq = [πq
1, π

q
2, ..., π

q
q(m−1)], π

q
i ∈ Z+

n . Define q-quantized
training and validation datasets denoted byDtr

q = {Xtr
q , Y tr} andDval

q = {Xval
q , Y val} respectively,

where Xtr
q = Q(fs(X

tr), q) and Xval
q = Q(fs(X

val), q) represent the list of transformed input vec-
tors for training and validation input data Xtr and Xval. Let (X ∈ X target, Y ∈ Y target) denote ran-
dom variables for the target input and label respectively. Assume that P (q) = Pr(Xq|Y) represents

3[0.1, 0.9] and [0.4, 0.6] both have the same hardmax representation of [0,1].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Obtain policy (b) Apply policy

Figure 3: Policy πq
∗ explained through example with source and target models as binary classifiers.

the discrete conditional probability distribution of random variables representing q-quantized source
output Xq = Q(fs(X), q) and target label Y . Since Xq is a one-hot vector, we can equivalently
define P (q) = Pr(X̄q|Y), where X̄q = i if Xq,i = 1. Let P̂ tr(q) = P̂r(X̄q|Y) represent empirical es-
timation of P (q) using dataset Dtr

q and denote P̂ tr
i,j(q) = P̂r(X̄q = i|Y = j), i ∈ Z+

q(m−1) , j ∈ Z+
n .

We define the training accuracy Atr(πq) as the mapping accuracy of πq on quantized training
dataset Dtr

q . It depends on the estimate of joint distribution P̂r(X̄q = i, Y = πq
i) and using the

uniform distribution assumption for samples per class, can be expressed as Equation 2.

Atr(πq) =

q(m−1)∑
i=1

P̂r(X̄tr
q = i, Y tr = πq

i) =
1

n

q(m−1)∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i) (2)

Let πq
∗ represent the function that maximizes Atr(πq) for a fixed q. Hence, Atr(πq

∗) and optimal
function πq

∗ are given in Equation 3 and 4 respectively.

Atr(πq
∗) = max

πq∈Fq

1

n

q(m−1)∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i) =
1

n

q(m−1)∑
i=1

max
πq
i

P̂ tr
i,πq

i
(q) (3)

πq
∗,i =

argmax
j

P̂ tr
i,j(q) ; if unique argmax exists

rk ; if there are k options for argmax
(4)

where πq
∗,i = rk means that there are k options for argmax and the function πq

∗ would map to a
uniform random choice between these k classes. For each quantization level q, once we have the
policy πq

∗ that maximizes accuracy on Dtr
q , its prediction accuracy on the validation dataset Dval

q

denoted by Aval(πq
∗) can be empirically calculated as Aval(πq

∗) = (
∑nval

i=1 1(πq
∗,j = yvali))/nval,

where j = argmaxxval
q,i . Figure 3 explains the process through an example considering the source

and target models as binary classifiers i.e. m=n=2. Figure 3a explains obtaining πq
∗ from the 2-D

matrix representing the conditional probability P̂ tr(q) for q = 8. The entries in πq
∗ are the argmax

of the rows in the matrix and ‘tie’ represents no unique argmax. Figure 3b explains applying the
policy πq

∗ to target input where the predicted target label is the entry corresponding to the index in
the one-hot quantized vector with 1. For ‘tie’, ŷ = 0 or 1 with equal probability.

4.3 QUANTIZATION TRADE-OFF

Referring to Figure 3a, imagine a balls-in-bins system, where the matrix represents the fraction of
balls (quantized outputs) falling into 8 bins for two different kinds of balls (i.e. two target classes).
Consider the first highlighted bin, where 10% of the data with target label 2 will be misclassified as
label 1 resulting in reduced accuracy. Observe that there are a few rows with more ‘overlap’ than
others (e.g., [0.3, 0.1] has more overlap than [0, 0.1]), where more overlap means more samples are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) MNIST-MNIST Tar=(1,2) (b) CIFAR10-CIFAR10 Tar=(1,2)

Figure 4: Train-validation accuracy tradeoff where source and target tasks are binary classifiers.
Tar=(1,2) and Src=(2,8) denote that the target and source tasks are to classify images of classes
indexed 1 and 2, and 2 and 8 of the respective dataset (MNIST or CIFAR10).

misclassified. As q increases, the softmax vectors are mapped to unique one-hot representations,
resulting in the inputs, that earlier belonged to a the same bin, now belonging to different bins. This
decreases the overlap in rows and resulting in increase in Atr(πq

∗).

However, extremely large q results in most of the bins receiving no balls at all. This means for the
majority of the rows, the policy will predict a randomly chosen label out of the n target labels result-
ing in poor validation accuracy. Figure 4a and 4b illustrate this variation of Atr(πq

∗) and Aval(πq
∗)

vs q for MNIST-MNIST and CIFAR10-CIFAR10 setups, which mean the source and target tasks
are classifiers trained on MNIST and CIFAR10 datasets respectively. Here as the quantization level
increases, Atr(πq

∗) increases but corresponding Aval(πq
∗) first increases and then starts decreasing.

Theorem 4.1. Given that the source and target models are binary classifiers and the source softmax
output is represented as a random vector p = [p1, p2], if true conditional probability distributions

f1 = f(p2|Y=1) and f2 = f(p2|Y=2) are bounded, then as q →∞, E[Aval(πq
∗)]

P−→ 1/2.

Theorem 4.1 says that if the underlying true conditional probability distributions of random variables
(p2|Y = 1) and (p2|Y = 2) are bounded, then the expected validation performance on the given
validation datasetDval for policy that maximizes accuracy on target training data is as good as a coin
flip policy (50% accuracy) as the quantization level goes to ∞ (proof in Appendix A). This result
can be extended to a general m-ary source to binary target case as representation of m-ary softmax
with quantization q is mathematically equivalent to a binary softmax with quantization q(m−1).

4.4 METRIC DEFINITION AND BEST ALGORITHM

Exploiting the trade-off explained in the previous section, we want to select a quantization level q∗
that maximizes the validation accuracy Aval(πq

∗) and this maximum accuracy, denoted as Aval(πq∗
∗)

is defined as our metric. This approach to choose q∗ s.t. for q > q∗ the validation performance starts
degrading, is analogous to early stopping in neural network training where we stop the training if
the validation loss starts increasing. We need an upper bound on the search set for q for practical
implementation. Through simulations under various settings, we observed that q∗ ∈ (2, (nval/n))
as when q > (nval/n), the number of samples is way less than the number of rows (q(m−1)) in the
estimation of P (q). Mathematically, q∗ and our metric M are expressed in Equation 5.

q∗ = argmax
q∈(2,(nval/n)); q∈N

Aval(πq
∗); M = Aval(πq∗

∗) (5)

Plots for different source-target pairs for different datasets in Figure 4 suggest that Aval(πq
∗) behaves

approximately as an unimodal function (more in Appendix E). Hence, we can use ternary-search
as a heuristic to find q∗ using Algorithm 1. In step 1, we ensure that there are an equal number of
samples from each target class and step 2 initializes the left and right variables bounding the search
space for q∗. Steps 3-16 uses ternary search to update the left and right pointers to calculate and
compare Aval(πq

∗) to come closer to q∗. The search stops if the difference between the left and right
pointer is within tolerance or if the maximum number of steps (max steps) is reached. Finally, the
metric is the average of Aval values for the policy πq

∗ at the final left and right quantization levels.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: BeST: Quantisation based Task-Similarity Metric

Input: fs,Dtr = {Xtr, Y tr},Dval = {Xval, Y val}, tolerance, max steps
Output: M

1 Dtr,Dval ← modified Dtr,Dval s.t. number of samples for each target class is equal;
2 L← 2, R← nval/n = num of samples per class in Dval;
3 while (|L−R| > tolerance) and (step < max steps) do
4 m1 ← ⌊L+ (R− L)/3⌋, m2 ← ⌊L− (R− L)/3⌋;
5 (Dtr

m1
,Dval

m1
) and (Dtr

m2
,Dval

m2
)← quantized version of datasets (Dtr,Dval) at q = m1,m2;

6 Calculate P̂ tr(m1) and P̂ tr(m2) using Dtr
m1

and Dtr
m2

;
7 πm1

∗ ← optimal policy using P̂ tr(m1), πm2
∗ ← optimal policy using P̂ tr(m2);

8 Calculate Aval(πm1
∗) and Aval(πm2

∗) using πm1
∗ and πm1

∗ to predict on Dval
m1

and Dval
m2

;
9 Lval ← Aval(πm1

∗) , Rval ← Aval(πm2
∗);

10 if Lval < Rval then
11 L← m1;
12 else
13 R← m2;
14 end
15 step← step + 1;
16 end
17 (Dtr

L ,Dval
L) and (Dtr

R ,Dval
R)← quantized version of datasets (Dtr,Dval) at q = L,R;

18 Calculate P̂ tr(L) and P̂ tr(R) using Dtr
L and Dtr

R ;
19 πL

∗ ← optimal function using P̂ tr(L); πR
∗ ← optimal function using P̂ tr(R);

20 Calculate Aval(πL
∗) and Aval(πR

∗) using πL
∗ and πR

∗ to predict on Dval
L and Dval

R ;

21 M ← Aval(πL
∗) +Aval(πR

∗)

2

5 EXPERIMENTS

Figure 5: Comparison of ranks predicted by metric and ground truth for 3-class source to 2-class
target transfer in MNIST-MNIST TL setup with ∼ 500 data samples using 5-layer custom model.

Datasets and experimental settings: The experiments assess our metric’s effectiveness in rank-
ing source models with classifiers trained on two datasets – MNIST and CIFAR10. We consider 3
transfer learning setups (TL setups) – MNIST-MNIST, CIFAR10-CIFAR10 and CIFAR10-MNIST,
where the first and second datasets correspond to the dataset source and target models are trained
on. To emulate the limited data setup, we use tl-frac parameter where tl-frac=0.01 means choose
a random subset with only 1% of the entire dataset (100 samples for 10000 sample dataset). Prac-
tically, tl-frac=0.01, 0.03, and 0.05 corresponds to around 50, 150, and 250 data samples per class
with 80%-20% split for train and validation. In every transfer learning setup, we assess 45 unique
source models for a specific target (details in Appendix C), ranking them across 20 iterations, using
a different subset in each iteration to avoid data-specific bias in the evaluation. For our metric calcu-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

lation using Algorithm 1, tolerance and max-steps parameters are set to 5 and 20 steps respectively.
Tar/Src=(i, j) is used as shorthand to denote the target (or source) model trained to classify images
from classes indexed i and j (e.g., Tar=(1, 2) in MNIST-MNIST refers to classifying digits 0 and 1).

Model architectures and metric evaluations: We train different source models for a given dataset
using a fixed model architecture (Appendix B) to ensure a fair comparison. We consider a fully
connected DNN for our custom model with 2-layer and 5-layer architectures (Appendix B), to show
that our metric is architecture-indifferent. Early stopping stops the training if the validation error
doesn’t decrease by 0.01 in the next 20 epochs. We introduce an accuracy threshold parameter to
select a subset of 45 source models to run our experiments for a given target task (e.g., threshold=0.9
means all source models with transfer learning accuracy > 90% are chosen). To avoid the true
rankings being hypersensitive to small differences in transfer learning accuracy, rank i assigned to
a source model by our metric is counted correct if its transfer learning accuracy is within 3% of
the transfer learning accuracy of the source with true rank i. We evaluate the ranking performance
of our metric on the fraction of accurate rankings, the mean deviation of predicted ranks from true
ranks, and the factor of time savings from training the custom model.

Figure 5 presents a comparison between the true ranks of various source models (red) with the pre-
dicted ranks (green and blue) in a transfer learning setup where source models are ternary classifiers
and the target task is to classify images of digits 2 and 7. The metric values for the green curve use
the brute-force method to find the optimal q∗ and ranks. Observe that the ranks according to ternary
search and brute-force search are very close, supporting our unimodal approximation in Section 4.4.
Observe that one of the best source models to transfer from is the one trained to classify the digits
(0,2,7) and (1,2,7), which is intuitive as these already know how to classify digits 2 and 7.

5.1 BINARY CLASSIFIERS

We first evaluate the basic setup where the source and target are binary classifiers. Figure 6 shows
the fraction of correct ranks assigned using our metric as compared to the true ranks, as threshold
parameter changes for different TL setups using the 5-layer custom model. We can observe that
the fraction of correct ranks increases with an increase in threshold, with the best performance for
source models with transfer learning accuracy of > 90%. This means that our metric works better
in ranking good transfer learning pairs.

(a) MNIST-MNIST Tar=(1,2) (b) CIFAR10-CIFAR10 Tar=(2,3) (c) CIFAR10-MNIST Tar=(1,2)

Figure 6: Fraction of accurate ranks Vs threshold for different dataset sizes for 5-layer custom
model.

Figure 7 shows the fraction of correct ranks for high threshold with different tl-frac values using
2 different target tasks for each TL setup for both custom models. Figures 7a, 7b, 7c suggest that
our metric consistently performs well when ranking source models with > 80% transfer learning
accuracy across all 3 TL setups and different target tasks. Observe that generally the performance
of 5-layer custom model (maroon and dark green) is higher than that of 2-layer (red and green)
since 5-layer has more capability to achieve the optimal generalization performance. However, the
performance for both custom models are > 60% across TL setups indicating that the ranks assigned
by the metric are not a random guess. Both Figures 6 and 7 suggest that the fraction of correct ranks
increase with the datasize (tl-frac) across the 3 TL setups for different target tasks for each threshold.

Table 1 presents details on the mean and standard deviation of the deviation in ranks for MNIST-
MNIST TL setup. We can observe that the mean deviation decreases with an increase in tl-frac

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) MNIST-MNIST (b) CIFAR10-CIFAR10 (c) CIFAR10-MNIST

Figure 7: Rank similarity performance of metric for source tasks with high TL accuracy for given
target tasks for varying data sizes (given by tl-frac) using both 2-layer and 5-layer custom model.

i.e. data size, and also with an increase in threshold. This aligns with our earlier observation that
our metric performs the best for source models with > 90% transfer learning accuracy. For thresh-
old=0.9, we can particularly observe that even using just 100 samples (tl-frac=0.01) the predicted
ranks are off by less than 2 ranks on average, which reduces even further to less than 1 rank when
using 500 samples (tl-frac=0.05). The small standard deviation values suggest that there is less
variability in the deviation of ranks establishing consistent performance across source-target pairs.

Table 1: Statistics for deviation of predicted ranks from true ranks for MNIST-MNIST TL Setup
with target task to classify images of digits 1 and 3.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
Custom Model Threshold 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

2-layer Mean 8.52 5.14 0.85 8.11 5.34 0.81 8.44 5.53 0.67
Std 1.4 1.2 0.59 1.35 1.18 0.65 1.75 1.21 0.54

5-layer Mean 8.8 6.22 1.27 6.17 4.01 0.49 4.41 3.15 0.18
Std 1.48 0.95 0.58 1.62 1.26 0.51 1.50 1.22 0.26

One of the most important aspects of evaluating our metric’s performance is the computational
savings offered compared to traditional training. A comparison of the average time taken to calculate
our metric and the time taken to train a target model for a particular TL setup is presented in Table
2 (we used M3 MacBook Pro with 24 GB RAM). Here time taken is a measurement of CPU time
given in seconds (not wall time). The CPU time measures the sum of the total time taken by all the
CPU cores in use and is the true cost of computation as it is not affected by multi-core computation.
Our metric provides significant time savings for each TL setup, with as high as 57 times faster
computation. We observe that the computational benefits are reflected across data sizes indicating
robustness. We also observe that the time taken by the metric scales sub-linearly with the data size
(tl-frac) which suggests that it can work with a large number of samples.

Table 2: Improvement in time taken for metric calculation vs target neural network training for all 3
TL setups for 5-layer custom model for binary classifier case. Values given in CPU seconds.

MNIST-MNIST CIFAR10-CIFAR10 CIFAR10-MNIST
Tar=(2,4) Tar=(1,2) Tar=(2,4)

tl-frac NN Metric Eff. NN Metric Eff. NN Metric Eff.
0.01 4.49 0.11 ×41 7.71 0.17 ×44 11.12 0.25 ×45
0.03 12.76 0.23 ×57 24.84 0.48 ×52 29.65 0.76 ×39
0.05 12.39 0.27 ×46 23.68 0.58 ×41 34.81 0.89 ×39

5.2 MULTI-CLASS CASE

We now consider the results for the multiclass case where we consider 3 settings – 3-class source to
binary target, 4-class source to binary target, and 4-class source to 3-class target. Similar to Figure
7, we present the fraction of correct rank statistics in Figure 8 for the multiclass case for the 5-layer

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

custom model, where the x-axis represents the TL setup with a specific target task. To demonstrate
that our metric works best when identifying the best-performing source-target pairs, we consider
high threshold values (0.9 for Figure 8a and 8b and 0.85 for 8c). However, note that we omitted
the CIFAR10-MNIST plot for Figure 8c since the maximum transfer learning accuracy for 4-class
source to 3-class target was around 75% (maybe need a larger custom model to achieve better). We
can observe in each of Figures 8a, 8b, 8c, the fraction of correct ranks increases with an increase in
tl-frac (light to dark bar plots). Table 3 presents the time-saving statistics for the multiclass case for
MNIST-MNIST setup for the 5-layer custom model. We observe that the metric provides significant
computational savings even for multiclass cases, with around ×50 less time taken for tl-frac=0.01.
However, the factor of improvement changes significantly with an increase in tl-frac, where for 4-
class source to 3-class target, the benefit drops for ×51 improvement to ×5 (still good) when tl-frac
goes from 0.01 to 0.05. Note that in Algorithm 1, at each step of the ternary search, the computation
cost to calculate P̂ tr(q) is proportional to q(m−1) for m-ary source. Hence, for binary source, the
cost is proportional to q (m=2) but for 3-class and 4-class source, the cost scales as q2 and q3

respectively. Recall that the search space for q∗ depends on the nval, which depends on dataset size
(tl-frac). Hence, as tl-frac increases, the time improvement decreases non-linearly. More statistics
on rank deviation for binary and multiclass cases are presented in Appendix D.1 and D.2.

(a) 3-class source to binary target (b) 4-class source to binary target (c) 4-class source to ternary target

Figure 8: Rank similarity performance of metric for source tasks with high TL accuracy for varying
data sizes (tl-frac) across TL setups using 5-layer custom model in multiclass case.

Table 3: Improvement in time taken for metric vs target neural network training for MNIST-MNIST
TL Setup for 5-layer custom model for multi-class case. Values given in CPU seconds.

3-class Src, 2-class Tar 4-class Src, 2-class Tar 4-class Src, 3-class Tar
Tar=(2,8) Tar=(2,8) Tar=(2,3,8)

tl-frac NN Metric Eff. NN Metric Eff. NN Metric Eff.
0.01 5.24 0.11 ×48 4.75 0.10 ×47 6.41 0.13 ×51
0.03 11.19 0.21 ×53 8.04 0.32 ×25 11.59 0.71 ×16
0.05 12.03 0.32 ×38 11.53 0.75 ×15 15.85 2.89 ×5

6 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of selecting best pre-trained source model for transfer learn-
ing for a given target task with limited data. We propose BeST, a novel quantization-based task-
similarity metric to measure transferability without needing a classical training process. The exper-
imental results on different datasets show that the metric can accurately rank and predict the best
pre-trained source model from a given group of models. It is shown that the metric is indifferent
to the architecture of the custom model used until all of them have near-optimal performance. The
performance of our metric increases with an increase in the number of data samples. We also show
that our metric provides significant time savings over training a neural network for transfer learning
implementation. There are certain limitations when scaling to multiclass cases where the compu-
tation time increases non-linearly with an increase in the number of data samples for transfer from
source classifying a large number of classes. A possible future direction is to refine the method to
overcome scalability challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3:1–40, 2016.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level im-
age representations using convolutional neural networks. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1717–1724, 2014. doi: 10.1109/CVPR.2014.222.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 97–105, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/long15.html.

Z. Wang, Z. Dai, B. Poczos, and J. Carbonell. Characterizing and avoiding negative transfer. In
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11285–
11294, Los Alamitos, CA, USA, jun 2019. IEEE Computer Society. doi: 10.1109/CVPR.2019.
01155. URL https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.
01155.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications, 2015.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision, 2015.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference, 2021.

Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient task taxonomy &
transfer learning, 2019.

Muhammad Jamal Afridi, Arun Ross, and Erik M. Shapiro. On automated source selection
for transfer learning in convolutional neural networks. Pattern Recognition, 73:65–75, 2018.
ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2017.07.019. URL https://www.
sciencedirect.com/science/article/pii/S0031320317302881.

Anh T Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised clas-
sification tasks. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1395–1405, 2019.

Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure
to evaluate transferability of learned representations. In International Conference on Machine
Learning, pages 7294–7305. PMLR, 2020.

Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-
trained models for transfer learning. In International Conference on Machine Learning, pages
12133–12143. PMLR, 2021.

Michal Pándy, Andrea Agostinelli, Jasper Uijlings, Vittorio Ferrari, and Thomas Mensink. Trans-
ferability estimation using bhattacharyya class separability. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9172–9182, 2022.

11

https://proceedings.mlr.press/v37/long15.html
https://proceedings.mlr.press/v37/long15.html
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.01155
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.01155
https://www.sciencedirect.com/science/article/pii/S0031320317302881
https://www.sciencedirect.com/science/article/pii/S0031320317302881

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir, and Leonidas
Guibas. An information-theoretic approach to transferability in task transfer learning. In 2019
IEEE international conference on image processing (ICIP), pages 2309–2313. IEEE, 2019.

Xiang Dai, Sarvnaz Karimi, Ben Hachey, and Cecile Paris. Using similarity measures to select
pretraining data for ner. arXiv preprint arXiv:1904.00585, 2019.

Haitham Bou Ammar, Kurt Driessens, Eric Eaton, Matthew E. Taylor, Decebal Constantin Mocanu,
Gerhard Weiss, and Karl Tuyls. An automated measure of mdp similarity for transfer in reinforce-
ment learning. In Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop,
2014.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
2019. URL https://github.com/fastai/imagenette.

12

https://github.com/fastai/imagenette

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 4.1

Proof. For binary classifiers, the softmax output of the source model can be represented as p =
[p1, p2] and since p1 + p2 = 1, we can only use p2 to quantize p and represent as a one-hot vec-
tor. Here, quantization to level q is intuitively equal to dividing the interval [0,1] into q parts and
indicating the bin where p2 falls through a one-hot vector. Let f1 = f(p2|Y=1) and f2 = f(p2|Y=2)

denote true underlying continous time conditional distribution of random variables (p2|Y = 1) and
(p2|Y = 2) respectively. Denote Pi,j(q) = P (X̄q = i|Y = j), i ∈ {1, .., q} and j ∈ {1, 2}, where
P (q) is the true conditional probability distribution of random variable (X̄q|Y) . Then Pi,1(q) and
Pi,2(q) is given by Equation 6.

Pi,1(q) =

∫ i/q

(i−1)/q

f1(x) dx, Pi,2(q) =

∫ i/q

(i−1)/q

f2(x) dx (6)

Assume that P̂ tr(q) and P̂ val(q) represent the estimation of P (q) using the dataset Dtr
q and Dval

q

calculated as – P̂ tr
i,j(q) = N tr

i,j(q)/n
tr; P̂ val

i,j (q) = Nval
i,j (q)/nval, where N tr

i,j(q) and Nval
i,j (q)

represent number of samples with label Y = j for which the one-hot quantized vector has 1 at
index i using Dtr and Dval respectively. Using the definition of N tr(q) and Nval(q), we can say
N tr

i,j(q) ∼ Bin(ntr, Pi,j(q)) and Nval
i,j (q) ∼ Bin(nval, Pi,j(q)), we have E[P̂ tr

i,j(q)] = Pi,j(q) and

E[P̂ val
i,j (q)] = Pi,j(q).

For binary case, we can modify Equation 3 and 4 to Equation 7 and 8. Here πq
∗,i = r means that for

row i, P̂ tr
i,1(q) = P̂ tr

i,2(q) or equivalently N tr
i,1(q) = N tr

i,2(q).

Atr(πq
∗) = max

πq∈Fq

1

2

q∑
i=1

P̂r(X̄tr
q = i|Y tr = πq

i) =
1

2

q∑
i=1

max
πq
i

P̂ tr
i,πq

i
(7)

πq
∗,i =

argmax
j
{P̂ tr

i,1(q), P̂
tr
i,2(q)} ; if unique argmax exists

r ; if there both columns are equal
(8)

It is given that the densities f1(x) and f2(x) are bounded i.e. f1(x), f2(x) ≤ B. This means 0 ≤
Pi,1, Pi,2 ≤ B/q. For simplicity of notation, we write Aval(πq

∗) as Aval(q), showing dependency on
q. Using the definition to calculate Aval(q), E[Aval(q)] for dataset Dval can be expressed as a sum
of two terms Aval

1 (q) and Aval
2 (q) as in Equation 9, where Aval

1 (q) and Aval
2 (q) are contributions

from rows with P̂ tr
i,1(q) ̸= P̂ tr

i,2(q) and rows with P̂ tr
i,1(q) = P̂ tr

i,2(q) respectively. We know that
0 ≤ Aval(q), Aval

1 (q), Aval
2 (q) ≤ 1.

E[Aval(q)] = Aval
1 (q) +Aval

2 (q) (9)

Aval
1 (q) and Aval

2 (q) can be expressed as in Equation 10 and 11.

Aval
1 (q) =

1

2

{
q∑

i=1

P̂ val
i,πq

∗,i
. 1(πq

∗,i ̸=r)

}
(10)

Aval
2 (q) =

1

4

{
q∑

i=1

(P̂ val
i,1 + P̂ val

i,2) . 1(πq
∗,i=r)

}
(11)

Since Aval
1 (q) is non-negative, we can use the markov inequality to write for any ϵ > 0 -

Pr(Aval
1 (q) > ϵ/2) ≤ E[Aval

1 (q)]

ϵ/2
(12)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Focusing on the E[Aval
1 (q)] -

E[Aval
1 (q)] =

1

2
E

(
q∑

i=1

P̂ val
i,πq

∗i
. 1(πq

∗,i ̸=r)

)

=
1

2

q−1∑
i=0

E
(
P̂ val
i,πq

∗,i
. 1(πq

∗,i ̸=r)

)
=

1

2

q∑
i=1

(
Pi,1 Pr(π

q
∗,i = 1) + Pi,2 Pr(π

q
∗,i = 2)

)
=

1

2

q∑
i=1

(
Pi,1 Pr(N

tr
i,1 > N tr

i,2) + Pi,2 Pr(N
tr
i,1 < N tr

i,2)
)

(13)

For sake of simplicity we will denote ntr i.e. the number of samples for target training data, as
simply n as we do not need nval in the proof. We need to find upper bounds on Pr(N tr

i,0 > N tr
i,1)

and Pr(N tr
i,1 < N tr

i,2) as given below.

Pr(N tr
i,1 > N tr

i,2) =

n−1∑
k=0

Pr(N tr
i,1 > k) Pr(N tr

i,2 = k))

≤ Pr(N tr
i,1 > 0)

n−1∑
k=0

Pr(N tr
i,2 = k))

= (1− Pr(N tr
i,1 = 0))(1− Pr(N tr

i,2 = n))

≤ (1− Pr(N tr
i,1 = 0))

= (1− (1− Pi,1)
n)

≤
(
1−

(
1− B

q

)n)
(14)

Similarly for Pr(N tr
i,1 < N tr

i,2) -

Pr(N tr
i,2 > N tr

i,1) =

n−1∑
k=0

Pr(N tr
i,2 > k) Pr(N tr

i,1 = k))

≤ Pr(N tr
i,2 > 0)

n−1∑
k=0

Pr(N tr
i,1 = k))

= (1− Pr(N tr
i,2 = 0))(1− Pr(N tr

i,1 = n))

≤ (1− Pr(N tr
i,2 = 0))

= (1− (1− Pi,2)
n)

≤
(
1−

(
1− B

q

)n)
(15)

Using upper bound on Pi,1, Pi,2 and equations 14 and 15 we can write -

E[Aval
1 (q)] ≤ 1

2

q∑
i=1

(
B

q

(
1−

(
1− B

q

)n)
+

B

q

(
1−

(
1− B

q

)n))
= B

(
1−

(
1− B

q

)n)
(16)

Using equation 16 in equation 12 we get -

Pr(Aval
1 (q) > ϵ/2) ≤

2B

(
1−

(
1− B

q

)n)
ϵ

(17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Now for any given δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) where Q(ϵ, δ) =

B(
1−

(
1− ϵδ

B

)1/n
) , we have -

Pr(Aval
1 (q) > ϵ/2) ≤ δ

2
(18)

Now to get similar inequality on Aval
2 (q), define Aval

3 (q) = 1/2 − Aval
2 (q). Since Aval

3 (q) is non-
negative we can use markov inequality to write for any ϵ > 0.

Pr(Aval
3 (q) > ϵ/2) ≤ E[Aval

3 (q)]

ϵ/2
(19)

Focusing on the E[Aval
3 (q)] -

E[Aval
3 (q)] =

1

4
E

(
2−

q∑
i=1

(P̂ val
i,1 + P̂ val

i,2) . 1(πq
∗,i=r)

)

=
1

4
E

(
q∑

i=1

(P̂ val
i,1 + P̂ val

i,2)(1− 1(πq
∗,i=r))

)

=
1

4

q∑
i=1

E
(
(P̂ val

i,1 + P̂ val
i,2)(1− 1(πq

∗,i=r))
)

=
1

4

q∑
i=1

(Pi,1 + Pi,2) Pr(π
q
∗,i ̸= r)

=
1

4

q∑
i=1

(Pi,1 + Pi,2)(Pr(N
tr
i,1 > N tr

i,2) + Pr(N tr
i,1 < N tr

i,2))

≤ 1

4

q∑
i=1

(
2B

q

((
1−

(
1− B

q

)n)
+

(
1−

(
1− B

q

)n)))
= B

(
1−

(
1− B

q

)n)
(20)

Now for any given δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) where Q(ϵ, δ) =

B(
1−

(
1− ϵδ

B

)1/n
) , we have -

Pr(Aval
3 (q) > ϵ/2) ≤ δ

2
(21)

Now combining equations 18 and 21 we can write, for any ϵ, δ > 0, ∀q > Q(
ϵ

2
,
δ

2
) =

B(
1−

(
1− ϵδ

4B

)1/n
) , we can write -

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Pr(|E[Aval(q)]− 1

2
| > ϵ) = Pr(|Aval

1 (q) +Aval
2 (q)− 1

2
| > ϵ)

≤ Pr(|Aval
1 (q)− 0|+ |Aval

2 (q)− 1

2
| > ϵ)

≤ Pr(|Aval
1 (q)− 0| > ϵ/2) + +Pr(|Aval

2 (q)− 1

2
| > ϵ/2)

= Pr(Aval
1 (q) > ϵ/2) + Pr(

1

2
−Aval

2 (q) > ϵ/2)

= Pr(Aval
1 (q) > ϵ/2) + Pr(Aval

3 (q) > ϵ/2)

=
δ

2
+

δ

2
= δ (22)

Remark. Since we are dealing with probabilities, for δ > 1 equation 22 will always be satisfied for
any q. Hence, practically we deal with 0 < δ ≤ 1. Also, in the proof we used the fact that ϵδ ≤ 4B

so that Q(
ϵ

2
,
δ

2
) is well defined and we don’t take nth root of a negative number.

B ARCHITECTURES FOR SOURCE AND CUSTOM MODEL

The neural network architectures used to build the CNN for the source models trained on MNIST
and CIFAR10 are given in Table B.1 and B.2 respectively. The 2-layer and 5-layer architecture used
for the custom model is given in Table B.3.

Table B.1: CNN architecture for Source Tasks using MNIST.

Layer Type Parameters Activation
Conv2D 1 filters=32, kernel=(3x3) relu

Max-Pooling 1 pool-size=(2x2) -
Conv2d 2 filters=64, kernel=(3x3) relu

Max-Pooling 2 pool-size=(2x2) -
Flatten - -

Dropout probability=0.5 -
Output classes=m softmax

Table B.2: CNN architecture for Source Tasks using CIFAR-10.

Layer Type Parameters Activation
Conv2D 1 filters=32, kernel=(3x3) relu
Conv2D 2 filters=32, kernel=(3x3) relu

Max-Pooling 1 pool-size=(2x2) -
Conv2d 3 filters=64, kernel=(3x3) relu
Conv2d 4 filters=64, kernel=(3x3) relu

Max-Pooling 2 pool-size=(2x2) -
Flatten - -
Dense neurons=128 relu
Output classes=m softmax

C EXPERIMENTAL SETTINGS

As explained in Section 5, for each target task for any of the 3 TL setups, we consider 45 different
pre-trained source models. The specifics of which 45 source models are selected for each TL setup

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table B.3: DNN architecture for Transfer Learning Models.

Layer Type Neurons Activation
2-layer

Dense 10 relu
Output n softmax

5-layer
Dense 10 relu
Dense 20 relu
Dense 40 relu
Dense 10 relu
Output n softmax

for source classifiers with different numbers of classes are explained below. Recall that both MNIST
and CIFAR10 have 10 classes.

Binary source models: When the source model is a binary classifier, we choose all possible unique
combinations of choosing 2 classes out of 10 to define the source models. Note that classifying data
of classes 1 and 5 and 5 and 1 are considered the same source model. Let Src = (i, j) denote that the
source model is trained to classify images from classes indexed i and j where i, j ∈ {1, 2, .., 10}
and i ̸= j (e.g., Src=(1,2) for MNIST means source model to classify digits 0 and 1 as the 1st class
corresponds to digit 0 and so on). Then the set of 45 source models can be represented as a set of
tuples S = {(1, 2), (1, 3),(2, 3), (2, 4), ..., (9, 10)}.
3-class source models: Let Src = (i, j, k) denote that the source model is trained to classify
images from classes indexed i, j and k where i, j, k ∈ {1, 2, .., 10} and i ̸= j ̸= k (e.g.,
Src=(1,2,3) for MNIST means source model to classify digits 0, 1 and 2). When the source model
is a ternary classifier, there are more than 45 unique combinations of choosing 3 classes out of
10. We choose the first 45 unique combinations of 3 classes defined in the order given by set
S = {(1, 2, 3), (1, 2, 4), ..., (2, 3, 4), (2, 3, 5), ...(2, 4, 6)}.
4-class source models: Let Src = (i, j, k, l) denote that the source model is trained to classify
images from classes indexed i, j, k and l where i, j, k, l ∈ {1, 2, .., 10} and i ̸= j ̸= k ̸= l
(e.g., Src=(1,2,3,4) for MNIST means source model to classify digits 0, 1, 2 and 3). We choose
the first 45 unique combinations of 4 classes out of 10, defined in the order given by set S =
{(1, 2, 3, 4), (1, 2, 3, 5), ..., (1, 3, 4, 5), (1, 3, 4, 6), ...(1, 3, 7, 9)}.

D RANK DEVIATION STATISTICS

D.1 BINARY CASE

The statistics on the deviation of the predicted rank from the true ranks similar to Table 1 is presented
for CIFAR10-CIFAR10 and CIFAR10-MNIST TL setups in Table D.1 and D.2 respectively. We can
observe that for a threshold of 0.8 i.e. ranking source models with a transfer learning accuracy of
> 80%, the average deviation of ranks is less than 1 rank for CIFAR10-CIFAR10 setup and less
than 2 ranks for CIFAR10-MNIST respectively. This holds across different data sizes, varying from
as low as ∼ 100 samples (tl-frac=0.01) to ∼ 500 samples (tl-frac=0.05), in both 2-layer and 5-layer
custom model architectures.

Table D.1: Statistics for deviation of predicted ranks from true ranks for CIFAR10-CIFAR10 TL
Setup with target task to classify images of aeroplane and automobile.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
TL Model Threshold 0.5 0.7 0.8 0.5 0.7 0.8 0.5 0.7 0.8

2-layer Mean 6.11 1.56 0.31 5.45 1.64 0.14 6.55 1.65 0.14
Std 1.28 0.72 0.40 1.58 0.72 0.24 1.43 0.93 0.24

5-layer Mean 7.47 1.81 0.34 6.19 1.55 0.15 5.93 1.43 0.13
Std 2.10 0.65 0.30 2.13 0.8 0.27 1.55 0.63 0.23

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table D.2: Statistics for deviation of predicted ranks from true ranks for CIFAR10-MNIST TL Setup
with target task to classify images of digits 0 and 1.

tl-frac=0.01 tl-frac=0.03 tl-frac=0.05
TL Model Threshold 0.5 0.7 0.8 0.5 0.7 0.8 0.5 0.7 0.8

2-layer Mean 4.90 1.45 0.50 3.76 1.46 0.56 2.92 1.05 0.41
Std 1.06 0.69 0.50 0.9 0.59 0.47 1.42 0.66 0.57

5-layer Mean 5.24 1.93 0.83 3.62 1.56 0.44 3.38 1.29 0.26
Std 1.12 0.49 0.46 1.28 0.67 0.50 1.55 0.95 0.41

D.2 MUTLICLASS CASE

Similar to the binary case, we present the rank deviation statistics (mean and standard deviation) for
MNIST-MNIST TL setup for 3-class source to 2-class target, 4-class source to 2-class target, and
4-class source to 3-class target in Table D.3. As observed in the binary case, the metric performs best
for source models with high transfer learning accuracy i.e. high threshold (highlighted in bold). For
threshold=0.9, the mean rank deviation is less than 1 rank which shows the ability of our metric to
rank the source well across different multiclass transfer learning settings. The mean rank deviation
also decreases with an increase in dataset size (tl-frac) as expected. We can also observe that the
standard deviation of the rank deviations is less than 2 i.e. individual rank deviations are not too far
from the average.

Table D.3: Statistics for deviation of predicted ranks from true ranks for MNIST-MNIST TL Setup
for multiclass case.

3-class to 2-class 4-class to 2-class 4-class to 3-class
Tar=(2,8) Tar=(2,8) Tar=(2,3,8)

tl-frac Threshold 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.01 Mean 7.49 5.99 1.01 5.89 5.22 1.57 7.42 4.25 0.15
Std 1.99 1.73 0.92 1.70 1.53 1.39 2.03 1.05 0.26

0.03 Mean 4.24 4.18 0.60 3.82 3.81 0.45 4.99 3.69 0.03
Std 1.23 0.95 0.51 0.85 0.83 0.47 1.51 1.29 0.12

0.05 Mean 2.90 2.84 0.47 3.09 3.09 0.29 4.8 3.42 0.07
Std 0.98 0.94 0.34 0.79 0.79 0.43 1.83 1.72 0.21

E STATISTICS TO JUSTIFY UNIMODAL APPROXIMATION

Table E.1: Statistics to compare the difference for MNIST-MNIST TL setup using 5-layer custom
model.

tl-frac Stats 2-class Src to 2-class Tar 3-class Src to 2-class Tar
Tar=(2,4) Tar=(2,8)

0.01 Mean 0.041 0.045
Std 0.021 0.025

0.03 Mean 0.024 0.027
Std 0.014 0.014

0.05 Mean 0.017 0.019
Std 0.011 0.010

One of the key aspects of our algorithm design is the unimodal approximation for variation of
Aval(πq

∗) vs q in the search space q ∈ (2, nval/n). This approximation allows us to avoid cal-
culating Aval(πq

∗) at every q and instead use ternary search to find the maximum Aval(πq
∗). To

justify the approximation, we present the mean and standard deviation of the absolute value of the
difference in calculated metric (i.e. the maximum Aval(πq

∗)) using brute force search and ternary
search in Table E.1. Observe that the mean difference (in bold) for 2-class source to 2-class target
and 3-class source to 2-class target has a maximum value of ∼ 0.05 for tl-frac=0.01 (100 samples

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

case). This means on average, the best Aval(πq
∗) found by ternary search differs at max by 5% as

compared to the one calculated by brute-force. Observe that the mean decreases with an increase in
dataset size (tl-frac) with a value as low as < 0.02 (i.e. < 2% accuracy difference) for 500 sam-
ples (tl-frac=0.05). The small standard deviation suggests that the actual difference is close to the
mean difference. The low average difference suggests that the unimodal approximation is a reason-
able approximation as ternary search gives a value very close to the brute-force value while giving
significant time savings.

F CORRELATION STATISTICS

In addition to the evaluation of our metric in Section 5 using the fraction of correct ranks as illus-
trated in Figures 6, 7 and 8, in this section we also evaluate the performance of our metric using
standard statistical correlation coefficients namely - Pearson, Spearman and Kendall’s Tau.

Figure F.1, F.2 and F.3 presents the correlation values for Pearson, Spearman, and Kendall’s Tau
correlation coefficients respectively, as dataset size (tl-frac parameter) changes. Each figure has 4
subfigures, representing the correlation data for 4 cases - 1) 2-class Source to 2-class Target, 2) 3-
class Source to 2-class Target, 3) 4-class Source to 2-class Target, and 4) 4-class Source to 3-class
Target. Within each subfigure, the legend, ‘CIFAR10-MNIST Tar=(1,2)’ for example, indicates the
transfer learning setup where the source model has been trained to classify images from CIFAR10
while the target task is to learn to classify images from MNIST belonging to the 1st and 2nd classes
(i.e. images of digits 0 and 1).

As explained in Section 5, for each target task, we use 45 unique pre-trained source models and for
each source, we evaluate the transfer learning performance after training and calculate our metric
using Algorithm 1. The correlation statistics presented are the average of the correlation values over
20 runs, where for each run, the correlation is measured between two lists of 45 items each (as there
are 45 sources).

(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.1: Pearson Correlation values

The Pearson coefficient measures the correlation directly between the transfer accuracy and the
metric values. However, Spearman and Kendall’s Tau coefficient measures the correlation between
the rankings deduced from these values and not the values directly. Recall that our metric aimed to
rank the source models accurately according to their transferability for a particular target task.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.2: Spearman Correlation values

(a) 2-class Src to 2-class Tar (b) 3-class Src to 2-class Tar

(c) 4-class Src to 2-class Tar (d) 4-class Src to 3-class Tar

Figure F.3: Kendall’s Tau Correlation values

From all these figures, we can observe that the correlation values for all three correlation methods
are high indicating that our metric values and the rankings provided are highly correlated with the
transfer learning accuracy. We can also observe that the correlation values increase as the dataset
size increases (tl-frac parameter goes from 0.01 to 0.05). This is in line with our expectation as
performance improves with the availability of more data.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G EXPERIMENTS WITH IMAGENETTE DATASET

Imagenette Howard (2019) is a smaller, curated subset of the ImageNet dataset designed to speed
experiments and make them more accessible for research and practice. It contains only 10 classes of
images: tench, English springer, cassette player, chain saw, church, French horn, garbage truck,
gas pump, golf ball, and parachute. The images used are 64 × 64 pixels. We can call this
setup the ‘Imagenette-Imagenette’ transfer learning setup (nomenclature similar to MNIST-MNIST,
CIFAR10-CIFAR10, etc.), where both the source and target models are to classify images from the
Imagenette dataset.

We present the results for a binary classification case in which both source and target models are
binary classifiers in the Imagenette dataset, trying to classify images from 2 out of the 10 classes
in the dataset. The source model architecture used is the same as that used for CIFAR10 (Table
B.2) and the 5-layer custom model (as in Table B.3) is used to build and train the target model. To
demonstrate the variation of results with dataset size, we used 3 tl-frac values - 0.1, 0.3, and 0.5
(corresponding to ∼ 150, ∼ 450, and ∼ 750 samples). We used 10 runs for each source-target pair
(each run has a different subset of target data) instead of the 20 runs used for the earlier setups.

G.1 VISUALIZATION OF COMPARISON OF RANK BY METRIC VS TRUE RANK

Similar to Figure 5, the comparison of ranks given by the true transfer performance (test accuracy
after training target model using a particular source), metric calculated using brute force, and metric
calculated using our ternary search approach, as given in Algorithm 1, is presented in Figure G.1
using ∼ 150 samples and Figure G.2 using ∼ 750 samples4. Tar=(1,2) indicates that the target task
here is to classify images from the 1st and 2nd classes in Imagenette (tench and English springer).

Figure G.1: Comparison of ranks predicted by metric and ground truth for 2-class source to 2-class
target transfer in Imagenette-Imagenette transfer setup (Tar=(1,2)) using ∼ 150 data samples.

Figure G.2: Comparison of ranks predicted by metric and ground truth for 2-class source to 2-class
target transfer in Imagenette-Imagenette transfer setup (Tar=(1,2)) using ∼ 750 data samples.

4Observe that the order of source models (x-axis) change with the change is the size of the dataset as the
transfer learning accuracy changes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The x-axis contains the source models represented by a tuple where, for example, the ‘2,4’ indicates
that the source model is trained to classify images from 2nd and 4th class in Imagenette (English
springer and chain saw). We omit the names of the classes to avoid crowding in the figures.

Again, we can observe a very small deviation between the metric value calculated using brute force
(green) and the values calculated using ternary search (blue) in both figures. This results in the
rankings given by the metric using ternary search being very similar to those given by the metric
calculated using brute force (supporting our unimodal approximation)

If we look at the most transferable source for the target task used (Tar=(1,2)) in Figure G.1 and G.2
i.e. source to classify images from classes (1,2), (1,4), (1,9), etc., we can observe that all of them
have one class in common with the target task. It makes intuitive sense that a source model that can
classify images from classes indexed 1 and 4 should be able to classify images from classes 1 and
2 (target task) pretty well as it already knows how to classify images from class 1. The result also
aligns with our intuition that the best transferable source should be the one that classifies the same
classes as the target i.e. (1,2) here.

G.2 FRACTION OF ACCURATE RANK PREDICTIONS

Similar to Figure 6, the fraction of correct ranks for different threshold values is presented in Figure
G.3. We can observe that for both the target tasks (Tar=(1,2) in Figure G.3a and Tar(2,3) in Figure
G.3b), as observed with the other datasets in Section 5, the fraction of correct ranks improve as we
evaluate for higher threshold i.e. evaluate for source models with higher transfer learning accuracy.
We can also observe that the fraction of correct ranks improves for a given threshold as the dataset
size increases (tl-frac increases).

(a) Tar=(1,2) (b) Tar=(2,3)

Figure G.3: Fraction of accurate ranks Vs threshold for Imagenette-Imagenette Transfer Setup for
different dataset sizes using 5-layer custom model.

G.3 TIME IMPROVEMENT STATISTICS

Table G.1: Improvement in time taken for metric calculation vs target neural network training for
Imagenette-Imagenette TL setups for 5-layer custom model for binary classifier case. Values given
in CPU seconds.

Tar=(1,2) Tar=(2,3)
tl-frac Training Metric Eff. Training Metric Eff.

0.1 46.35 0.94 ×48 48.69 0.96 ×51
0.3 112.98 2.64 ×42 115.73 2.66 ×43
0.5 180.84 4.35 ×41 178.19 4.37 ×41

The comparison of the time taken to train a target model using a pre-trained source to evalu-
ate the transfer accuracy versus time taken to calculate the proposed transferability metric for the
Imagenette-Imagenette transfer setup for two target tasks (Tar=(1,2) and Tar=(2,3)) is given in Table

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G.1. Similar to the results in Table 2 and 3, we can observe that our calculating our metric provides
significant time savings as compared to finding the transfer performance through training, with im-
provements (Eff. column) of around× 40 and more. We can also observe that the time improvement
is reflected for different dataset sizes (tl-frac). With an increase in dataset size, there is a decrease
in time efficiency but the decrease is non-linear. The computational improvements offered by our
metric for a larger dataset like Imagenette suggest that the results are scalable and not limited to
smaller datasets like MNIST and CIFAR10.

H VARIATION WITH DIFFERENT RANDOM SEED FOR PRE-TRAINED SOURCE

The pre-trained source model is trained once for each source task to be used multiple times for
different target data and target models. Hence, it is important to demonstrate that the results are not
sensitive to a particular source network initialization parameter. In this section, we present results
considering sources trained on 5 different random seeds.

(a) MNIST-MNIST Src=(2,8), Tar=(1,2) (b) CIFAR10-CIFAR10 Src=(2,3), Tar=(1,2)

Figure H.1: Train-validation accuracy tradeoff for 5 different random seeds used to initialize the
source model before training. The source and target tasks are binary classifiers.

(a) Fraction correct ranks across different random
seeds

(b) Average and Standard Deviation across differ-
ent random seeds

Figure H.2: Train-validation accuracy tradeoff for 5 different random seeds used to initialize the
source model before training. The source and target tasks are binary classifiers. The target task is to
classify images from classes airplane and automobile (Tar=(1,2))

Similar to Figure 4, we present the variation of Atr(πq
∗) and Aval(πq

∗) vs quantization level q for
5 different random seeds in Figure H.1a and H.1b. Figure H.1a presents the variation for MNIST-
MNIST transfer setup with source model to classify digits 1 and 7 (Tar=(2,8)5) while the target task
is to classify digits 0 and 1 (Tar=(1,2)). Similarly, Figure H.1b presents the variation for CIFAR10-
CIFAR10 transfer setup with source model to classify images from classes index 2 and 3 (Src=(2,3))

5Digit 1 is the 2nd and 7 is the 8th class in MNIST

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and the target task is to classify images from classes index 1 and 2 (Tar=(1,2)) in CIFAR10. We can
observe that the structure of the variations remains the same across different random seeds. We can
also observe the same unimodal-like structure for all 5 random seeds.

Specifically, for the CIFAR10-CIFAR10 transfer setup using the 5-layer custom model, the fraction
of accurate ranks vs threshold for different random seeds is presented in Figure H.2a. Figure H.2b
presents the average and the standard deviation for each threshold value across the 5 random seeds.
We can observe Figure H.2a that though there is some variation for values across random seeds (as
expected), the overall trend is similar which implies that the results in Section 5 are not a conse-
quence of a particular network initialization. From Figure H.2b, we can observe that the standard
deviation of the fraction of correct ranks is not significant (<5%) and the average fraction of cor-
rect rank predictions increase when we use a higher threshold i.e. select source models with higher
transfer learning performance.

24

	Introduction
	Related Work
	System Model
	Our Method: BeST
	Novel Quantization Approach
	Mathematical formulation
	Quantization trade-off
	Metric Definition and BeST Algorithm

	Experiments
	Binary classifiers
	Multi-class Case

	Conclusion and future work
	Proof of Theorem 4.1
	Architectures for Source and Custom Model
	Experimental settings
	Rank deviation statistics
	Binary case
	Mutliclass case

	Statistics to justify unimodal approximation
	Correlation Statistics
	Experiments with Imagenette Dataset
	Visualization of Comparison of Rank by Metric Vs True Rank
	Fraction of Accurate Rank Predictions
	Time Improvement Statistics

	Variation with different random seed for pre-trained source

