
Workshop track - ICLR 2017

FAST GENERATION FOR CONVOLUTIONAL
AUTOREGRESSIVE MODELS

Prajit Ramachandran∗, Tom Le Paine∗, Pooya Khorrami, Mohammad Babaeizadeh,
Shiyu Chang, Yang Zhang, Mark Hasegawa-Johnson, Roy Campbell, & Thomas Huang

University of Illinois at Urbana-Champaign
{prmchnd2, paine1, pkhorra2, mb2,
chang87, yzhan143, jhasegaw, rhc, t-huang1}@illinois.edu

ABSTRACT

Convolutional autoregressive models have recently demonstrated state-of-the-art
performance on a number of generation tasks. While fast, parallel training methods
have been crucial for their success, generation is typically implemented in a naı̈ve
fashion where redundant computations are unnecessarily repeated. This results in
slow generation, making such models infeasible for production environments. In
this work, we describe a method to speed up generation in convolutional autoregres-
sive models. The key idea is to cache hidden states to avoid redundant computation.
We apply our fast generation method to the Wavenet and PixelCNN++ models and
achieve up to 21× and 183× speedups respectively.

1 INTRODUCTION

Autoregressive models are a powerful class of generative models that factorize the joint probability of
a data sample x into a product of conditional probabilities. Autoregressive models such as Wavenet
(van den Oord et al., 2016a), ByteNet (Kalchbrenner et al., 2016a), PixelCNN (van den Oord et al.,
2016b;c), and Video Pixel Networks (Kalchbrenner et al., 2016b) have shown strong performance in
audio, textual, image, and video generation. Unfortunately, generating in a naı̈ve fashion is typically
too slow for practical use. For example, generating a batch of 16 32× 32 images using PixelCNN++
(Salimans et al., 2017) takes more then 11 minutes on commodity hardware with a Tesla K40 GPU.

The ability to do fast generation is useful for many applications. Production environments have tight
latency constraints, so real-time speech generation, machine translation, and image super-resolution
(Dahl et al., 2017) all require fast generation. Furthermore, quick simulation of environment dynamics
is important for fast training in model-based reinforcement learning (Oh et al., 2015). However, slow
generation hampers the use of convolutional autoregressive models in these situations.

In this work, we present a method to significantly speed up generation in convolutional autoregressive
models. The contributions of this work are as follows:

1. We present a general method to enable fast generation for autoregressive models through
caching. We describe specific implementations of this method for Wavenet (van den Oord
et al., 2016a) and PixelCNN++ (Salimans et al., 2017). We demonstrate our fast generation
achieves up to 21× for Wavenet and 183× for PixelCNN++ over their naı̈ve counterparts.

2. We open-source our implementation of fast generation for Wavenet1 and PixelCNN++2. Our
generation code is compatible with other open-source implementations of these models that
also implement training.

2 METHODS

Naı̈ve generation for convolutional autoregressive models recalculates the entire receptive field at
every iteration (we refer readers to van den Oord et al. (2016a); Salimans et al. (2017) for details).
This results in exponential time and space complexity with respect to the receptive field. In this
section, we propose a method that avoids this cost by caching previously computed hidden states and
using them in the subsequent iterations.

∗Denotes equal contribution.
1https://github.com/tomlepaine/fast-wavenet
2https://github.com/PrajitR/fast-pixel-cnn

1

https://github.com/tomlepaine/fast-wavenet
https://github.com/PrajitR/fast-pixel-cnn


Workshop track - ICLR 2017

2.1 CACHING FOR DILATED CONVOLUTIONS

To generate a single output y, computations must be performed over the entire receptive field which is
exponential with respect to the number of layers. A naı̈ve generation method repeats this computation
over the entire receptive field at every step, which is illustrated in Figure 1A. However, this is wasteful
because many hidden states in the receptive field can be re-used from previous iterations. This naı̈ve
approach has been used in open-source implementations of Wavenet3.

Instead of recomputing all of the hidden states at every iteration, we propose caching hidden states
from previous iterations. Figure 1B illustrates this idea, where each layer maintains a cache of
previously computed hidden states. During each generation step, hidden states are popped off the
cache to perform the convolutions. The newly generated hidden states are then pushed back into the
cache for future computation. Therefore, the computation and space complexity are linear in the
number of layers instead of exponential.

Figure 1: Comparison of naı̈ve implementation of the generation process and our proposed
method. Orange nodes are computed in the current timestep, blue nodes are previously cached states,
and gray nodes are not involved in the current timestep. Notice that generating a single sample
requires O(2L) operations for the naı̈ve implementation where L is number of layers in the network.
Meanwhile, our implementation only requires O(L) operations to generate a single sample.

2.2 CACHING FOR STRIDED CONVOLUTIONS

The caching algorithm for dilated convolutions is straightforward because the number of hidden states
in each layer is equal to the number of inputs. Thus, each layer can simply maintain a cache that is
updated on every step. However, strided convolutions pose an additional challenge since the number
of hidden states in each layer is different than the number of inputs.

A downsampling (strided convolutional) layer will not necessarily generate an output at each timestep
(see the first hidden layer in Figure 2) and may even skip over some inputs (see the second hidden
layer in Figure 2). On the other hand, an upsampling (strided transposed convolutional) layer will
produce hidden states and outputs for multiple timesteps (see the last hidden layer in Figure 2).
As a result, the cache cannot be updated in every timestep. Thus, each cache has an additional
property cache every, where the cache is only updated every cache every steps. Every downsampling
layer increases the cache every property of the layer by the downsampling factor (2 in the case of
Figure 2). Conversely, every upsampling layer decreases the cache every property of the layer by the
upsampling factor (also 2 in the case of Figure 2).

2.3 MODEL-SPECIFIC DETAILS

Wavenet uses 1D dilated convolutions. Our fast implementation of Wavenet follows directly from the
components outlined in Section 2.1.

PixelCNN++ improves upon PixelCNN (van den Oord et al., 2016c) through a variety of modifications,
including using strided convolutions and transposed convolutions instead of dilation for speed. Our
method scales from 1D to 2D with very few changes. The caches for each layer are now 2D, with a
height equal to the filter height and a width equal to the image width. After an entire row is generated,
the oldest row of the cache is popped and the new row is pushed. Because strided convolutions are
used, we use the cache every idea detailed in Section 2.2. For full details please refer to our code.

3https://github.com/ibab/tensorflow-wavenet

2

https://github.com/ibab/tensorflow-wavenet


Workshop track - ICLR 2017

Figure 2: Fast generation for a network with strided convolutions. We show an example model
with 2 convolutional and 2 transposed convolutional layers each with a stride of 2 (Dumoulin & Visin,
2016). Due to the stride, each layer has fewer states than network inputs. Orange nodes are computed
in the current timestep, blue nodes are previously cached states, and gray nodes are not involved
in the current timestep. In the first timestep (t = 0), the first input is used to compute and cache
all nodes for which there is sufficient information to generate, including the first four outputs. At
t = 1, there are no nodes that have sufficient information to be computed, but the output for t = 1 has
already been computed at t = 0. At t = 2, there is one new node that now has sufficient information
to be computed, although the output for t = 2 has also been computed at t = 0. The t = 3 scenario
is similar to t = 1. At t = 4, there is enough information to compute multiple hidden states and
generate the next four outputs. This is analogous to the t = 0 scenario. t = 5 is analogous to t = 1,
and this cycle is followed for all future time steps.

2 4 6 8 10 12 14

Number of layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
v
e
ra

g
e
 t

im
e
 p

e
r 

sa
m

p
le

 (
se

c)

0.007

0.162Ours

Naive

Figure 3: Wavenet timing experiments. We
generated from a model with 2 sets of L di-
lation layers each, using a naı̈ve implemen-
tation and ours. Results are averaged over
100 repeats. When L is small, the naı̈ve im-
plementation performs better than expected
due to GPU parallelization of the convolution
operations. When L is large, the difference in
performance is more pronounced.

2
4

6

10

18

33

61

109

183

1 2 4 8 16 32 64 128 256

Batch size (log scale)

1

10

100

S
p
e
e
d
u
p
 (

lo
g
 s

ca
le

)

Figure 4: PixelCNN++ timing experiments. We
generated images using the model architecture de-
scribed in (Salimans et al., 2017). Due to the huge
number of convolution operations in the naı̈ve im-
plementation, GPU utilization is always high and
there is no room for parallelization across batch.
Since our method avoids redundant computations,
larger batch sizes result in larger speedups.

3 EXPERIMENTS

We implemented our methods for Wavenet (van den Oord et al., 2016a) and PixelCNN++ (Salimans
et al., 2017) in TensorFlow (Abadi et al., 2016). We compare our proposed method with a naı̈ve imple-
mentation of Wavenet4 and a naı̈ve implementation of PixelCNN++5 in Figures 3 and 4 respectively.
The results indicate significant speedups, up to 21× for Wavenet and 183× for PixelCNN++.

4https://github.com/ibab/tensorflow-wavenet
5https://github.com/openai/pixel-cnn

3

https://github.com/ibab/tensorflow-wavenet
https://github.com/openai/pixel-cnn


Workshop track - ICLR 2017

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI). Savannah, Georgia, USA, 2016.

Ryan Dahl, Mohammad Norouzi, and Jonathon Shlens. Pixel recursive super resolution. arXiv
preprint arXiv:1702.00783, 2017.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285, 2016.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099, 2016a.

Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex Graves,
and Koray Kavukcuoglu. Video pixel networks. arXiv preprint arXiv:1610.00527, 2016b.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In Advances in Neural Information Processing
Systems, pp. 2863–2871, 2015.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the
pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016a.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016b.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Ko-
ray Kavukcuoglu. Conditional image generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016c.

4


	Introduction
	Methods
	Caching for dilated convolutions
	Caching for strided convolutions
	Model-specific details

	Experiments

