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DOMAIN ADVERSARIAL REPRESENTATION LEARNING
FOR DATA INDEPENDENT DEFENSES AGAINST POI-
SONING ATTACKS

ABSTRACT

Understanding the worst case loss of a defense against a determined attack is
important to evaluate the robustness of a particular classification algorithm to data
poisoning attacks. Even though there are many methods for defending against
attacks, they are dependent on the separability of the dataset representation. We
pose this as a domain adaptation problem and learn a function in an adversarial
setting to transform a dataset from a source domain to a target domain which has
an established separability of clusters. The defenses thus obtained in the target
domain show tighter upper bounds as compared to those in the source domain.

1 INTRODUCTION

With the increasing applications of Machine Learning to several domains, there is an increasing
thrust on developing reliable systems which are robust to data poisoning attacks. Such defenses fall
under two categories (i) Fixed Defenses, wherein there is the availability of clean dataset on which
the training is performed (ii) Data-dependant defenses, wherein we only have access to a poisoned
dataset. There are realistic use cases of fixed defenses, for example, a cloud based application could
be trained on a clean dataset but is exposed to attacks during inference and this work focuses on
fixed defenses.

Even though there are many defenses proposed for potential attacks, not much study has been done
on the worst-case test loss for the dataset. The paper (Steinhardt et al., 2017) proposes a method
to determine the upper bound on the test-loss for the proposed defenses. They achieve this by
constructing feasible areas in the high dimensional space which aids to remove outliers as well as
bound the maximum loss which can be incurred.

Motivation: The authors of Steinhardt et. al. mention that the proposed defenses are highly data-
dependent and work only when the positive and negative clusters are well separated as in the case
of MNIST 1-7 dataset (author). The performance of these defenses degrades dramatically when
there isn’t a clear separation in the clusters. Borrowing idea from Domain Adaptation we wanted to
transform the IMDB dataset to the domain of MNIST 1-7. To additionally test the robustness of the
proposed method, we have also trained a function to transform the SVHN dataset(shown in Fig 1)
which doesn’t have a well-defined class boundary and have c

2 PROPOSED METHODOLOGY

2.1 DATASET AS SAMPLES FROM A PROBABILITY FUNCTION

Consider a dataset D consisting of c classes. Each of the example is an n-dimensional vector which
can be interpreted as a point in the n-dimensional vector space <n. Without any loss of generality
we can define the examples from each class as samples from a class probability distribution over<n.
Computing the exact probability distribution function P cD, for every class c is more often than not,
intractable. Hence, we will be learning function which draws samples from an approximation of this
function. In the following sections, we will be considering this abstraction in our formulation.
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2.2 PROBLEM DEFINITION

Consider a classification task from the input x ∈ X to an output y ∈ Y . In this work we restrict
ourselves to the scenario whereX = <d as adversarial domain adaptation works only on continuous
samples. For the sake of convenience, we also assume Y ∈ {1,−1} although the following analysis
is valid for an arbitrary number of classes.

We have two clean datasets, i.e Dsource and Dtarget each of which have examples as points in
<source and <target respectively. The positive and negative classes of both the datasets can be
assumed to be drawn from their corresponding probability distribution function, P+ and P− re-
spectively. From this point henceforth, we will be working with only the positive classes of both the
datasets. Results for the negative class can be concluded in the same way.

2.3 ADVERSARIAL SETUP

Consider a deterministic function G : IRsource → IRtarget parameterised by θ ∈ Θ, implemented
by the means of a feed forward neural network. It takes a vector from the source domain and outputs
a vector in the target domain. This function can be assumed to produce samples from a generating
distribution, Pg . The goal is to minimize the KL divergence of these distributions and ideally making
it zero, at which point, Ptarget = Pg .

This optimization can be achieved in an adversarial setting. Consider another function, C :
IRtarget → [0, 1] parameterised by π ∈ Π also implemented by means of a fully connected net-
work, albeit having a different architecture. This function outputs the probability that the input is
from the original target data. The critic, C tries to distinguish samples drawn from Pg and Psource
whereas the generator, G attempts to modify Pg so as to fool the critic. The critic and the generator
are trained alternatively using gradient descent.

This sets up the following minimax objective:

min
π
max

θ
[ErP̃ target [log(Dπ(r))]− Ez Psource [log(Dπ(Gθ(z))]]

3 EXPERIMENTS

We have tested our theoretical framework on two different datasets, viz. Street View House Numbers
1-7 and IMDB Sentiment Classification dataset.

Figure 1: Plots of MNIST 1-7, IMDB and SVHN 1-7 datasets. The clusters are well-defined in the
case of MNIST 1-7 but are not in the other two. SVHN 1-7 has the least amount of structure in the
data.

Both critic and generator have been implemented by a 3 layer feed forward neural network.

In Fig 2 we see the plot of the datasets which are obtained after the adversarial transformation. There
is an apparent class separability inherited from MNIST dataset which wasn’t present in the source
domain.
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Figure 2: Plots of IMDB and SVHN dataset after the transformation. The intersection of the circle
and slab denote the feasible region for that particular class as proposed.

Table 1: Upper bound on Test loss

MNIST IMDB SVHN IMDB Transformed SVHN Transformed

0.0455 1.0800 1.589 1.45 x 10−6 2.08 x 10−6

As the clusters obtained after transformation are at a significant distance from each other, the model
is extremely resilient to attacks with the upper bound on test loss approaching 0. See Table 1. The
upper bound is computed as proposed in (Steinhardt et al., 2017)

4 DISCUSSION

In this paper we provide a framework for improving the separability of the classes by adapting
the representation of a dataset into another dataset which has an established separability. We have
obtained high resilience to data attacks with upper bounds tending to zero.
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