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ABSTRACT

Large reasoning models (LRMs) exhibit diverse high-level reasoning patterns
(e.g., direct solution, reflection-and-verification, and exploring multiple solu-
tions), yet prevailing training recipes implicitly bias models toward a few dom-
inant patterns. We systematically analyze these patterns and observe substantial
accuracy variance across patterns on math and science benchmarks, implying that
the pattern a model adopts is often sub-optimal for a given problem. We introduce
Group Pattern Selection Optimal (GPSO), a reinforcement-learning framework
that extends GRPO with multi-pattern rollout, optimal pattern selection per prob-
lem via verifier signals, and attention masking to prevent leakage from explicit
pattern suffixes into the learned policy. By intelligently exploring a portfolio of
diverse patterns and optimizing the model’s policy on the most effective ones,
GPSO learns the intrinsic mapping from problem to pattern. Extensive exper-
iments demonstrate that GPSO delivers consistent and substantial performance
improvements across a wide range of model backbones and reasoning bench-
marks, effectively mitigating the sub-optimality issue and enabling more robust
and adaptable LLM reasoning.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs), particularly those focused on complex reason-
ing, have yielded remarkable capabilities in solving challenging tasks across mathematics, science,
and programming. Models like DeepSeek-R1 Zhang et al. (2023) and OpenAI-o1 OpenAI (2024)
demonstrate a new paradigm of reasoning, where they generate long, multi-step Chain-of-Thought
(CoT) Wei et al. (2022) responses. A critical enabling factor behind this emergent behavior is the
use of reinforcement learning (RL) from human feedback or model-generated trajectories, with al-
gorithms such as Proximal Policy Optimization (PPO) Schulman et al. (2017) and GRPO Shao et al.
(2024) playing a central role. These training paradigms encourage models to explore, self-correct,
and refine their reasoning on the fly, leading to impressive performance gains.

Inspired by these successes, a growing body of research has turned its attention to understanding the
internal reasoning patterns adopted by these models. These reasoning patterns, or “paradigms,” refer
to the high-level, observable strategies a model employs to navigate a complex problem space, such
as providing direct answers, decomposing problems, exploring alternative solutions, or employing
tools. Several studies have systematically analyzed the cognitive behaviors of LLMs, revealing a
rich spectrum of patterns such as self-reflection, backtracking, and exploration of multiple hypothe-
ses (Wen et al., 2025b; Gandhi et al., 2025). Crucially, the reasoning patterns these models learn
typically do not emerge spontaneously from scratch. Instead, they are shaped during the cold-start
phase through human-designed prompts or explicitly reinforced by human preferences during re-
inforcement learning. For example, Chen et al. (2025b) analyzed the evolution of these patterns
before and after RL fine-tuning, finding that trained models tend to converge on a limited set of
high-success-rate patterns. This observation leads us to a crucial, unaddressed question: Are the
reasoning patterns chosen by LRMs truly optimal for problem solving?

To answer this question, we conduct a comprehensive empirical study. First, we perform a system-
atic analysis of the reasoning trajectories generated by seven state-of-the-art LLMs across mathe-
matics, science, and code domains. Our analysis reveals that while LLMs possess the potential for
diverse reasoning, they consistently default to a limited set of dominant patterns. Specifically, we
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Figure 1: Comparison of model performance under different reasoning patterns on three benchmarks
(AIME2024, AIME2025, and GPQA): (a) DeepSeek-R1-0528 and (b) Qwen3-8B (Thinking). No:
No reasoning prompt, Dir: Direct solution, Ref: Reflection and verification, Exp: Explore Multiple
solutions, Best: Pattern selected with the highest accuracy on each question.

find that the majority of reasoning trajectories can be classified into three high-level categories: Di-
rect Solution, Reflection and Verification, and Exploration of Multiple Solutions. Interestingly, we
observed that Reflection and Verification emerges as the default and primary reasoning pattern for
most models, likely due to its robustness in self-correction (details can be found in Appendix A).

Subsequently, we evaluate the performance of two high-performing LRMs (DeepSeek-R1-0528 and
Qwen3-8B-Thinking) under these distinct reasoning patterns. They generate solutions using each
of the three patterns through tailored, in-context prompts. The results, as illustrated in Figure 1,
reveal a striking finding: model performance varies significantly across different reasoning patterns.
For instance, while Reflection and Verification might be optimal for some problems, Exploration of
Multiple Solutions often yields substantially higher accuracy on tasks requiring novel insights. Crit-
ically, our results demonstrate that if LLMs were capable of dynamically selecting the most suitable
pattern for each problem and outputting the best-performing trajectory, their overall performance
could be enhanced by a substantial margin. This leads us to our core conclusion: The reasoning
patterns chosen by LRMs are not optimal.

In this paper, we propose Group Pattern Selection Optimization (GPSO), a novel training paradigm
that teaches the model to intelligently select the optimal reasoning pattern for a given problem. Our
method extends GRPO by incorporating multi-pattern exploration and optimal pattern optimization.
During training, GPSO dynamically evaluates multiple candidate reasoning patterns for each prob-
lem. It then identifies the most effective pattern based on verifier-based signals and updates the
model policy specifically on the rollouts of this optimal pattern. To ensure that the model learns the
intrinsic mapping from problem to pattern—rather than overfitting to explicit pattern tokens—GPSO
employs a gradient masking technique. This mechanism ensures that the explicit prompts used as
exploration scaffolds do not leak into the learned policy, allowing the model to internally select the
appropriate pattern on its own during reasoning. Through extensive experiments, we demonstrate
that GPSO significantly outperforms existing methods and effectively addresses the sub-optimality
issue in LLM reasoning.

Experimental results demonstrate that our proposed GPSO brings consistent and substantial im-
provements across diverse model backbones and reasoning benchmarks. As summarized in Table 1,
applying GPSO significantly boosts the performance of various LLMs. For example, it improves
the average performance of Nemotron-1.5B from 55.4 to 58.0, a relative gain of +2.6%. Simi-
larly, DeepSeek-Qwen-7B sees an increase from 55.6 to 58.7 (+3.1%), while DeepSeek-LLaMA-
8B improves from 51.4 to 54.6 (+3.2%). Moreover, our method proves highly effective even on the
strongest baseline model in our evaluation suite, Qwen3-8B (Thinking), which achieves its highest
overall score of 75.3 after being fine-tuned with GPSO. These results strongly validate our hypothe-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sis and demonstrate that GPSO is both a model-agnostic and consistently effective training paradigm
for optimizing reasoning performance.

2 RELATED WORK

This section reviews key research areas that form the foundation of our work: Reinforcement
Learning with Verifiable Rewards (RLVR), sampling strategies for RL fine-tuning, and the study
of reasoning patterns in large language models. Our study builds upon these fields by proposing a
novel method to address the sub-optimal reasoning patterns that emerge from current RLVR training
paradigms.

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS

RLVR has emerged as a powerful and scalable post-training paradigm for large language models by
leveraging rule-based or executable feedback, such as program execution results or logical consis-
tency checks (Ouyang et al., 2022; Bai et al., 2022). This approach bypasses the reliance on costly
human-annotated reward models, showing strong improvements in reasoning-heavy domains like
symbolic mathematics and code generation (Wang et al., 2025; Chen et al., 2025c). The success of
models like DeepSeek-R1 DeepSeek-AI et al. (2025), which was trained with the GRPO algorithm
Shao et al. (2024), has inspired a surge of follow-up research (He et al., 2025; Tang et al., 2025a;
Cheng et al., 2025). The researchers conduct in-depth studies on the design and robustness of the
reward function in RLVR Su et al. (2025); Li et al. (2025a); Zhang et al. (2025a), the efficient uti-
lization of data Tang et al. (2025b); Yang et al. (2025), the balance mechanism between exploration
and exploitation Yang et al. (2025); Wu et al. (2025a); Chen et al. (2025d); Wu et al. (2025a), and the
cross-domain adaptation and multimodal reasoning Chen et al. (2025a); Xiao et al. (2025); Liang
et al. (2025).

2.2 SAMPLING STRATEGIES FOR REINFORCEMENT LEARNING

Efficient sample selection is critical for the convergence and performance of LLM fine-tuning, as it
directly impacts which trajectories are prioritized for learning. Several prominent sampling strate-
gies have been proposed. Coarse-grained curriculum learning Team et al. (2025); Xie et al. (2025)
gradually increases trajectory difficulty based on a competence-difficulty alignment score. LIMR
Li et al. (2025b) proposes Learning Impact Measurement (LIM) to prioritize problems whose ex-
pected learning progress best matches the current model trajectory. Prioritized Sampling Team et al.
(2025) weighs replay probability by TD-error or uncertainty, letting the agent reuse rare but infor-
mative transitions. Dynamic Sampling Yu et al. (2025) monitors online pass rates and resamples
low-variance trajectories until their outcomes are neither 0 nor 1, reducing redundancy at the cost of
extra rollouts. MCTS-structured exploration Csippán et al. (2025) leverages tree search as a policy-
improvement operator to steer deep RL toward high-value regions in vast action spaces, markedly
boosting sample efficiency.

2.3 REASONING PATTERNS OF LARGE REASONING MODELS

With the widespread adoption of RLVR, researchers have begun to investigate its effect on LLM be-
havior beyond simple performance metrics (Han et al., 2025; Cheng et al., 2025). Some works begin
to balance direct answers with extended thought processes to alleviate the problem of overthinking
(Wu et al., 2025b; Fang et al., 2025; Luo et al., 2025a; Zhang et al., 2025b). However, few explore
how reasoning patterns evolve during training. To address this, Chen et al. (2025b) systematically
investigates the role of RLVR for enhancing the reasoning capabilities of LLMs, discovering that
their core advantage lies in optimizing the selection of existing high-success-rate reasoning patterns.
Building upon this crucial insight, our work is the first to propose a training framework that explic-
itly leverages and optimizes this pattern selection process. To actively teach the model to pick the
right pattern for each problem, thereby pushing the boundaries of LLM reasoning performance.
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Figure 2: Overview of Group Pattern Selection Optimal (GPSO).

3 METHODOLOGY

In this section, we introduce Group Pattern Selection Optimization (GPSO), which teaches the model
to pick the right pattern for reasoning. We first describe the preliminaries of Reinforcement Learning
with Verifiable Rewards (RLVR) and then introduce our GPSO.

3.1 PRELIMINARIES OF RLVR

Reinforcement Learning with Verifiable Rewards (RLVR) Gao et al. (2024); Lambert et al. (2025);
DeepSeek-AI et al. (2025); Team et al. (2025) refers to reinforcement learning optimization of
models using rewards that can be automatically calculated using a rule-based verifier which as-
signs a scalar reward score to each generated response. Specifically, given a prompt x, the pol-
icy πθ generates a reasoning trace z followed by a final answer y. A verifier computes a reward
r = V erifier(y, y∗). Training proceeds via standard RL algorithms (e.g., PPO (Schulman et al.,
2017) or GRPO Shao et al. (2024)) to maximize the expected verifier reward, i.e.:

max
θ

Ez,y∼πθ(·|x)
[
V erifier(y, y∗)

]
(1)

where V erifier is a rule-based function that compares the model output y against the reference
answer y∗ and returns a scalar score. Common instantiations include symbolic verifiers for math-
ematical problem solving, which check the equivalence of generated solutions against reference
answers Cui et al. (2025), and sandboxed execution environments for code generation, where can-
didate programs are executed against unit tests to determine functional correctness (Cui et al., 2025;
Gehring et al., 2025).

In this paper, we adopt Group Relative Policy Optimization (GRPO) as our reinforcement learning
objective. GRPO is a PPO-like actor-only algorithm that omits the learning of a separate value
function. For each prompt x, it samples a group of G reasoning traces and answers {(zi, yi)}Gi=1,
each yielding a scalar reward ri = Verifier(yi, y∗). The optimization objective is:

LGRPO(θ) = Ex∼D

[
1

G

G∑
i=1

min

(
πθ(zi, yi | x)
πθold(zi, yi | x)

Ai, clip
(

πθ(zi, yi | x)
πθold(zi, yi | x)

, 1− ε, 1 + ε

)
Ai

)]
,

(2)

where the advantage Ai is computed as follows:
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Ai =
ri − µr

σr + ϵnorm
, µr =

1

G

G∑
j=1

rj , σr =

√√√√ 1

G

G∑
j=1

(rj − µr)2. (3)

3.2 PATTERN-OPTIMAL REASONER

We now present our proposed method, Group Pattern Selection Optimization (GPSO), which ex-
tends RLVR with the ability to explore and learn the most effective reasoning patterns for different
prompts. As shown in Figure 2, the central idea is to leverage multiple candidate patterns appended
to the prompt, evaluate their effectiveness using verifier-based rewards, and then selectively up-
date the policy with the optimal pattern while preventing overfitting to pattern-related suffix tokens
through attention masking.

Multi-Pattern Rollout. Given a prompt x, we introduce a set of n reasoning patterns
{p1, . . . , pn}. Each pattern serves as a suffix that encourages the model to follow a distinct rea-
soning trajectory. For each pj , the policy πθ samples m responses:

Gj = {yj,1, yj,2, . . . , yj,m} ∼ πθ(· | x⊕ pj), (4)

where ⊕ denotes prompt concatenation. Each response yj,k receives a verifier reward rj,k =
V erifier(yj,k, y

∗), y∗ is the golden answer.

Pattern Selection Rule. To determine the most effective reasoning strategy, we compute the em-
pirical accuracy of each pattern:

Acc(pj) =
1

m

m∑
k=1

1[rj,k = 1], (5)

and select the optimal pattern
p∗ = argmax

pj

Acc(pj). (6)

When multiple patterns achieve the same accuracy, we select the one producing the shortest valid
reasoning trace ℓ(yj,k), favoring concise solutions. The responses guided by the selected pattern p∗

are then used to perform the subsequent policy update.

Attention Masking for Pattern Suffix. While suffixes pj guide exploration, we prevent the
model from overfitting by masking out their contribution during gradient updates. Concretely, let
M ∈ {0, 1}B×(Lprompt+Lresp) be the attention mask, where B is the batch size, Lprompt is the maxi-
mum prompt length, and Lresp is the maximum response length. For a given sequence, Mi,t = 0
indicates that token t in instance i is masked out, and Mi,t = 1 otherwise. In particular, for tokens
corresponding to the appended pattern suffix, we enforce

Mi,t = 0, ∀t ∈ Idx(pj), (7)

where Idx(pj) denotes the index set of token positions occupied by suffix pj . This ensures that
suffix tokens cannot influence the contextual representation of other tokens. Thus, patterns act as
exploration scaffolds but do not directly leak into the learned policy.

Training Objective. Once p∗ is identified, we restrict optimization to its sampled group Gp∗ . Let
Âp∗,k denote the group-normalized advantage, computed as in GRPO but masked such that gradient
flow ignores suffix positions. Formally, the GPSO objective is:

LGPSO(θ) = Ex∼D

[
1

Gp∗

Gp∗∑
k=1

min

(
πθ(zk, yk | x⊕ p∗)

πθold(zk, yk | x⊕ p∗)
· Âp∗,k,

clip

(
πθ(zk, yk | x⊕ p∗)

πθold(zk, yk | x⊕ p∗)
, 1− ε, 1 + ε

)
· Âp∗,k

)]
. (8)
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Here, Âp∗,k is computed by normalizing rewards within Gp∗ , and gradients are masked to exclude
suffix tokens. In this way, GPSO leverages pattern-based exploration to discover effective reasoning
trajectories while maintaining a clean separation between exploration scaffolds and the policy itself.

4 EXPERIMENTAL METHODOLOGY

In this section, we describe the datasets, evaluation metrics, baselines, and implementation details.

Dataset. For the training set, we use DAPO-Math-17K dataset Yu et al. (2025), which is a curated
collection of approximately 17,000 competition-level math problems. For testing, we evaluate the
effectiveness of GPSO on AIME2024 Beeching et al. (2024), AIME2025 Ye et al. (2025), MATH-
500 Hendrycks et al. (2021), and GPQA datasets (Rein et al., 2023).

Evaluation Metrics. We follow previous work Chen et al. (2021); Li et al. (2024); Wang et al.
(2024); Yang et al. (2024); Luo et al. (2023) and we use Pass@k Chen et al. (2021) to evaluate the
effectiveness of different models. In this work, we set k = 1. The Pass@1 accuracy is averaged
over 4 samples per problem on all benchmarks.

Baselines. We compare GPSO with several LRMs, such as DeepSeek-R1-Distill-Qwen-1.5B/14B
DeepSeek-AI et al. (2025), DeepScaleR-1.5B-Preview Luo et al. (2025b), Light-R1-7B-DS Wen
et al. (2025a), AReal-boba-RL-7B Fu et al. (2025). DeepScaleR-1.5B-Preview is further trained
starting from DeepSeek-R1-Distill-Qwen-1.5B, while Light-R1-7B-DS and AReal-boba-RL-7B are
further trained from DeepSeek-R1-Distill-Qwen-7B.

Implementation Details. In our experiments, we apply GPSO to four LRMs: Nemotron-
Research-Reasoning-Qwen-1.5B Liu et al. (2025), DeepSeek-R1-Distill-Qwen-7B DeepSeek-AI
et al. (2025), DeepSeek-R1-Distill-Llama-8B DeepSeek-AI et al. (2025), and Qwen3-8B (Think-
ing) (Team, 2025). During training, we use Verl framework Sheng et al. (2024) and apply GRPO as
the RL algorithm to implement GPSO. For hyperparameters, we set the batch size and mini-batch
size to 64, and for each problem, we rollout 8 responses using four patterns: Direct Solution, Reflec-
tion and Verification, Exploration of Multiple Solutions, and Adaptive. The maximum lengths for
prompts and responses are 1, 024 and 16, 384 tokens, respectively. The learning rate is set to 1e− 6,
and we adopt the AdamW optimizer for the policy model. All experiments were conducted on 8 ×
NVIDIA H20 96GB GPUs. During testing, we set the temperature to 0.6. The maximum generation
length is set to 32, 768 tokens for AIME 2024/2025 and 16, 384 tokens for MATH-500 and GPQA.
All evaluations are conducted under the zero-shot setting.

5 EVALUATION RESULTS

In this section, we present the evaluation results for GPSO. Our evaluation includes a comprehensive
analysis of the overall performance, ablation studies to assess the contribution of key components,
and insights into how GPSO enhances reasoning performance across a variety of tasks.

5.1 OVERALL PERFORMANCE

The overall performance of GPSO is shown in Table 1. Across different model backbones, ap-
plying GPSO consistently improves performance. Nemotron-Research-Reasoning-Qwen-1.5B im-
proves its average score from 55.4 to 58.0 (+2.6%), while DeepSeek-R1-Distill-Qwen-7B increases
from 55.6 to 58.7 (+3.1%). Similarly, DeepSeek-R1-Distill-Llama-8B improves from 51.4 to 54.6
(+3.2%). Notably, Qwen3-8B (Thinking) further benefits from GPSO, achieving the best overall
average of 75.3. These results indicate that GPSO is model-agnostic and provides stable gains. On
individual benchmarks, the improvements brought by GPSO mainly come from challenging rea-
soning tasks such as AIME 2024 and AIME 2025. Across all four models, GPSO yields an average
gain of 4.0 points on AIME2024 and 2.7 points on AIME2025. Moreover, although GPSO is trained
solely on mathematical data, it demonstrates strong generalization across domains, achieving an av-
erage improvement of 2.1 points on GPQA. These results confirm that GPSO offers a plug-and-play
enhancement to existing RLVR training pipelines, with consistent gains across both weak and strong
LLMs.
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Table 1: Overall performance of Group Pattern Selection Optimization (GPSO).

Model AIME2024 AIME2025 MATH500 GPQA Avg.

DeepSeek-R1-Distill-Qwen-1.5B 30.0 20.0 84.7 33.8 42.1
DeepScaleR-1.5B-Preview 40.2 28.5 87.8 32.3 47.2
Light-R1-7B-DS 57.7 46.4 91.1 47.2 60.6
AReal-boba-RL-7B 62.7 49.4 93.8 48.0 63.5
DeepSeek-R1-Distill-Qwen-14B 70.4 50.0 92.4 59.5 68.1

Nemotron-Research-Reasoning-Qwen-1.5B 53.3 35.8 92.1 40.5 55.4
+ GPSO 58.3 37.5 93.1 43.2 58.0

DeepSeek-R1-Distill-Qwen-7B 48.3 33.3 93.2 47.6 55.6
+ GPSO 53.3 40.0 93.5 47.9 58.7

DeepSeek-R1-Distill-Llama-8B 44.2 27.5 88.1 46.0 51.4
+ GPSO 49.2 29.2 90.2 50.0 54.6

Qwen3-8B (Thinking) 76.7 67.5 96.0 58.0 74.5
+ GPSO 77.5 68.3 96.1 59.2 75.3

Table 2: Ablation Studies. We evaluate the impact of removing each component in GPSO: Multi-
Pattern Rollout (MPR), Optimal Pattern Selection (OPS), Masking Pattern Tokens (Mask), and the
KL penalty (KL). ✓ indicates the component is enabled, while ✗ indicates it is disabled.

Model MPR OPS Mask KL AIME2024 AIME2025 GPQA Avg
Nemotron-Qwen-1.5B - - - - 53.3 35.8 40.5 43.2
Nemotron-Qwen-1.5B-GPSO ✓ ✓ ✓ ✓ 58.3 37.5 43.2 46.3

w/o KL ✓ ✓ ✓ ✗ 54.2 36.7 40.8 43.9
w/o Multi-Pattern Rollout ✗ ✗ ✗ ✓ 49.2 33.3 40.5 41.0
w/o Optimal Pattern Selection ✓ ✗ ✓ ✓ 53.3 35.8 40.0 43.1
w/o Mask Pattern Tokens ✓ ✓ ✗ ✓ 56.7 33.3 40.3 43.4

DeepSeek-R1-Distill-Qwen-7B - - - - 48.3 33.3 47.6 43.2
DeepSeek-R1-Distill-Qwen-7B-GPSO ✓ ✓ ✓ ✓ 53.3 40.0 47.9 47.1

w/o KL ✓ ✓ ✓ ✗ 52.5 36.7 46.3 45.2
w/o Multi-Pattern Rollout ✗ ✗ ✗ ✓ 50.8 35.8 47.7 44.8
w/o Optimal Pattern Selection ✓ ✗ ✓ ✓ 50.8 38.3 50.3 46.5
w/o Mask Pattern Tokens ✓ ✓ ✗ ✓ 51.7 38.3 45.7 45.2

5.2 ABLATION STUDIES

To further investigate the individual contributions of the key components in GPSO, we conduct a
series of ablation experiments. As shown in Table 2 and Figure 3, we evaluate the model under
several settings: (1) removing the KL penalty, (2) excluding the Multi-Pattern Rollout mechanism,
(3) disabling the Optimal Pattern Selection, and (4) not masking the Pattern Tokens. From the results
and training accuracy curves on AIME2024 and AIME2025, we observe that removing any of these
components leads to a noticeable performance degradation.

We summarize our key observations as follows. First, the removal of the KL penalty consistently
hurts performance across both models and datasets. As shown in Figure 3, the training curves with-
out KL (yellow triangles) remain persistently below the GPSO baseline (purple triangles), indicating
that the KL regularization effectively stabilizes training and prevents overfitting to spurious patterns.
This is also reflected in Table 2, where removing KL leads to a drop of 2.4 points (Nemotron) and
1.9 points (DeepSeek-R1) on average.

Second, excluding the Multi-Pattern Rollout mechanism(blue squares) leads to the most signif-
icant performance degradation. Without rollout, the model struggles to explore diverse reasoning
paths and quickly plateaus. The average performance drops by 5.3 points (Nemotron) and 2.3 points
(DeepSeek-R1), highlighting the critical role of this component in guiding exploration.

Third, turning off Optimal Pattern Selection results in a moderate but consistent decrease. Al-
though the Multi-Pattern Rollout still runs, the lack of selection prevents the model from reinforcing
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Figure 3: Training Accuracy Curves On AIME2024 and AIME2025.

Table 3: Effectiveness of Reasoning Pattern Selection with GPSO
Model Pattern AIME2024 AIME2025 MATH500 GPQA

Nemotron-Qwen-1.5B

- 53.3 33.3 92.1 40.5
Direct Solution 41.7 27.5 90.1 39.3
Reflection and Verification 47.5 30.8 92.2 41.3
Explore Multiple Solutions 55.0 34.2 91.7 38.6

Nemotron-Qwen-1.5B-GPSO

- 58.3 37.5 93.1 43.2
Direct Solution 49.2 33.3 91.1 40.5
Reflection and Verification 53.3 35.8 91.6 40.0
Explore Multiple Solutions 56.7 33.3 91.3 40.3

DeepSeek-R1-Distill-Qwen-7B

- 48.3 33.3 93.2 47.6
Direct Solution 43.3 26.7 88.1 44.8
Reflection and Verification 50.0 33.3 92.6 47.6
Explore Multiple Solutions 48.3 36.7 90.3 47.5

DeepSeek-R1-Distill-Qwen-7B-GPSO

- 53.3 40.0 93.5 47.9
Direct Solution 45.0 36.7 90.2 46.5
Reflection and Verification 49.2 38.3 92.8 47.4
Explore Multiple Solutions 51.7 39.2 92.2 47.0

high-quality patterns, leading to noisier supervision. This is most noticeable on AIME2025, where
accuracy deteriorates by 1.7 points on both models.

Lastly, we observe that Masking Pattern Tokens also plays a subtle but meaningful role. Without
this masking, the model has access to hard-coded pattern identifiers, which may introduce unde-
sirable shortcuts during learning. Both Table 2 and Figure 3 show that disabling masking results
in slower convergence and slightly worse final performance, suggesting that overfitting to pattern
identity is more detrimental in harder, unfamiliar tasks.

5.3 GPSO LEARNS TO PICK THE RIGHT PATTERN FOR REASONING

As shown in Table 3, GPSO enables both models to dynamically apply the most suitable reasoning
pattern per instance, outperforming all fixed-pattern baselines. Without GPSO, no single reasoning
mode consistently dominates across benchmarks. For example, Nemotron-Qwen-1.5B performs
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Figure 4: Pattern Usage Distribution Before and After GPSO Training

best with Explore Multiple Solutions on AIME2024 and AIME2025, but achieves higher scores
with Reflection and Verification on MATH500 and GPQA. DeepSeek-R1-Distill-Qwen-7B shows
similar variability.

In contrast, GPSO-trained models achieve the highest scores across all benchmarks using the default
decoding strategy—surpassing even the best fixed-pattern results. This demonstrates that GPSO can
effectively learn to adaptively combine reasoning strategies based on the problem type, leading to
more generalizable and robust performance.

5.4 DISTRIBUTION OF REASONING PATTERNS BEFORE AND AFTER GPSO TRAINING.

As shown in Figure 4, we analyze the distribution of reasoning patterns selected on the AIME2024
and AIME2025 datasets, both before and after applying GPSO. The results confirm that GPSO
enables models to learn an adaptive, problem-dependent policy rather than converging to a single
fixed strategy.

For Nemotron-Research-Reasoning-Qwen-1.5B (Figure 4(a)), we observe a clear task-specific ad-
justment. On AIME2024, the model further strengthens its preference for the Reflection and Ver-
ification pattern, increasing its usage from 87.5% to 90.0%. In contrast, on the more challenging
AIME2025, the model shifts towards Explore Multiple Solutions, increasing its usage from 10.0%
to 15.6%. This indicates that GPSO guides the model to adopt more exploratory strategies when the
problem requires it.

A similar trend is observed with DeepSeek-R1-Distill-Qwen-7B (Figure 4(b)). On AIME2024, the
share of Explore Multiple Solutions rises from 16.1% to 19.6%, and on AIME2025, from 10.0% to
12.5%. These shifts further highlight GPSO’s ability to learn a meta-policy that adjusts the invoca-
tion probabilities of different reasoning strategies based on task characteristics.

6 CONCLUSION

In this work, we propose GPSO, a novel training paradigm that enables language models to select op-
timal reasoning patterns per instance dynamically. By combining multi-pattern exploration, verifier-
guided supervision, and gradient-masked updates, GPSO teaches the model to internalize reasoning
strategies without relying on explicit prompts. Experiments on multiple benchmarks demonstrate
that GPSO consistently improves performance across models and tasks, particularly on challenging
datasets that require reasoning. Our results highlight the effectiveness of adaptive pattern selection
in enhancing both accuracy and generalization of LLM reasoning.
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A DISTRIBUTION OF REASONING PATTERNS ACROSS DOMAINS

To support our analysis, we sample 1,000 reasoning trajectories from each model for the mathemat-
ics or science domains, respectively. Each response is annotated into one of five high-level reasoning
categories: Direct Solution, Explore Multiple Solutions, Reflection and Verification, Analogy, and
Reverse Thinking.

0 20 40 60 80 100
Percentage of Reasoning Pattern (%)

DeepSeek-R1-0528 (Science)
Qwen3-235B-A22B (Science)

AM-Thinking-v1 (Science)
DeepSeek-R1-0120 (MATH)
DeepSeek-R1-0528 (MATH)

QwQ-32B (MATH)
Qwen3-235B-A22B (MATH)

Gemini-Flash-Thinking-Exp (MATH)
Claude-3-7-sonnet (MATH)

AM-Thinking-v1 (MATH)

Direct Solution
Reflection and Verification

Explore Multiple Solutions
Analogy

Reverse Thinking

Figure 5: Distribution of reasoning patterns used by various LLMs on MATH and Science tasks

Figure 5 provides a detailed breakdown of the percentage distribution of reasoning patterns exhibited
by each model. We observe clear trends—such as the dominance of Reflection and Verification
in most models, particularly in the science domain, and the relatively lower adoption of Explore
Multiple Solutions or Reverse Thinking, even for state-of-the-art models like Claude and Gemini.
These results underscore the tendency of LLMs to default to a small subset of reasoning strategies,
despite their architectural capacity for diverse reasoning.

B PROMPTS

B.1 FULL PROMPTS FOR PATTERN ANALYSIS

Full Prompt for Responses Classification

I will provide you with a problem and its solution. Please analyze the strategy used in this
solution.
When solving problems, people may use the following strategies:
- Direct solution: Solve the problem step by step, without reflection or verification, and finally
give the answer.
- Reflection and verification: Reflect on the solution, verify the solution, if errors are found,
rethink the problem, solve the problem again, and finally give the answer.
- Explore multiple solutions: Explore multiple solutions, select the optimal solution or syn-
thesize multiple solutions to give the final answer.
- Others: The strategy used in the solution is not among the above strategies.
Please analyze which strategy this solution uses, select the single strategy you believe is most
appropriate.
Problem: {question}
Solution: {solution}
In your response, you first conduct the analysis and at the end use the <strategy> your
strategy </strategy> tag to describe the strategy used in the solution. Please note that
the tags should only contain the strategy and no other content.
Strategy:
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B.2 PROMPTS FOR PATTERN REASONING

Prompt Example for Pattern no

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.
Present the answer in LaTeX format: \boxed{Your answer}

Prompt Example for Pattern short cot

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.
Present the answer in LaTeX format: \boxed{Your answer}
In your response, provide the final answer in a concise manner. Do not need to self-reflect or
self-criticize your reasoning process.

Prompt Example for Pattern explore multiple solutions

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.
Present the answer in LaTeX format: \boxed{Your answer}
In your response, explore multiple solutions to the problem, and then provide the final answer
based on the these solutions.

Prompt Example for Pattern reflection and verification

Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.
Present the answer in LaTeX format: \boxed{Your answer}
In your response, reflect on your reasoning process and verify the correctness of your solution
before providing the final answer. If you find any errors in your reasoning, correct them and
provide the final answer.

B.3 SPECIAL PROMPT FOR GPQA EVALUATION

Special Prompt for GPQA Evaluation

You MUST follow these output rules strictly:

1. Think as you wish, but the FINAL line must be exactly one LaTeX box with a single
letter among A, B, C, D.

2. The final line format MUST be: \boxed{A} or \boxed{B} or \boxed{C} or
\boxed{D} (uppercase only).

3. Do NOT add extra text, spaces, punctuation, or anything else after the box.
4. If you mention option text, reference the text exactly as shown in the problem.
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B.4 PROMPT EXAMPLES FOR EVALUATION

Full Prompt and response for Evaluation

<|im start|>system
A conversation between User and Assistant. The User asks a question, and the Assistant solves
it. The Assistant first thinks through the reasoning process internally, then provides the user
with the answer.
Example format:
<think>...(Reasoning process here, attempt until you get the final answer)</think>
<answer>...(Summarize the final solution, and present the answer).</answer>
User: {prompt}.
Assistant: <think>
<|im end|>

<|im start|>user
Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in
the form (r, θ), where r > 0 and 0 ≤ θ < 2π.
Present the answer in LaTeX format: \boxed{Your answer}
<|im end|>

<|im start|>assistant
<think>...</think>
To convert the rectangular coordinates (0, 3) to polar coordinates (r, θ), we use the following
standard conversion formulas:

r =
√

x2 + y2, θ = tan−1
(y
x

)
— Step 1: Compute r
Given the point (x, y) = (0, 3), we substitute into the formula for r:

r =
√
02 + 32 =

√
9 = 3

So, r = 3.
— Step 2: Compute θ
Next, we find θ, the angle made with the positive x-axis. The formula is:

θ = tan−1
(y
x

)
However, here x = 0, so y

x is undefined. This means the point lies on the positive y-axis.
In standard polar coordinate representation, the positive y-axis corresponds to an angle of:

θ =
π

2
This is the angle that places the point directly above the origin on the positive y-axis.
— Step 3: Verify the Result
To confirm, we can convert back from polar coordinates to rectangular coordinates using:

x = r cos θ, y = r sin θ

Substituting r = 3, θ = π
2 :

x = 3 cos
(π
2

)
= 3 · 0 = 0, y = 3 sin

(π
2

)
= 3 · 1 = 3

This matches the original rectangular coordinates (0, 3), verifying our conversion is correct.
— Final Answer

(3,
π

2
)

<|im end|>
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs), specifically ChatGPT, are used solely for language polishing,
improving the clarity and readability of the manuscript, and assisting in the retrieval of related work
during the literature review stage. All scientific content, including the research idea, methodology,
experiments, analysis, and conclusions, is conceived and written by the authors without assistance
from LLMs.

The authors take full responsibility for the content of this paper, including all text generated with the
aid of LLMs.
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