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Abstract
In the coming years, the satellite broadband mar-
ket will experience significant increases in the
service demand, especially for the mobility sector,
where demand is burstier. Many of the next gen-
eration of satellites will be equipped with numer-
ous degrees of freedom in power and bandwidth
allocation capabilities, making manual resource
allocation impractical and inefficient. Therefore,
it is desirable to automate the operation of these
highly flexible satellites. This paper presents a
novel power allocation approach based on Deep
Reinforcement Learning (DRL) that represents
the problem as continuous state and action spaces.
We make use of the Proximal Policy Optimization
(PPO) algorithm to optimize the allocation pol-
icy for minimum Unmet System Demand (USD)
and power consumption. The performance of the
algorithm is analyzed through simulations of a
multibeam satellite system, which show promis-
ing results for DRL to be used as a dynamic re-
source allocation algorithm.

1. Introduction
To better serve the increasing demand of broadband data
from space, next generation satellite systems will feature
advanced payloads. Unlike current satellites, which present
static allocations of resources, new systems will incorpo-
rate highly flexible payloads able to operate hundreds (or
even thousands) of beams simultaneously and change their
parameters dynamically. This increased flexibility will ren-
der invalid traditional resource allocation approaches, since
these largely lean on static allocations and the use of conser-
vative margins. Instead, satellite operators face the challenge
of automating their resource allocation strategies to exploit
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this flexibility and turning it into a larger service capacity.

As pointed out in (Guerster et al., 2019), dynamic resource
management systems will be key to be competitive in the
new markets. One key element of these systems is an op-
timization algorithm that computes the optimal resource
allocation at any given moment. However, developing such
algorithm involves dealing with a high-dimensional, non-
convex (Cocco et al., 2018), and NP-hard (Aravanis et al.,
2015) problem for which many classic optimization algo-
rithms perform poorly. Multiple authors have already pro-
posed different alternatives to overcome this problem.

Several studies have focused on approaches based on meta-
heuristics, such as Simulated Annealing (Cocco et al., 2018),
Genetic Algorithms (Aravanis et al., 2015; Paris et al., 2019),
or Particle Swarm Optimization (Durand & Abrão, 2017).
Although these algorithms have proved to be good solutions
in power and bandwidth allocation problems, authors do not
assess their performance under real operational time con-
straints. These algorithms are based on iterative methods
that have a specific convergence time, which might impose
a hard constraint on their real-time use.

Other authors propose approaches focused on Deep Rein-
forcement Learning (DRL) architectures as an alternative.
DRL has already been acknowledged as a potential solution
in the case of cognitive radio networks (Abbas et al., 2015),
specially in multi-agent settings. Specifically, for a central-
ized satellite communications scenario, DRL has proved
to be an operable solution for real-time and single-channel
resource allocation problems (Ferreira et al., 2018). DRL
also exploits the inherent time and spatial correlations of
the problem (Hu et al., 2018).

However, both DRL studies propose architectures that dis-
cretize the resources before allocating them. While satel-
lite resources such as power are intrinsically continuous,
sufficient discretization might entail a notable increase in
computational cost when the dimensionality of the problem
is high. In this study, we explore a DRL architecture for
power allocation that focuses on continuous action and state
spaces, avoiding the need for discretization.

The rest of the paper is divided as follows: Section 2 de-
scribes the problem statement and the satellite communica-
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tions models used in this work, Section 3 presents our DRL
approach, Section 4 discusses the performance of the algo-
rithm on a simulated satellite, and finally Section 5 outlines
the conclusions of the paper.

2. Problem Statement
This section covers, first, the motivation behind the central
problem of this study; second, a detailed problem formula-
tion introducing each of the assumptions considered; and
finally, a description of the link budget model used in the
following sections of the paper.

2.1. Problem Motivation

The next generation of satellites will allow for unprece-
dented parameter flexibility: the power and bandwidth, the
frequency plan, and the pointing and shape of each of the
beams will be individually configurable. To start explor-
ing the adequateness of DRL to dynamically control all of
these continuous parameters subject to the constraints of a
real-operation scenario, in this study we only focus on one
satellite resource: optimizing the power allocation for each
beam while all the other parameters remain fixed.

2.2. Problem Formulation

We consider a multibeam GEO satellite with Nb non-
steerable beams, and a total available power Ptot. Further-
more, each beam has its own maximum power constraint,
represented by Pmaxb . For each beam, power can be dy-
namically allocated to satisfy the estimated demand at every
time instant. The objective is to optimally allocate these
resources throughout a time interval of T timesteps to min-
imize the overall Unmet System Demand (USD) and the
total power consumption.

The USD, defined as the fraction of the demand that is
not satisfied by the satellite, is a popular figure of merit to
quantify the goodness of a resource allocation algorithm in
satellite systems (Aravanis et al., 2015; Paris et al., 2019).
Mathematically, the USD is expressed as

USD =

Nb∑
b=1

max[Db −Rb(Pb), 0], (1)

where Db and Rb correspond to the demand and data rate
achieved of beam b, respectively. Note that there is an
explicit dependency between the data-rate achieved and
the power allocated to a particular beam. In other words,
given a certain power allocation (Pb) to beam b, the data
rate achieved (Rb) can be computed using the link budget
equation, a procedure described in Section 2.3.

Using USDt to denote the USD attained in timestep t, and

Pb,t as the power allocated to beam b at timestep t, our
optimization problem can be formulated as the following
mathematical program

minimize
Pb,t

T∑
t=1

[
USDt(Pb,t) + β

Nb∑
b=1

Pb,t

]
(2)

subject to Pb,t ≤ Pmaxb , ∀b ∈ B, ∀t ∈ {1, ..., T} (3)
Nb∑
b=1

Pb,t ≤ Ptot, ∀t ∈ {1, ..., T} (4)

Pb,t ≥ 0, ∀b ∈ B, ∀t ∈ {1, ..., T} (5)

where B is the set of beams of the satellite and β is a scaling
factor. Then, on one hand, constraints (3) and (5) represent
the upper and lower bounds for the power of each beam in
B at any given timestep, respectively. On the other hand,
constraint (4) expresses the limitation given by the satellite’s
total available power Ptot.

2.3. Link Budget Model

This subsection presents the link-budget equations to com-
pute the data-rate achieved by one beam (Rb), assuming
that a power Pb has been allocated to such beam. Our link
budget model is a parametric model based on (Paris et al.,
2019). We only present the relevant equations to compute
Rb starting from a value for Pb, but the interested reader
can find a deeper description of the elements present in
a satellite communications setting in (Maral & Bousquet,
2011).

At a receiver, the link’s carrier to noise spectral density
ratio, C/N0, quantifies the intensity of the received signal
versus the noise at the receiver. A larger ratio implies a
stronger signal power compared to the noise spectral density
(normalized noise level relative to 1 Hz). Given the power
allocation (in dB) to beam b (Pb), C/N0 can be computed
as

C

N0
=Pb − OBO +GTx

+GRx

− FSPL− 10 log10(kTsys), [dB] (6)

where OBO is the power-amplifier output back-off (dB),
GTx

and GRx
are the transmitting and receiving antenna

gains, respectively (dB), FSPL is the free-space path loss
(dB), k is the Boltzmann constant, and Tsys is the system
temperature (K).

With the value for C/N0 we can compute the bit energy
to noise ratio, Eb/N , a key quantity to determine whether
a power allocation is valid or not, as will be explained in
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Eq. (9). As opposed to N0, N is the noise power but not
normalized to the signal’s bandwidth. The link’s Eb/N is
computed as

Eb
N

=
C

N0
· BW
Rb

(7)

where BW is the bandwidth allocated to that beam (Hz)
and Rb is the link data rate achieved by beam b (bps). The
link data rate is in turn computed as

Rb =
BW

1 + αr
· Γ
(
Eb
N

)
, [bps] (8)

where αr is the roll-off factor and Γ is the spectral efficiency
of the modulation and coding scheme (MODCOD) (bps/Hz),
which is a function of Eb/N itself. In this study, we assume
that adaptive coding and modulation (ACM) strategies are
used, and therefore the MODCOD used on each link is the
one that provides the maximum spectral efficiency while
satisfying the following condition

Eb
N

∣∣∣∣
th

+ γm ≤
Eb
N
, [dB] (9)

where Eb

N

∣∣
th is the MODCOD threshold (dB), Eb

N is the
actual link energy per bit to noise ratio (dB) computed using
(7), and γm is the desired link margin (dB). Equation (9)
validates if the resource allocation considered is feasible
(i.e., there needs to be at least one MODCOD scheme such
that the inequality in Eq. (9) is satisfied).

Equation (9) also allows us to compute the inverse problem,
i.e. given a certain data rate we want to achieve, we can
compute the necessary amount of a specific resource. There-
fore, in the power allocation problem we can compute the
optimal result, as an inverse problem, using (6) - (9) given
the data rate required per beam (Rb). This means an opti-
mization algorithm would not be needed at all. Our goal is
to assess the performance of the proposed DRL architecture
and compare it to the optimal actions.

Finally, in this paper we assume that the satellite use the
MODCOD schemes defined in the standards DVB-S2 and
DVB-S2X, and therefore the values for Γ and Eb

N

∣∣
th are

those tabulated in the DVB-S2X standard definition (ETSI
EN 302 307-2, 2015). The rest of the parameters of the
model, can be found in Table 1. Some of these parame-
ters have constant values for all beams; others do not and
therefore the range for each of them is showed.

3. Deep Reinforcement Learning Setup
This section presents, first, the general architecture of a
DRL approach to solve the power allocation problem using

Table 1. Link Budget Parameters.

Parameter Value
GTx 50.2 - 50.9 dB
GRx 39.3 - 40.0 dB
FSPL 209.0 - 210.1 dB
k 1.38 · 10−23 J/K

BW 655 - 800 MHz
αr 0.1
γm 0.5 dB

continuous state and action spaces, and second, the use of
such architecture as a framework to the allocation problem
specified above.

3.1. DRL Architecture

A basic Reinforcement Learning architecture is composed of
two essential elements: an agent and an environment (Sutton
& Barto, 2018). These two elements interact by means of
the agent’s actions and the environment states and rewards.
Given a state st that characterizes the environment at a
certain timestep t, the goal of the agent is to take the action
at that will maximize the discounted cumulative reward Gt,
defined as

Gt =

T∑
k=t

γk−trk (10)

where T is the length of the episode, rk is the reward ob-
tained at timestep k, and γ is the discount factor. An episode
is a sequence of states {s0, s1, . . . , sT } in which the final
state sT is terminal, i.e. no further action can be taken.

Figure 1 shows the specific architecture considered for the
power allocation problem. The environment comprises ev-
erything that is relevant to the problem and is uncontrollable
by the agent. In this case it is composed by the satellite
model and the demand per beam. The agent corresponds
to the processing engine that allocates power given the en-
vironment’s state. Its components are an allocation policy
π(at|st), that chooses the action at given the environment
state st, and a policy optimization algorithm that constantly
improves the policy based on past experience.

Since the power and demand per beam are continuous vari-
ables, the number of different states and actions is infinite.
As a consequence, working with allocation policies that
store the best possible action given a state is impractical.
Instead, we use a neural network (NN) to model the policy
and achieve a feasible mapping between an input state and
an output action.

Continuous spaces also have an impact on the policy opti-
mization algorithm. Policy Gradient methods (Sutton et al.,
2000) have shown better results when states and actions
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Figure 1. DRL architecture

are continuous spaces, as their approach focuses on directly
optimizing a parametric policy πθ(at|st) as opposed to com-
puting the Q values (Sutton & Barto, 2018) and constructing
a policy from them.

In this study we use a Policy Gradient method known as
Proximal Policy Optimization (PPO) algorithm (Schulman
et al., 2017) to improve the allocation policy. PPO al-
gorithms derive from Trust Region Policy Optimization
(TRPO) algorithms (Schulman et al., 2015) and optimize a
“surrogate” objective function via stochastic gradient ascent.
The algorithm tries to avoid large policy updates by clip-
ping the objective function and using a pessimistic estimate
of it. By means of this algorithm, we expect preventing
changes that could make the policy perform notably worse
in some cases, thus enabling more stable and less fluctuating
operation of the satellite.

3.2. DRL Application

With the architecture presented in the previous subsection,
we proceed to define its specific details. We explored differ-
ent alternative state representations, one exclusively based
on demand information and the other consisted of demand
and past actions. We found that considering the previous
optimal allocation worked best. We use Dt to represent the
set of demand requirements per beam at timestep t. Then,
following the approach in (Hu et al., 2018), we define the
state of the environment at timestep t as

st = {Dt,Dt−1,Dt−2,P∗
t−1,P∗

t−2}, (11)

where P∗
t−1 and P∗

t−2 are the optimal power allocations for
the two previous timesteps. Given this definition, the state is
encoded using a vector with 5Nb components. Every time a
new episode starts, the state is reset to s0 = {D0, 0, 0, 0, 0}.

As explained in Section 2.3, since we are only using the
beam powers as optimization variables, we can use (6)–(9)
to determine the minimum power P ∗

b,t that satisfies Rb,t ≥

Db,t. If for a certain beam b the demand can’t be met, this
optimal power equals the maximum allowed power Pmaxb

of such beam.

The action of the agent is allocating the power for each
beam. Therefore, the action at is defined as a vector with
Nb components, being the power values Pb,t for each beam
at timestep t. To respect constraints (3) and (5), these power
values are clipped between zero and Pmaxb . Therefore,

at = {Pb,t | b ∈ {1, ..., N}, 0 ≤ Pb,t ≤ Pmaxb } (12)

As reflected in (2), the goal of the problem is to minimize the
USD and the power usage during a sequence of consecutive
timesteps {1, . . . , T}. The proposed reward function rt
focuses on both objectives and is defined as follows

rt =
α
∑Nb

b=1 min(Rb,t −Db,t, 0)∑Nb

b=1Db,t

−
∑Nb

b=1(Pb,t − P ∗
b,t)

2∑Nb

b=1 P
∗
b,t

(13)

where α is a weighting constant, Pb,t is the power set by
the agent, P ∗

b,t is the optimal power, Rb,t is the data rate
achieved after taking the action, and Db,t is the demand of
beam b in timestep t. Both the data rate and the optimal
power are computed using (6)–(9).

The first element of the equation focuses on satisfying the
demand while the second element responds to the necessity
of reducing power without underserving that demand. Both
elements are normalized by the overall demand and the total
optimal power, respectively. The constant α is used to define
a priority hierarchy between the two objectives. Given the
nature of the problem, we are interested in prioritizing a
smaller USD. According to the reward definition, we have
rt ≤ 0,∀t.

As previously introduced, Policy Gradient methods focus
on optimizing parametric policies πθ(at|st). In our case,
the policy is given by the neural network, parametrized
by its layers’ weights. We have considered two types of
networks for this study. First, we modeled the policy using a
multilayer perceptron network (MLP). We found a network
architecture with four layers, 15Nb hidden units, and ReLU
activations to achieve best results in admissible training
windows. We also made use of normalization layers after
each hidden layer to reduce training time. The second option
we studied consisted of a Long Short-Term Memory network
(LSTM) with a 15Nb-dimension array modeling the hidden
state. Normalization layers were also added to the LSTM.
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Table 2. Simulation Parameters.

Parameter Value
Discount factor γ 0.1
Learning rate 0.03
Number of steps per update 64
Number of training minibatches
per update 8

Number of training epochs per update 4
λ (Schulman et al., 2017) 0.8
Clip range (Schulman et al., 2017) 0.2
Gradient norm clipping
coefficient (Schulman et al., 2017) 0.5

α (Eq. 13) 100

4. Results
To assess the performance of the proposed architecture we
simulate a 30-beam GEO satellite (Nb = 30) located over
North America. For each beam, we have a time series
containing 1440 data points that correspond to demand sam-
ples throughout a 48-hour activity period (a sample every
2 minutes). This data was provided by SES. Although the
problem is not episodic, for computation purposes we de-
cide to model it in a receding horizon fashion and define an
episode as a complete pass through the first 720 samples
of this dataset (the first 24 hours). Trying to emulate a real
operation scenario, in which the agent will need to react
to new data, we use the second half of the time series to
evaluate the policy performance on unseen data.

Then, for each of the implemented networks, we ran 10 sim-
ulations using the parameters of the PPO algorithm listed in
table 2, using batches of 64 timesteps per policy update. In
all simulations we used 8 environments in parallel to acquire
more experience and increase training speed. Since satis-
fying all customers has a higher priority than minimizing
power, we observed that α needs to be large to obtain a de-
sirable policy. We have used OpenAI’s baselines (Dhariwal
et al., 2017) for this study.

4.1. MLP Implementation

Figure 2 shows the mean and 95% confidence interval of
the simulation reward sequence after 10 runs of 50,000
timesteps each (68 training episodes per environment, 544
in total) using the MLP policy. We can clearly observe two
tendencies: First, the mean reward rapidly increases during
the first thousands of iterations and then notably reduces
the improvement speed for the rest of the simulation; and
second, the sequence presents a high-frequency component.

Figure 3 shows the mean and 95% confidence interval, based
on 10 simulations, for the aggregated power result of the
policy during an additional episode composed by the full
48-hour dataset. The first 720 timesteps correspond to the
data the policy has been trained on while the last 720 are

Figure 2. Mean and 95% confidence interval after 10 simulations of
the reward sequence of the whole simulation for one environment.

Figure 3. Mean and 95% confidence interval after 10 simulations
of the aggregated power compared to the normalized aggregated
optimal power in the MLP implementation. The last 720 samples
correspond to unseen data.

unseen data. The optimal power for every timestep is also
shown in the figure. The vertical axis is normalized to the
maximum aggregated power value.

Figure 4 shows the aggregated data rate achieved using the
MLP policy during the same additional episode. The aggre-
gated demand of the dataset is also shown in the figure and
the vertical axis is normalized to the maximum aggregated
demand value.

We can observe the resulting policy after 50,000 timesteps
responds to the demand peaks, as the data rate increases at
each of them. When the demand is low, the policy sets an
almost constant power and consequently sets a constant data
rate at approximately 45% of the maximum demand. The
variance is also larger on the unseen data.
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Figure 4. Mean and 95% confidence interval after 10 simulations
of the aggregated provided data rate compared to the normalized
aggregated demand in the MLP implementation. The last 720
samples correspond to unseen data.

Although the policy is capable of serving all demand during
the first peak of the unseen data (timesteps 740 to 1000
approx.), it still shows behaviours that drift away from the
desirable performance. On the one hand, although it in-
creases power during demand peaks, it is not enough to
meet the demand during the second peak and therefore the
reward is penalized due to an USD greater than zero. This
behaviour is repeated through all episodes and originates
the high-frequency component from Figure 2.

On the other hand, during low-demand intervals, the policy
achieves zero USD but is clearly allocating more power than
necessary. The optimal power remains constant at a 20%
while the policy sets power to 30%. The rationale behind
keeping a certain power threshold, which equals to a data
rate threshold, derives from the need to keep the links active
as in a real scenario. In the cases where the demand is lower
than the data rate threshold, the optimal power is the one that
keeps the links active. If, for a certain beam, its power was
to be set below this limit, such beam would become inactive
and the satellite would lose capacity, since reactivating a
beam requires extra capacity from the satellite.

Finally, both figures help highlighting the artifact, product of
the policy, present during the second peak of the unseen data
(timesteps 1050 to 1150 approx.). This type of behaviour
would not be desirable during real operations, specially
during demand peaks.

4.2. LSTM Implementation

Figure 5 shows the throughput performance of the LSTM
policy. The behaviour of the LSTM policy is similar to

Figure 5. Mean and 95% confidence interval after 10 simulations
of the aggregated provided data rate compared to the normalized
aggregated demand in the LSTM implementation. The last 720
samples correspond to unseen data.

the MLP in terms of peak response and low-demand power
allocation. Comparing with Figure 4 we can appreciate the
variance of the policy is larger but similar through training
and unseen data. During the low-demand intervals, the
data rate attained is 50-55% of the maximum demand, in
contrast with the 45% achieved by the MLP policy. Finally,
the LSTM policy helps to smooth the artifacts present during
the second peak of the unseen data.

4.3. Comparison of MLP and LSTM implementations

Table 3 shows the throughput and energy performance of the
MLP and LSTM policies on the unseen data, corresponding
to the second day of the 48-hour dataset. Looking first at
the throughput results, the demand is aggregated through all
timesteps and normalized to 1. Then, the same approach is
taken for the data rate, also normalized with the aggregated
demand. We can observe that whilst both policies over-
provide data rate, the MLP policy shows a more desirable
behaviour in that sense. This preference accentuates if we
compare the average USD per timestep, shown in the third
row of the table.

Table 3 also shows the energy performance, defined as the
power aggregation through all timesteps, on the unseen data.
In this case we normalize the optimal energy to 1 and show
the output energy of the policy in juxtaposition. We can see
the MLP policy also shows a better result in terms of energy.
When comparing both policies using the same number of
hidden units (15Nb, 450 in these simulations), the MLP
policy outperforms the LSTM; it shows both better energy
and USD results. Nevertheless, the USD/demand ratio for
both policies is less than 2% and therefore makes DRL a
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Table 3. Policy performance on unseen data for MLP and LSTM
implementations. Mean and 95% CI is shown.

MLP LSTM
Agg. demand 1 1
Agg. data rate 1.68 ± 0.15 1.75 ± 0.20
Avg. USD (·10−3) 9.29± 5.70 11.64 ± 4.34
Max. USD 0.20 ± 0.10 0.190 ± 0.05
Opt. energy 1 1
Output energy 1.35 ± 0.18 1.41 ± 0.22
Avg. Eval. time (ms) 18.6 20.4

Table 4. Performance of a Genetic Algorithm with different num-
ber of iterations on the power allocation problem.

Number of GA iterations
125 250 375 500

Agg. demand 1 1 1 1
Avg. USD (·10−3) 0 0 0 0
Opt. energy 1 1 1 1
Output energy 1.223 1.089 1.061 1.051
Exec. time (s) 25.6 49.4 73.9 98.9

suitable approach for the problem considered.

4.4. Comparison with Metaheuristics

As introduced in the beginning of this paper, the majority
of previous studies on resource allocation for communica-
tion satellites lean on metaheursitic algorithms solve the
optimization problem. These include Genetic Algorithms,
Simulated Annealing, Particle Swarm Optimization, hybrid
approaches, etc. These methods work totally opposed to
DRL: while generally they do not need any previous data or
training iterations, their use during real-time operations is
significantly limited to their convergence time constraints.

In order to quantify the performance difference of DRL with
respect to metaheuristics, we ran a simulation on the test
data using a Genetic Algorithm (GA). Due to computation
constraints, we took 72 samples from the unseen data, one
every 20 minutes. We considered a population of 200 in-
dividuals and also used continuous variables. The results
of this execution are displayed in Table 4, which shows the
USD and energy performance of this method given 125,
250, 375, and 500 iterations of the algorithm. We also have
included the time required to reach these results. As in
the DRL case, 8 processes were used in parallel during all
executions.

We can see that, although the GA achieves zero USD and
better energy performance compared to any of the DRL poli-
cies, the execution time is much larger than the evaluation
time of a neural network, which from Table 3 we observe
is approximately 20 ms per timestep. This means running
125 iterations of the GA takes around 1,300 times more
time than evaluating the DRL policies for a single timestep.

This result is directly proportional to the number of GA
iterations. Given these results, a future direction to explore
is the combination of DRL with one metaheuristic. Tak-
ing the almost-instantaneous evaluation of the DRL method
as a starting point for a metaheuristic could produce an al-
most optimal performance in an admissible time window
for operational purposes.

5. Conclusion
In this paper, a DRL-based dynamic power allocation ar-
chitecture for flexible high throughput satellites has been
proposed. As opposed to previous architectures (Ferreira
et al., 2018; Hu et al., 2018), this approach makes use of
continuous state and action spaces to compute the policy.
We have set the reward function to focus on minimizing
the unmet system demand (USD) and power consumption.
The policy has been implemented using two approaches: an
MLP network and an LSTM network.

The results obtained show, for both implementations, that
the architecture produces a policy that responds to demand
peaks. However, the policy is not optimal since 2% of the
demand is not satisfied and an excess of energy is allocated
(35% and 41% extra power using the MLP and LSTM poli-
cies, respectively). Comparing both implementations with
the same number of hidden units, the MLP shows a bet-
ter performance in terms of total output energy and USD.
By means of a genetic algorithm analysis, we have shown
that DRL is at least 1,300 times faster than metaheuris-
tic methods, while offering comparable quality solutions
(DRL performs slightly worse than metaheuristics in terms
of power and USD). Based on this first study, we expect to
add complexity to the problem by adding other optimiza-
tion variables (bandwidth, frequency plan) into the problem.
Future work will focus on the refinement and generalization
of the architecture, the scalability of the policies, and the
exploration of other DRL approaches.
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