
Invertible Convolutional Flow

Mahdi Karami∗
∗Department of Computer Science

University of Alberta
karami1@ualberta.ca

Jascha Sohl-Dickstein† Dale Schuurmans† ∗ Laurent Dinh† Daniel Duckworth†
†Google Brain

Abstract

Normalizing flows can be used to construct high quality generative probabilistic
models, but training and sample generation require repeated evaluation of Jacobian
determinants and function inverses. To make such computations feasible, current
approaches employ highly constrained architectures that produce diagonal, trian-
gular, or low rank Jacobian matrices. As an alternative, we investigate a set of
novel normalizing flows based on the circular and symmetric convolutions. We
show that these transforms admit efficient Jacobian determinant computation and
inverse mapping (deconvolution) in O(N logN) time. Additionally, element-wise
multiplication, widely used in normalizing flow architectures, can be combined
with these transforms to increase modeling flexibility. We further propose an
analytic approach to designing nonlinear elementwise bijectors that induce special
properties in the intermediate layers, by implicitly introducing specific regularizers
in the loss. We show that these transforms allow more effective normalizing flow
models to be developed for generative image models.

1 Introduction

Flow-based generative networks have shown tremendous promise for modeling complex observations
in high dimensional datasets. In flow-based models, a complex probability density is constructed by
transforming a simple base density, such as a standard normal distribution, via a chain of smooth,
invertible mappings (bijections), to yield a normalizing flow. Such models are employed in various
contexts, including approximating a complex posterior distribution in variational inference [Rezende
and Mohamed, 2015], or for density estimation with generative models [Dinh et al., 2016].

Using a complex transformation (bijective function) to define a normalized density requires the
computation of a Jacobian determinant, which is generally impractical for arbitrary neural network
transformations. To overcome this difficulty and enable fast computation, previous work has carefully
designed architectures that produce simple Jacobian forms. For example, [Rezende and Mohamed,
2015, Berg et al., 2018] consider transformations with a Jacobian that corresponds to low rank
perturbations of a diagonal matrix, enabling the use of Sylvester’s determinant lemma. Other
works, such as [Dinh et al., 2014, 2016, Kingma et al., 2016, Papamakarios et al., 2017], use a
constrained transformation where the Jacobian has a triangular structure. The latter approach has
proved particularly successful, since this constraint is easy to enforce without major sacrifices in
expressiveness or computational efficiency. More recently, Kingma and Dhariwal [2018] propose the
use of 1× 1 convolutions for cross channel mixing in a multi-channel signal, achieving tractability
via a block diagonal Jacobian. Nevertheless, these models have overlooked some opportunities
for formulating tractable normalizing flows that can enhance expressiveness and better capture the
structure of natural data, such as images and audio. Also, a new line of work based on ordinary

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

differential equations has emerged recently that offers promising continuous dynamics based flows
[Grathwohl et al., 2019].

In this work, we propose an alternative nonlinear convolution layer, the nonlinear adaptive convolution
filter, where expressiveness is increased by allowing a layer’s kernel to adapt to the layer’s input.
The idea is to partition the input of a layer x into {x1, x2}, where the convolution updates x2 as
w(x1)∗x2, while the kernel w(x1) is a function of x1 that can be expressed by a deep neural network.
We present invertible convolution operators whose Jacobian can be computed efficiently, making this
approach practical for normalizing flow. Unlike the causal convolution employed in [van den Oord
et al., 2016] to generate audio waveforms, or in [Zheng et al., 2017] to approximate the posterior
in a variational autoencoder, the proposed transformations are not constrained to depend only on
the preceding input variables and also offer efficient inverse mapping, also known as deconvolution,
analytically. Also, recently, circular convolution has been adopted in [Karami et al., 2018] as a
normalizing flow for density estimation and in [Hoogeboom et al., 2019] to design invertible periodic
convolution for (almost) periodic data. Furthermore, we propose an analytic approach to add invertible
pointwise nonlinearity in the flow that implicitly induces specific regularizers on the intermediate
layers.

2 Background

Given a random variable z ∼ p(z) and an invertible and differentiable mapping g : Rn → Rn, with
inverse mapping f = g−1, the probability density function of the transformed variable x = g(z)

can be recovered by the change of variable rule as p(x) = p(z) |detJg|−1 = p(f(x)) |detJf |.
Here Jg = ∂g

∂z>
and Jf = ∂f

∂x>
are the Jacobian matrices of functions g and f , respectively.

One can use these to build a complex mapping g by composing a chain of simple bijective maps,
g = g(1) ◦ g(2) ◦ ... ◦ g(K), that preserve invertibility, with the inverse mapping being f = f (K) ◦
f (K−1) ◦ ... ◦ f (1). By applying the chain rule to the Jacobian of the composition, and using the fact
that detAB = detAdetB, the log-likelihood equality (LLE) can be written as

log p(x) = log p(z) +

K∑
k=1

log |detJfk | . (1)

Evaluating the Jacobian determinant is the main computational bottleneck in (1) since, in general, its
scaling is cubic in the size of input. It is therefore natural to seek structured transformations that
mitigate this cost while retaining useful modeling flexibility.1

2.1 Toeplitz structure and Circular Convolution

Although available methods have typically considered bijections whose Jacobians have block-diagonal
or triangular forms, these are not the only useful possibilities. In fact, various other transformations
exist whose Jacobian has sufficient structure to allow computationally efficient determinant calcu-
lation. One such structure is the Toeplitz property, where all the elements along each diagonal of a
square matrix are identical (Figure 1(a)). The calculation of the determinant can then be simplified
significantly. Let JT be a Toeplitz matrix of size N ×N ; its determinant can be evaluated in O(N2)
time in general [Monahan, 2011]. More specifically, if JT has a limited bandwidth size of K = r+ s,
as depicted in Figure 1(a), then the determinant computation can be reduced to O(K2 logN +K3)
time [Cinkir, 2011]. Moreover, Toeplitz matrices can be inverted efficiently [Martinsson et al., 2005].
The fact that the discrete convolution can be expressed as a product of a Toeplitz matrix and the
input [Gray et al., 2006] highlights that the Toeplitz property is of particular interest in convolutional
neural networks (CNNs).

1Notation definition: Throughout the paper, invertible flows are denoted by f , while f(x) is used for
unconditional flows, and conditional (data-parameterized) flows are identified by f(x2;x1) or f(x2; θ(x1))
where the flow warps x2 conditioned on x1. Subscripts are intended to specify the type of flow or its parameters
while superscripts enumerate the order of flows in the chain. For example, f∗ denotes the convolutional flow in
general and σα is used to specify the pointwise nonlinear bijectors with its inverse being φα. Also, in general, y
and x indicate the output and input of a flow, respectively and when referring to kth flow in the chain, we use
y(k) and x(k) where x(k) = y(k−1). Moreover, circular convolution and symmetric convolution are denoted by
~ and ∗s, respectively, while ∗ denotes an invertible convolution in general, and xF , xC and xT denote DFT,
DCT and trigonometric transform of sample x, respectively.

2

JT =

w0 w−1 . . . w−s 0
w1 w0

...
. . .

. . .
. . .

. . .

wr
. . .

. . .
. . .

. . . w−s
. . .

. . .
. . . w0 w−1

0 wr . . . w1 w0

(a)

JC =

w0 wN−1 . . . w2 w1

w1 w0

. . .
. . . w2

...
. . .

. . .
. . .

...

wN−2

. . .
. . . w0 wN−1

wN−1 wN−2 . . . w1 w0

(b)

JS =

w0 w0 . . . wN−3 wN−2

w1 w0

. . . wN−4 wN−3

...
. . .

. . .
. . .

...

wN−2 wN−3

. . . w0 w0

wN−1 wN−2 . . . w1 w0

+

w1 w2 . . . wN−1 wN−1

w2 w3

... wN−1 wN−2

...
...

...
...

...

wN−1 wN−1

... w2 w1

wN−1 wN−2 . . . w1 w0

(c)

Figure 1: (a) JT is a Toeplitz matrix with limited bandwidth size of K = r + s, (b) JC is the Jacobian of
circular convolution that is a circulant matrix, and (c) JS is the Jacobian of symmetric convolution that can be
expressed as summation of a Toeplitz matrix and an upside-down Toeplitz matrix (also called a Hankel matrix
where its skew-diagonal elements are identical).

In this paper, we consider a particular transformation whose Jacobian is a circulant matrix, a
special form of Toeplitz structure where the rows (columns) are cyclic permutations of the first
row (column), i.e. Jl,m = J1,(l−m) modN . See Figure 1(b) for an illustration. This structure allows
certain computationally expensive algebraic operations, such as determinant calculation, inversion
and eigenvalue decomposition, to be performed efficiently in O(N logN) time by exploiting the fact
that a square circulant matrix can be diagonalized by a discrete Fourier transform (DFT) [Gray et al.,
2006]. Define the circular convolution as y := w ~ x where y(i) :=

∑N−1
n=0 x(n)w(i− n) modN ,

which is equivalent to the linear convolution of two sequences when one is padded cyclically, also
known as periodic padding, as illustrated in Figure 2(a). The key property we exploit in developing
an efficient normalizing layer is that the Jacobian of this convolution forms a circulant matrix, hence
its determinant and inverse mapping (deconvolution) can be computed efficiently. Some useful
properties of this operation are needed:

Proposition 1 Let y := w~x be a circular convolution on the input vector x with its DFT transform
xF := FDFT {x}. Then:

a) The circular convolution operation can be expressed as a vector-matrix multiplication y = Cwx
where Cw is a circulant square matrix having the convolution kernel w as its first row.

b) The Jacobian of the mapping is Jy = Cw.

c) The matrix Cw can be diagonalized using DFT basis with its eigenvalues being equal to the DFT
of w, hence log |detJy| =

∑N−1
n=0 log |wF (n)| .

d) The circular convolution can be expressed by element-wise multiplication in the frequency domain,
yF (k) = wF (k) xF (k), a.k.a. the circular convolution-multiplication property.

e) If wF (n) 6= 0 ∀n, this linear operation is invertible with inverse xF (n) = w−1F (n) yF (n).
Moreover, its inverse mapping (deconvolution) is also a circular convolution operation with kernel
winv := F−1N {w

−1
F }. On the other hand, the log determinant Jacobian also acts as a log-barrier

in the objective function that in turn prevents the wF (n) from becoming zero hence enforces the
invertibility of the convolution filter.

f) The circular convolution, its inverse, and Jacobian determinant can all be efficiently computed in
O(N logN) time in the frequency domain, exploiting Fast Fourier Transform (FFT) algorithms.

2.2 Symmetric convolution

Circular convolution is not a unique operation with such properties, symmetric convolution is another
form of structured filtering operation that can be adopted to achieve interesting desirable properties.

3

(a) (b) (c)

Figure 2: (a) Cyclic (periodic) extension and (b) even-symmetric extension of the base sequence, where the
base sequence specified by dark solid lines. (c) Nonlinear gates corresponding to l1 and l2 regularizers.

A family of symmetric extension (padding) patterns and their corresponding discrete trigonometric
transforms (DTT) are outlined in Martucci [1994], based on which alternative symmetric convolution
filters can be defined that satisfy the convolution-multiplication property. Among this family, we
choose an even-symmetric extension that can be readily interpreted. Define an even-symmetric
extension of a base sequence of length N around N − 1/2 as

x̂(n) = ε{x(n)} :=
{
x(n) n = 0, 1, ..., N − 1

x(−n− 1) n = −N, ...,−1 . (2)

This even-symmetric extension is illustrated in Figure 2(b). The symmetric convolution of two
sequences, denoted by ∗s, can then be defined by the circular convolution of their corresponding
even-symmetric extensions, as y = w ∗s x := R{x̂~ ŵ}, whereR{.} is a rectangular window
operation that retains the base sequence of interest in an extended sequence; that is, it inverts the
symmetric extension operation (2). Now, since the sequences are extended by an even-symmetric
pattern, the cosine functions provide the appropriate basis for the Fourier transform, giving rise to the
discrete cosine transform of type two (DCT-II):

xC(k) = Fdct{x}k =
1√
N

N−1∑
n=0

√
2√

1n=0 + 1
x(n) cos

(
πk

N
(n+ 1

2)

)
. (3)

The convolution-multiplication property holds for this convolution, which implies that the symmetric
convolution of two sequences in the spatial domain can be expressed as a pointwise multiplication
in the transform domain, after a forward DCT of its operands, i.e. yC = wC � xC . This property
also offers and alternative definition for the symmetric convolution: the inverse DCT of pointwise
multiplication of the forward DCT of its operands [Martucci, 1994].

One can also show that the symmetric convolution provides a structured Jacobian that can be specified
by Toeplitz matrices; see Figure 1(c) for an illustration. Analogous to the results presented in
Proposition 1 for circular convolution, the symmetric convolution-multiplication property implies
that the Jacobian of the symmetric convolution can be diagonalized by a DCT basis, with eigenvalues
being the DCT of the convolution kernel. Similarly, the inverse filter (deconvolution) can be obtained
by inverting the kernel coefficients in the transform domain, i.e. winv := F−1dct{1./wC}, where,
again, the invertibility of the convolution is guaranteed by the fact that it log determinant Jacobian in
the objective function keeps the elements of wC away from zero (as a log-barrier). On the other hand,
since the DCT can be defined in terms of a DFT of the symmetric extension of the original sequences,
the symmetric convolution, its inverse, and Jacobian determinant can exploit available fast Fourier
algorithms with O(N logN) complexity.2

3 Convolutional normalizing flow

3.1 Data adaptive convolution layer

The special convolutional forms introduced above appear to be particularly well suited to capturing
structure in images and audio signals, therefore we seek to design more expressive normalizing
flows using the convolution bijections as a building blocks. To increase flexibility, we propose a
data-adaptive convolution filter with a filter kernel that is a function of the input of the layer.

2 All bijective convolutions in experiments were performed in transform domain using a fast Fourier transform
algorithm.

4

Inspired by the idea of the coupling layer in [Dinh et al., 2016], a modular bijection can be formed by
splitting the input x ∈ Rd into two disjoint parts {x1 ∈ Rd1 ,x2 ∈ Rd2 : d1 + d2 = d}, referred to
as the base input and update input, respectively, and only updating x2 by an invertible convolution
operation with a data-parameterized kernel that depends on x1. The data-adaptive convolution
sub-flow can then be expressed as

f∗(x2;x1) = w(x1) ∗ x2. (4)

In the above transformation ∗ is an invertible convolution operation and can be one of the invertible
convolutions introduced in last section. Here, the kernel w(x1) can be any nonlinear function, which
leads to a nonlinear adaptive convolution filtering scheme.

3.2 Pointwise nonlinear bijections

Adding pointwise nonlinear bijections in the chain of normalizing flows can further enhance expres-
siveness. More specifically, focusing on the Jacobian determinant introduced by the nonlinearities
in log-likelihood equation (1), one can observe that these terms can be interpreted as regularizers
on the latent representation. In other words, specific structures on intermediate activations can be
encouraged by designing customized pointwise nonlinear gates; these structures encode various prior
knowledge into the design of the model. Let σ(k) denote the kth bijection in the chain of normalizing
flows that is assumed to be an pointwise nonlinear operation, i.e. y(k)

i = σ(k)(x
(k)
i). Dropping the

indices, this mapping can be simply written as y = σ(x) with inverse x = φ(y) = σ−1(y). Since
the nonlinearity operates elementwise, its Jacobian is diagonal, hence the log determinant reduces to
log |detJy| =

∑d
i=1 log

∣∣∣∂σ(xi)∂xi

∣∣∣. Then, an analytic approach designing nonlinear invertible gates
are derived in the following.

Proposition 2 Assume we want to induce a specific structure, formulated by a regularizer γ(y), on
the intermediate activation y := y

(k)
i . Then the elementwise bijection can be defined as the solution

to the differential equation: |∂σ
−1

∂y | = |
∂φ
∂y | = eγ(y). In the other word, the contribution to the

− log |detJσ| term in the negative log-likelihood from this unit will then reduces to log |∂φ∂y | = γ(y).

Solving the above equation and deriving the nonlinear bijection for two well established l1 and l2
regularizers leads to the following.

• l1 regularization: γ(y) = α|y| which corresponds to Laplace distribution assumption on y:

φα(y) =
sign(y)
α (eα|y| − 1), σα(x) =

sign(x)
α ln(α|x|+ 1). (5)

Due to its symmetric logarithmic shape, we call the forward function σα(x) an S-Log gate
parameterized by positive-valued α.

• l2 regularization: γ(y) = αy2 which corresponds to Gaussian distribution assumption on y:

φα(y) =
√

π
4αerfi(

√
αy), σα(x) =

1√
α

erfi−1(
√

4α
π x).

The proposed nonlinear gates, plotted in Figure 2(c), are not only differentiable by construction but
also have unbounded domain and range, making them suitable choices for designing normalizing
flows in many settings such as density estimation. Due to its simple analytical form and closed
form inversion, the S-Log gate, (5), is adopted as nonlinear bijection in our model architecture. For
multichannel inputs, we assume that the gates share the same parameter α over all spatial locations of
a channel (feature map).

3.3 Combined convolution multiplication layer

The convolution operation spatially slides a filter and applies the same weighted summation at every
location of its input, resulting in location invariant filtering. To achieve a more flexible and richer
filtering scheme, we can combine an element-wise multiplication, indicated by f�, and invertible
convolution, indicated by f∗, so that the filtering scheme varies over space and frequency. The
product of a diagonal matrix with a circulant matrix was also proposed in [Cheng et al., 2015] as a

5

∗ ⊙

�1 �1

×�
.....

{ , }�� �� , 2 ≤ � ≤ �

+

�

Figure 3: The diagram of one step of flow
(CONF) that is composed of M combined
convolutional flows defined in (6). In den-
sity estimation, the input to the condition-
ing neural network is the base input, x1,
and the flow updates x2. In variational
inference applications, the neural network
is conditioned on the data points x while
warping the latent random variable z.

structured approximation for dense (fully connected) linear layers, while [Moczulski et al., 2015]
showed that any N ×N linear operator can be approximated to arbitrary precision by composing
order N of such products.

Overall, the aforementioned components can be deployed to compose a combined convolutional flow
as

fw,s(x2;x1) = (σα′ ◦ f� ◦ σα ◦ f∗)(x2;x1)

= σα′
(
s(x1)� σα(w(x1) ∗ x2)

)
(6)

We found that a more expressive network can be achieved by stacking M iterates of the combined
convolutional flows and an additive coupling transform in each step of the network. Therefore, the
convolutional coupling flow (CONF) can be written as{

y1 = x1

y2 = (f
(M)
w,s ◦ ... ◦ f (1)w,s)(x2;x1) + t(x1).

(7)

The parameters of the flow {w1, s1, ...,wM , sM , b} can be any nonlinear function of the base
input x1 and are not required to be invertible, hence they can be modeled by deep neural networks
with an arbitrary number of hidden units, offering flexibility and rich representation capacity while
preserving an efficient learning algorithm. These are also called conditioning networks in the context
of normalizing flow. The model complexity can be significantly reduced by using one conditioning
neural network for all parameters of a coupling flow so that it shares all layers except the last one for
generating the parameters of the flow. Consequently, we achieve a more expressive flow with the
stack of bijectors in (7) without introducing too many extra NN layers in the model.

The modular structure of coupling CONF modules (7) implies that its Jacobian determinant can be
expressed in terms of its sub-flows. More details on the Jacobian determinant, invertibility condition
and inverse of this transformation can be found in Appendix A.

Initialization of the parameters: Better data propagation is expected to be achieved for very deep
normalizing flows if the combined flow (6) acts (approximately) as an identity mapping at initializa-
tion. Accordingly, the parameters of the nonlinear bijector pair, {σα, σα′}, are initialized sufficiently
close to zero so that they behave approximately as linear functions at the outset. Furthermore, the
conditioning networks are initialized such that the scaling filters, s, and the convolution kernels at the
frequency domain, F{w}, are all initially identity filters.

Multi-dimensional extension: The multi-dimensional discrete Fourier transform can be expressed
in separable forms, meaning that the operations can be performed by successively applying 1-
dimensional transforms along each dimension [Gonzalez and Woods, 1992]. The separability
property ensures the results mentioned so far can be extended to multi-dimensional settings. In this
work, we are particularly interested in 2-D operations for image data. Based on the 2-D circular
convolution definition, its equivalent block-circulant matrix form, and diagonalization method by 2-D
DFT [Gonzalez and Woods, 1992, Ch. 5], the results of the circular convolution in Theorem 1 can be
readily generalized to the 2-D case.3 The same properties apply to the 2-D symmetric convolution,
since the symmetric convolution-multiplication property can be generalized naturally to the 2-D
setting [Foltz and Welsh, 1998].

3 Due to the separability property, the 2-D DFT of matrices of size N1 × N2 can be computed in
O(N1N2(logN1 + logN2)) time.

6

Table 1: Average test negative log-likelihood (in nats) for tabular datasets and (in bits/dim) for MNIST and
CIFAR using fully connected conditioning networks (lower is better). C-CONF and S-CONF stands for circular
and symmetric convolutional coupling flow presented in (7), respectively. Error bars correspond to 2 standard
deviations. The results of the benchmark methods are from Grathwohl et al. [2019].

POWER GAS BSDS300 MNIST CIFAR10
MADE 3.08 ± .03 -3.56 ± .04 -148.85 ± .28 2.04 ± .01 5.67 ± .01
MAF -0.24 ± .01 -10.08 ± .02 -155.69 ± .28 1.89 ± .01 4.31 ± .01
Real NVP -0.17 ± .01 -8.33 ± .14 -153.28 ± 1.78 1.93 ± .01 4.53 ± .01
Glow -0.17 ± .01 -8.15 ± .40 -155.07 ± .03 - -
FFJORD -0.46 ± .01 -8.59 ± .12 -157.40 ± .19 - -
S-CONF -0.48 ± .01 -10.98 ± .13 -163.23 ± .13 1.26 ± .01 3.78 ± .03
C-CONF -0.47 ± .01 -10.84 ± .06 -163.23 ± .34 1.25 ± .01 3.82 ± .00

Table 2: Results in bits per dimension for MNIST and CIFAR10 using CNN based conditioning networks. The
results of the benchmark methods are from [Kingma and Dhariwal, 2018] and [Grathwohl et al., 2019]

Real NVP Glow FFJORD S-CONF
MNIST 1.06 1.05 0.99 1.00
CIFAR10 3.49 3.35 3.40 3.34

4 Model architecture

A highly flexible and complex density approximation can be formed by composing a chain of the
convolution coupling layers introduced in this work. As explained in Section 1, the determinant of
the Jacobian and inverse of the composition can then be obtained readily. In addition to the invertible
transformation introduced in this work, we use the following bijections in the final architecture of the
normalizing flow.

Cross-channel mapping (mixing) For multi-channel setting, the invertible convolution operation
is performed in a depthwise fashion i.e. each input channel is filtered by a separate convolution
kernel. Then cross channel information flow can be complemented by channel shuffling or using a
1× 1 convolution. The latter offered significant improvement with small computational overhead in
normalizing flows [Kingma and Dhariwal, 2018] hence, is applied after each convolutional coupling
layer in our architecture. Also, for single channel inputs, assuming equal size splits {x1,x2} (base
input and update input), these can be treated as two separate channels of the input and the same
technique can be applied to mix them after each coupling layer.

Multiscale architecture To achieve latent representations at multiple scales and obtain more fine-
grained features, a subset of latent variables can be factored out at the intermediate layers. This
technique is very useful for large image datasets and can significantly reduce the computational cost
in very deep models [Dinh et al., 2016].

Normalization To improve the training in very deep normalizing flows, batch normalization was
employed as a bijection after each coupling layer in [Dinh et al., 2016]. To overcome the adverse
effect of small minibatch size in batch normalization, Kingma and Dhariwal [2018] proposed actnorm,
as normalization, which applies an affine transformation and normalizes the activation per channel,
similar to batch normalization but with larger minibatch size, at initialization while the parameters of
this bijection are freely updated during training with smaller minibatch size, the technique called data
dependent initialization. Thus, in density estimation experiments, we employed the actnorm layers as
bijections in the chain of normalizing flow and also in the deep conditioning neural networks.

5 Experiments

5.1 Density estimation

We first conduct experiments to evaluate the benefits of the proposed flow model (CONF). As
observed in [Huang et al., 2018], expressiveness of the affine coupling flows and affine autoregressive

7

flows stems from the complexity of the conditioning neural network that models flow parameters, and
successive application of the flows. Therefore for fair comparison we follow [Papamakarios et al.,
2017] and use a general-purpose neural network composed of fully connected layers in the design of
conditioning networks. In this way we highlight the capacity of the flow itself, without relying on
complex data dependent neural networks such as deep residual convolutional network used in [Dinh
et al., 2016, Kingma and Dhariwal, 2018, Ho et al., 2019].

First we evaluate the proposed flow for density estimation on tabular datasets, considering two UCI
datasets (POWR, GAS) and the natural image patches dataset (BSDS300) used in Papamakarios et al.
[2017]. Description of these datasets and the preprocessing procedure applied can be found therein.
We also perform unconditional density estimation on two image datasets; MNIST, consisting of
handwritten digits [Y. LeCun, 1998] and CIFAR-10, consisting of natural images [Krizhevsky, 2009].
In BSDS300, the value of bottom-right pixel is replaced with the average of its immediate neighbors
resulting in monochrome patches of size 8× 8. For image data, the 2D invertible convolution is used
as the flow. All datasets are dequantized by adding uniform distributed noise to each dimension, and
then they are scaled to [0, 1] values. Variational dequantization is proposed as a an alternative method
offering better variational lower bound on the log-likelihood [Ho et al., 2019], which is beyond the
scope of this paper.

We compare the density estimation performance of CONF to the affine coupling flow models real-
NVP [Dinh et al., 2016] and Glow [Kingma and Dhariwal, 2018], and the recent continuous-time
invertible generative model FFJORD [Grathwohl et al., 2019]. These reversible models admit
efficient sampling with a single pass of the generative model. We also compare the density estimation
capacity of the proposed model against the autoregressive based methods, MADE [Germain et al.,
2015], MAF [Papamakarios et al., 2017]. These family of autoregressive normalizing flows require
O(D) evaluations of the generative function to sample from the model, making them prohibitively
expensive for high dimensional applications. The results, summarized in Table 1, highlight that
the circular convolution-based (FFT-based) CONF (C-CONF) and symmetric convolution-based
(DCT-based) CONF (S-CONF) offer significant performance gains over the other models. Since
S-CONF outperforms C-CONF in most of the experiments, we use it as the main convolutional flow
in the next experiments, simply referring to it as CONF. The significant performance improvement of
CONF on image datasets suggest that the feedforward conditioning NN were able to capture 2D local
structures.

To make a fair comparison, we used a feedforward neural network architecture similar to the one
used for MAF [Papamakarios et al., 2017] except that we simplified the architecture by using a single
network for all parameters of a flow layer, while MAF used separate networks for the scaling and
shift parameters. Each coupling flow is composed of a maximum of M = 2 iterates of the combined
convolution flow. The parameters of the network and number of layers are selected to be comparable
to those used in [Papamakarios et al., 2017]. Details of model architecture and experimental setup
together with more empirical results are presented in appendix.

5.2 Density estimation using CNN based conditioning networks

We further assess the performance of CONF when the conditioning networks are based on convolu-
tional neural networks, which are specifically designed for image data. A shallow convolutional NN,
similar to the one used in GLOW, is employed to generate the parameters of the flow, except that we
use one NN to generate all the parameters of a layer, reducing the number of model parameters. The
results of the experiments on MNIST and CIFAR10 data are presented in Table 2. The experimental
setup and generated samples from the model can be found in Appendix C.1 and D, respectively.

5.3 Variational inference

We also evaluate the proposed normalizing flow as a flexible inference network for a variational
auto-encoder (VAE) [Rezende and Mohamed, 2015]. Here flows are only conditioned on encoded
data points, produced by the encoder, and transform the posterior distribution of the latent variable
without a coupling connection, resulting in z(t) = (f

(M)
w,s ◦ ...◦f (1)w,s)(z(t−1);x)+ t(x). We compare

the performance of the trained VAE using this convolutional flow against other approaches, including
a non flow-based VAE with factorized Gaussian distributions, and flow-based VAE using inverse
autoregressive flow (IAF), planar flow [Rezende and Mohamed, 2015, Kingma et al., 2016] and

8

Table 3: Average test negative log-likelihood (in nats) and negative evidence lower bound (ELBO) on four
benchmark datasets (lower is better). Reported error bars correspond to 2 standard deviations calculated over 3
trials. The combination of number of flow steps F and M of each model is reported in the format (F-M).

MNIST Omniglot Caltech Silhouettes Frey Faces
-ELBO NLL -ELBO NLL -ELBO NLL -ELBO NLL

VAE 86.55 ± .06 82.14 ± .07 104.28 ± .39 97.25 ± .23 110.80 ± .46 99.62 ± .74 4.53 ± .02 4.40 ± .03
IAF 84.20 ± .17 80.79 ± .12 102.41 ± .04 96.08 ± .16 111.58 ± .38 99.92 ± .30 4.47 ± .05 4.38 ± .04

Planar 86.06 ± .31 81.91 ± .22 102.65 ± .42 96.04 ± .28 109.66 ± .42 98.53 ± .68 4.40 ± .06 4.31 ± .06
CONF(16-1) 83.89 ± .03 80.86 ± .05 98.35 ± .27 94.54 ± .12 108.64 ± 1.71 97.29 ± .91 4.43 ± .01 4.34 ± .02

O-SNF(4-8) 84.74 81.04 ± .15 101.41 ± .08 95.25 ± .09 109.37 ± .94 97.78 ± .47 4.50 ± .00 4.39 ± .01
CONF(4-8) 83.22 ± .05 80.64 ± .06 97.17 ± .08 94.19 ± .03 104.09 ± 1.03 94.56 ± .29 4.41 ± .01 4.31 ± .00

O-SNF(16-32) 83.32 ± .06 80.22 ± .03 99.00 ± .29 93.82 ± .21 106.08 ± .39 94.61 ± .83 4.51 ± .04 4.39 ± .05
CONF(16-16) 96.35 ± .05 93.66± .03 101.10 ± .49 92.37 ± .40 4.39 ± .02 4.29 ± .00

Sylvester normalizing flows (SNF) as the building blocks of the normalizing flows. We used the
encoder/decoder architecture of Berg et al. [2018] and the results of the available methods are adopted
from this paper. The details of training procedure are summarized in Appendix C.2.

Although the proposed flow is slower than SNF of the same size, the results in Table 3 show that
CONF outperforms Sylvester flow in most cases, and even smaller CONF models show similar or
better capacity than larger SNF. Also, we observe that CONF with M = 1 outperforms planar flow
by a wide margin on all datasets, except for FreyFaces which is a challenging dataset and prone to
overfitting for large SNF; here large CONF (F = 16,M = 16) perform the best among all methods,
so demonstrates less sensitivity to overfitting on the FreyFaces dataset.

Number of parameters: Let the stochastic latent variable be aD-dimensional vector z ∈ RD and the
encoder’s output be e(x) ∈ RE , then each step of CONF requires an additionalE×(2MD+D)+2M
parameters to produce the flow parameters based on e(x), which is comparable to the number of
parameters related to a step of planar flow if M = 1. This is of the same order of the number of
parameters of Sylvester flow with a bottleneck of size M , which is E × (2MD + 2M2 +M).

6 Conclusion

In this work we showed that circular and symmetric convolutions can be used as invertible trans-
formations with fast and efficient inversion, deconvolution, and Jacobian determinant evaluation.
These features make them well suited for designing flexible normalizing flows. Using these invertible
convolutions, we introduced a family of data adaptive coupling layers, which consist of convolutions,
where the kernel of the convolutions are themselves a function of the coupling layer input. We also
analytically derived invertible pointwise nonlinearities that implicitly induce specific regularizers
on intermediate activations in deep flow models. The results also helps better understand the role
of nonlinear gates through the lens of their contribution to latent variables’ distributions. Using
these new architectural components, we achieved state of the art performance on several datasets for
invertible normalizing flows with fast sampling.

References
Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester

normalizing flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

Yu Cheng, Felix X Yu, Rogerio S Feris, Sanjiv Kumar, Alok Choudhary, and Shi-Fu Chang. An
exploration of parameter redundancy in deep networks with circulant projections. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2857–2865, 2015.

Z. Cinkir. A fast elementary algorithm for computing the determinant of Toeplitz matrices. ArXiv
e-prints, January 2011.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

9

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Thomas M Foltz and BM Welsh. Image reconstruction using symmetric convolution and discrete
trigonometric transforms. JOSA A, 15(11):2827–2840, 1998.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pages 881–889, 2015.

Rafael C Gonzalez and Richard E Woods. Digital image processing, 1992.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. In International Conference on
Learning Representations, 2019.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R© in
Communications and Information Theory, 2(3):155–239, 2006.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design, 2019.

Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging convolutions for generative
normalizing flows. arXiv preprint arXiv:1901.11137, 2019.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pages 2083–2092, 2018.

Mahdi Karami, Laurent Dinh, Daniel Duckworth, Jascha Sohl-Dickstein, and Dale Schuurmans.
Generative convolutional flow for density estimation. In Workshop on Bayesian Deep Learning
NeurIPS 2018, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A fast algorithm for the inversion of
general toeplitz matrices. Computers & Mathematics with Applications, 50(5-6):741–752, 2005.

Stephen A Martucci. Symmetric convolution and the discrete sine and cosine transforms. IEEE
Transactions on Signal Processing, 42(5):1038–1051, 1994.

Marcin Moczulski, Misha Denil, Jeremy Appleyard, and Nando de Freitas. Acdc: A structured
efficient linear layer, 2015.

John F Monahan. Numerical methods of statistics. Cambridge University Press, 2011.

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proceedings
of The 32nd International Conference on Machine Learning, pages 1530–1538, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. In Advances in neural information processing systems, pages 3738–3746,
2016.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems,
pages 4790–4798, 2016.

10

C. Cortes Y. LeCun. The mnist database of handwritten digit. 1998.

Guoqing Zheng, Yiming Yang, and Jaime Carbonell. Convolutional normalizing flows. arXiv preprint
arXiv:1711.02255, 2017.

11

A Jacobian determinant and inverse of coupling convoultional flow
equation 7

Due to its modular structure, the Jacobian of (7) can be expressed in terms of the Jacobian of its
sub-flow. More precisely, its Jacobian is

Jy =
∂y

∂x>
=

[
Id1 0
∂y2

∂x>1

∂y2

∂x>2

]
. (8)

Noticeably, the Jacobian is a block triangular matrix, so its determinant can be readily computed as
the product of determinant of the square diagonal blocks, therefore

log |detJy| =
M∑
i=1

log
∣∣∣detJ (i)

w,s

∣∣∣
=

M∑
i=1

log
∣∣∣detJ (i)

gα′

∣∣∣+ log
∣∣∣detJ (i)

�

∣∣∣+ log
∣∣∣detJ (i)

fα

∣∣∣+ log
∣∣∣detJ (i)

∗

∣∣∣ (9)

where J (i)
w,s denotes the Jacobian of f (i)w,s. According to the results presented for invertible convolutions

in section 1, log
∣∣∣detJ (i)

∗

∣∣∣ can be computed efficiently in O(N logN) times using the fast Fourier
transform algorithm. Also, it is worth noting that this term plays the role of a log-barrier in the final
loss function that prevents the eigenvalues of the Jacobian from falling to zero hence enforces the
invertibility of the convolution filter. Then, the inverse model of (7) is4{

x1 = y1

x2 = (g
(1)
w,s ◦ ... ◦ g(M)

w,s)(y2 − t(x1);x1)

where gw,s(y2;x1) = winv ∗ gα(sinv � gα′(y2).)

Remark Note that the guarantee holds for continuous time gradient descent. It is technically possi-
ble, though not observed in practice, that SGD could produce a non-invertible kernel. Additionally,
the space of non-invertible kernels is measure zero in the space of kernels (it’s rare for an eigenvalue
to be exactly zero), and so non-invertible kernels are unlikely to occur by chance.

B Ablations study

The coupling convolution flow (7) is composed of two new components compared to the affine
coupling flow, 1) the pointwise nonlinear bijector and 2) the data-adaptive convolution. In this
ablation study, we asses the contribution of each of these components on the overall performance
of the CONF. The results in Table 4 highlights the effect of each ablation relative to CONF. These
results show that the nonlinear bijector, S-Log, contributes more than the data-adaptive convolution
in the performance improvement of CONF, in this case study.

Table 4: Average validation negative log-likelihood (in nats) of the ablations on GAS dataset at 5600 epochs.
CONF ablation: linear gates ablation: no convolution

GAS -10.89 ± .13 -10.12 ± .29 -10.74 ± .06

C Model architecture and training procedure

C.1 Density estimation

To train the model, we used the Adam optimizer [Kingma and Ba, 2014] with initial learning rate of
.001 which was decayed slowly to 0.0001 with exponentially decaying of rate .97. We apply sigm()

4The inverse kernel w(y1)
inv can indeed be derived through the procedure explained in Theorem 1 for

circular convolution or in a similar way for symmetric convolution.

12

to the output of conditioning network to obtain the scaling filters, s and the convolution kernels at the
frequency domain, wF (wC). Actnorm [Kingma and Dhariwal, 2018] is employed as normalization
bijector in the chain of flow and as a layer in the NN. An l2 regularizer with coefficient of 5e-5 is
applied on all the weights. Also to control overfitting, we use dropout layer with pdrop = .2 for
MNIST. To transform MNIST data from a bounded to an unbounded domain, a logit mapping of the
form y = logit(α+ (1− α) x

256) is applied with α = 10−6. All datasets are dequantized by adding
uniform distributed noise to each dimension, and then they are scaled to [0, 1] values.

The aforementioned setting is used for both density estimation experiments in Table 1 and Table 2.

Normalizing flow architecture, NN architecture for parameter generation and other hyper parameters
of the results reported in Table 1 are outlined in Table 5. Squeezing from space to channel dimension
is applied Q times and followd by K flow steps after each squeeze, that is showed in the format
Q ×K for MNIST and CIFAR10 in the Table. No factor out (splitting) is used. The squeeze and
convolution together can be interpreted as dilated convolution of factor 2. Although, we used 2D
invertible convolution flow for these two datasets but the general purpose fully connected feedforward
conditioning NN is applied for parameter generation.

Table 5: Hyper parameters of the results reported in Table 1.

normalizing flow architecture NN architecture
Dataset # flow steps M (itertes per step) # layers # hidden units Minibatch size
POWER 10 2 2 200 10000
GAS 10 2 2 100 10000
BSDS300 10 1 2 512 10000
MNIST 2×5 1 2 1024 512
CIFAR10 3×4 2 2 1024 512

For the CNN based NN experiments of Table 2, the results of realNVP and GLOW on CIFAR10
dataset are adopted from Kingma and Dhariwal [2018]. GLOW uses multiscale architecture with
3 scales each one composed of 32 steps of flow and use different shallow neural networks with 2
hidden layers and 512 channels (width) for each parameter of the flow. Splitting is performed on the
channels dimension only. After each scale a factor out with rate 1/2 is applied. We used the same
architecture except that we use one NN to generate all parameters of a flow step but we doubled its
width to 1024 channels. For MNIST, we again followed similar architecture for the normalizing flow
where 2 scales each one composed of 12 steps of flow. The NN of depth 2 hidden layers with width of
512 channels are applied as the conditioning network. The results of realNVP and GLOW on MNIST
dataset are adopted from Grathwohl et al. [2019] where they used the following flow structure:

3 ∗ (coupling layers with checkerboard masking) + squeeze + 3 ∗ (coupling layers with channel masking)+
3 ∗ (coupling layers with checkerboard masking) + squeeze + 3 ∗ (coupling layers with channel masking)+
4 ∗ (coupling layers with channel masking)

Each CONF is composed of M = 2 iterates of convolution-multiplication on both datasets.

C.2 Variational inference

We employed the encoder/decoder architecture of Berg et al. [2018] with different optimization
setting. We apply exp() to the output of encoder to obtain the scaling filters, s and the convolution
kernels at the frequency domain, wF (wC). Minibatch size of 500 samples (100 for FreyFaces) is
selected and the other hyper parameters are adjusted according to get better training. The Adam
optimizer [Kingma and Ba, 2014] is used for training with learning rate decaying from initial value
lrinit to .1× lrinit after warmup.

The annealing, a.k.a. warm-up, procedure is used that gradually increase the effect of KL divergence
term in the loss function Sønderby et al. [2016], but we found that, on FreyFaces dataset, our model
train better without warm-up. The hyper-parameters are summarized in Table 6.

13

Table 6: Hyper parameters of VAE results reported in Table 3.

Dataset Minibatch size # warmup lr εAdam

MNIST 500 100 0.001 0.1
Omniglot 500 100 0.001 0.1
FreyFaces 100 0 0.0005 0.1
Caltech 500 2000 0.001 0.1

D Samples generated from the CONF model

(a) (b)

Figure 4: Samples generated from the CONF model using CNN based conditioning NN that is trained on (a)
the MNIST dataset and (b) the CIFAR-10 dataset.

(a) (b)

Figure 5: Samples generated from the CONF model using general purpose fully connected NN as conditioning
network that is trained on (a) the MNIST dataset and (b) the CIFAR-10 dataset.

14

Figure 6: Even-symmetric extension around first and last element of the base sequence, where the base sequence
specified by dark solid lines.

E Another symmetric convolution

There exist different extensions, here we define another type that can have straightforward interpreta-
tion. Let a base sequence be extended by an even-symmetric operation ε{.} around its last element
as

x̂(n) = ε{x(n)} :=
{
x(n) n = 0, 1, ..., N

x(2N − n) n = N + 1, ..., 2N − 1
(10)

this type of even-symmetric extension is depicted in Figure 6. Again, the symmetric convolution
of two sequences can be defined in terms of the circular convolution of their corresponding even-
symmetric extensions as y = w ∗s x = R{x̂~ ŵ} and also the convolution-multiplication property
holds for this type given the discrete cosine transform defined as

xC(k) = Fdct{x}k =

N∑
n=0

x(n)× 2αn cos

(
πkn

N

)
(11)

where αn =

{
1/2 n = 0, N

1 otherwise

This is called DCT-I in the literature. It can be shown that the Jacobian matrix of this transform have
the following structure

JS =

w0 w1 + w1 . . . wN−2 + wN−2 wN−1

w1 w0 + w2 . . . wN−3 + wN−1 wN−2

...
...

...
...

wN−2 wN−3 + wN−1 . . . w0 + w2 w1

wN−1 wN−2 + wN−2 . . . w1 + w1 w0

Since scaling a column or row of a square matrix with factor α, multiply its determinant by α, hence
the multiplying the first and last column of this matrix by factor of two give rise to

J ′S =

2w0 w1 + w1 . . . wN−2 + wN−2 2wN−1
2w1 w0 + w2 . . . wN−3 + wN−1 2wN−2

...
...

...
...

2wN−2 wN−3 + wN−1 . . . w0 + w2 2w1

2wN−1 wN−2 + wN−2 . . . w1 + w1 2w0

=

w0 w1 . . . wN−2 wN−1

w1 w0
. . . wN−3 wN−2

...
.

...

wN−2 wN−3
. . . w0 w1

wN−1 wN−2 . . . w1 w0

+

w0 w1 . . . wN−2 wN−1

w1 w2
... wN−1 wN−2

...
...

...

wN−2 wN−1
... w2 w1

wN−1 wN−2 . . . w1 w0

where det(J ′S) = 4 det(JS). Therefore, this symmetric convolution provides a structured Jacobian
matrix that can be specified in terms of a Toeplitz matrix and an upside-down Toeplitz (also called a
Hankel) matrix for determinant computation.

15

	Introduction
	Background
	Toeplitz structure and Circular Convolution
	Symmetric convolution

	Convolutional normalizing flow
	Data adaptive convolution layer
	Pointwise nonlinear bijections
	Combined convolution multiplication layer

	Model architecture
	Experiments
	Density estimation
	Density estimation using CNN based conditioning networks
	Variational inference

	Conclusion
	Jacobian determinant and inverse of coupling convoultional flow equation 7
	Ablations study
	Model architecture and training procedure
	Density estimation
	Variational inference

	Samples generated from the CONF model
	Another symmetric convolution

