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ABSTRACT

Recent studies on catastrophic forgetting during sequential learning typically focus
on fixing the accuracy of the predictions for a previously learned task. In this paper
we argue that the outputs of neural networks are subject to rapid changes when
learning a new data distribution, and networks that appear to “forget” everything
still contain useful representation towards previous tasks. Instead of enforcing the
output accuracy to stay the same, we propose to reduce the effect of catastrophic
forgetting on the representation level, as the output layer can be quickly recovered
later with a small number of examples. Towards this goal, we propose an experi-
mental setup that measures the amount of representational forgetting, and develop
a novel meta-learning algorithm to overcome this issue. The proposed meta-learner
produces weight updates of a sequential learning network, mimicking a multi-task
teacher network’s representation. We show that our meta-learner can improve its
learned representations on new tasks, while maintaining a good representation for
old tasks.

1 INTRODUCTION

An intelligent agent needs to deal with a dynamic world and is typically presented with sequential
tasks that are highly correlated in time yet constantly changing. Newborns learn to build generic
representations from video and audio streaming input. Kids can learn highly skilled tasks such as
skiing and swimming sequentially without worrying about forgetting one another. Humans seem to
have a robust way of learning representations from sequential inputs (and tasks), yet state-of-the-art
machine learning algorithms rely heavily on uniformly sampled training examples from the same
distribution.

One of the major challenges in sequential learning of neural networks is the issue of catastrophic
forgetting (McCloskey & Cohenl [1989)—after a neural network is trained on a new task, its perfor-
mance on old tasks drops significantly. Despite several attempts, this problem remains unsolved.
Explicit weight regularization methods (Evgeniou & Pontil, 2004; Kirkpatrick et al.l 20165 Lee et al.|
2017) often rely on simplistic assumptions on the shape of the weight posterior distribution. Model
compression methods (Serra et al., 2018} [Fernando et al.,|2017; Mallya & Lazebnik} 2018) seem
promising on existing benchmarks, however the underlying mechanism is to train small individual
networks that may lack global cooperation, a limiting factor when learning a large number of classes
towards a generic representation. Generative models (Shin et al., [2017; |Kemker & Kananl 2018
Venkatesan et al., 2017) seem to be a natural choice; however, training a high quality generative
model is far from trivial, oftentimes more complex than training the original network itself.

Despite the variety of models that have been proposed, there seems to be a lack of general under-
standing on what kind of knowledge is being forgotten and to what extent it can be recovered. Recent
research places much of its focus on maintaining the output performance of previous tasks. In this
paper we argue that this can be misleading since the output layer of a network is very sensitive
to changes in the output distribution. Instead, here we would like to understand how much of the
performance drop is related to the lack of training on previous output layers versus the loss of
information in the newly learned representation. Towards this goal, we exploit a linear decoding layer
to measure the amount of catastrophic forgetting on the representation level. This gives us insights on
whether the drop in performance is likely to be recovered by re-learning the output layer from very
few examples.

Motivated by recent progress on meta-learning (Jaderberg et al.,|2017; |Andrychowicz et al.| 2016}
Metz et al.,|2018)), in this paper we propose to learn a weight update rule to overcome representational
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forgetting. our meta-learning algorithm learn such a rule by rolling out many sequential learning
experiences during training. In human language acquisition, it is found that children who lost their
first language maintain similar brain activation to bilingual speakers (Pierce et al.,2014). Inspired
by this fact, we propose a novel meta-learning algorithm that tries to mimic a multi-task teacher
network’s representation, an offline oracle in our sequential learning setup, since multi-task learning
has simultaneous access to all tasks whereas our sequential learning algorithm only has access to one
task at a time.

In summary, the contributions of our paper are two-fold. First, we propose a measure of catas-
trophic forgetting at the representation level, which provides more insight on the amount of previous
knowledge forgotten in the new task. Second, we develop a new meta-learning algorithm that can
predict weight updates that are less prone to catastrophic forgetting than standard backpropagation.
We demonstrate the effectiveness of our approach on the MNIST (Lecun et al., [1998)), FashionM-
NIST (Xiao et al.,[2017)), CIFAR-10, and CIFAR-100 (Krizhevsky, 2009) datasets, and find that our
meta-learner is able to generalize to unseen object classes from meta-training.

The rest of the paper is organized as follows: we first survey existing literature in Section[2} Section [3]
describes representational forgetting in deep neural networks, and our experimental setup to measure
it; Section |4| details our proposed meta-learning algorithm, followed by experimental results in
Section

2 RELATED WORK

Catastrophic forgetting in sequential learning has been studied in the early literature of neural
networks (McCloskey & Cohen, [1989; Ratcliffl, [1990; [French} [1991; Mcrae & Hetherington) 1993}
French| [1999). The degree of forgetting is usually measured in terms of the amount of time, typically
the number of iterations, saved to relearn the old task. This metric has several drawbacks as the
number of iterations can be fairly sensitive to the choice of optimization hyper-parameters and
network architecture. Furthermore, the network may never recover fully the original performance.

With the recent success of deep learning, the issue of catastrophic forgetting has regained attention in
the research community. Unlike classical methods, recent papers measure the old task performance
immediately after training on the new task (Kirkpatrick et al., 2016} |Goodfellow et al., 2013} |Li &
Hoiem| [2018)). In this setting, networks that are trained in a sequential manner over tasks suffer
dramatically, due to the fact that the previous output classifier branches are no longer tuned to the
newly learned representations.

In this paper we follow the early literature, and allow the network to relearn on old tasks, as we
believe it is natural to review the old task before testing on it again. But instead of counting the
number of iterations to recover the old task performance, we propose to train on top of the newly
learned representation using a small decoding model to perform the old task. We believe this measure
well captures the amount of representational forgetting. To this end, we exploit a simple linear readout
layer, as it is relatively fast to train and is more robust than measuring the number of recovering steps.

One way to address catastrophic forgetting is through explicit regularization. [Evgeniou & Pontil
(2004) add an L2 regularizer to ensure that the new weights do not “drift” away from the old weights.
Elastic weight consolidation (Kirkpatrick et al., 2016) computes the strength of the regularizer on
each weight dimension using a diagonal approximation of the Fisher information matrix. Zenke
et al.| (2017) propose to directly approximate the regularization strength online. [Lee et al.| (2017)
incrementally match the moments of posterior Gaussian distributions of new tasks. These methods
are often motivated from a simple quadratic loss surface, and can be potentially limiting their ability
to deal with more complex learning dynamics. Regularization can also be imposed on the activation
level: Learning without Forgetting (L1 & Hoiem)| 2018) regularizes the network such that the logits of
the new examples on the old classifier remain similar. While this framework is more flexible, using
the old activations to distill new tasks can be less informative if the network has not seen enough
classes.

In constrast to continuous regularization, model compression based approaches (Mallya & Lazebnikl
2018 |[Fernando et al., | 2017;|Rusu et al., 2016;|Yoon et al.,[2018) discretely allocate certain capacity of
a network towards learning new tasks. PackNet (Mallya & Lazebnikl, |2018) applies network pruning
in between sequential tasks, so that the pruned neurons can be re-allocated. PathNet (Fernando et al.}
2017) uses genetic algorithms to select pathways of the network for reuse. HAT (Serra et al., 2018)



Under review as a conference paper at ICLR 2020

A CIFAR-5A B CIFAR5B C

O Test Images
O

Readout Task A 3 ﬂ Q":(‘\
: ad
g W

92.3% Acc

1+3| Readout

< N =]

Task A Task B

Original

Figure 1: Using a readout layer to measure catastrophic forgetting on representations. A) A network
is first pre-trained on Task A. B) Then it is finetuned on Task B. C) We then feed in Task A training
data to the network, and record the representation at the last layer prior to the classification layer. We
re-train a readout layer to recover Task A output. Test accuracy on Task A is recorded as “Readout”,
and original classification layer accuracy is recorded as “Original”. Chance is 20%.

learns a hard binary mask for each weight connection. Rusu et al.|(2016)) add connections from old
frozen modules towards newly allocated modules, at the price of learning more intermediate layers,
thus scaling quadratically with the number of tasks. [Yoon et al.|(2018) propose to dynamically prune
and allocate neurons at the same time. In comparison, our meta-learner can also be interpreted as
implicitly learning to perform dynamic capacity re-allocation without increasing the network size;
however, our approach does not choose a discrete set of neurons or synapses to update, but try to
mimic the activation responses from a multi-task network. This allows the algorithm to learn to
implicitly allocate weight subspaces for learning the new tasks.

Another class of methods store a subset of the old data, so that the old task can be jointly trained.
iCaRL[Rebuffi et al.[(2017) propose to choose representative exemplars of old tasks. Gradient episodic
memory (Lopez-Paz & Ranzato| 2017) stores old examples and makes sure that the new example
only updates in the direction that agrees with the gradient directions of old examples. |Sprechmann
et al.[|(2018)) explore a learnable memory architecture to dynamically store and retrieve examples
facilitating sequential learning. Though effective, storing raw data points costs additional storage and
it may also lack biological plausibility. To address the issue of data storage, generative models have
also been used to avoid storing old raw data (Shin et al.| 2017; | Venkatesan et al.| 2017} [Kemker &
Kanan, |2018} jvan der Ven & Tolias| [2018)). Although generative models enjoy the benefits of data
storage based models, the final performance heavily depends on the quality of the generated data,
because training a competitive generative model itself may be more complex and take more capacity
than the original network.

Our proposed model is inspired from prior work in meta-learning: using a learned parameterized
weight update rule (Bengio et al., [1990) instead of standard optimization methods. Synthetic
gradient (Jaderberg et al |2017) uses an MLP to predict the gradient direction when performing
forward passes, allowing asynchronous weight updates across layers. /Andrychowicz et al.|(2016);
Ravi & Larochelle| (2017) use a recurrent network to predict updates. [Metz et al.| (2018)) propose
to learn an unsupervised learning rule based solely on activations. Miconi et al.| (2018 2019)
combine a learned Hebbian plasticity rule with learned weights. The largest difference between our
proposed model and prior work is the fact that instead of predicting the gradients or improve the task
performance at the end of the training episode, our meta-learner is trained with a teacher network’s
activation as supervision.

3 REPRESENTATIONAL FORGETTING IN SEQUENTIAL LEARNING

Sequential learning is the process of learning tasks sequentially without revisiting previous tasks. For
simplicity, in this paper we study the setting of two tasks, where a network is first presented with Task
A and then Task B. The exposure to Task A can bring positive benefits towards learning Task B if the
two tasks are similar. This is a property often studied in the transfer learning literature. Unfortunately,
it is challenging to maintain the initial performance of the model learned on Task A (when updating
it to perform well on task B), especially when the old task environment is not available to the agent.
For example, a commercial robot needs to adapt and learn in new environments while the original
training data cannot be shipped together with the learning algorithm.
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Figure 2: Overview of our purposed method during one training step: 1) the teacher network is
updated using SGD on multi-task data; 2) the student network is updated using the meta-learner on
Task B data only; 3) the multi-task data are fed into both networks and we record the representatlons
as h and h; 4) the meta module is then updated to minimize the difference between h and h. At
meta-test time, the teacher network is no longer present, and we update the student network solely
with the trained meta-learner for the entire training sequence.
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Figure 3: Our meta-learner module is a stacked LSTM network. For a given output neuron h;-, the
meta-network takes in its activation, its pre-activations, current weights and gradients, and output the
weight updates assiciated with h; Weights in the same layer will be shared a single meta-network,
while different layers will have different nmeta-networks.

Catastrophic forgetting (McCloskey & Cohen, |1989) occurs when a learning agent forgets the old
task after adapting to the new task. While recent literature solely focuses on the output performance
of an agent on the previous tasks, it is unclear whether the agent “truly forgets” the prior experiences,
or only the output layers are miscalibrated due to learning the new task. The latter issue has an easy
solution as simply training the output classifier on the old task for a few iterations can recover most
of the performance loss. This is similar to human revisiting previously learned skills.

In this paper we study how much forgetting occurs at the representation level. Towards this goal, we
propose the experiment setup illustrated in Figure T[] where a network is first trained on Task A, and it
learns the representation of the inputs, referred to as the final layer prior to the classification head.
Next, a different task, Task B is introduced. In the second stage of training, the model no longer has
access to Task A. It then fine-tunes all its layers on Task B, since learning a better representation will
be useful for the new task. To test the amount of forgetting on Task A, we train a linear readout layer
on the newly learned representations, using the training examples from Task A, and evaluate the test
performance.

We repeatedly do this readout training throughout the learning of task B. In the beginning, the readout
performance is close to the original Task A performance, and later, the features become less selective
towards Task A. As shown in Figure[I} we indeed observe that the readout accuracy of Task A is
constantly decreasing as the learning process goes on. In contrast to measuring the output performance
directly (“Readout” vs. “Original” in Figure[)), as was done in prior catastrophic forgetting literature,
the level of forgetting here is not as dramatic, suggesting a portion of forgetting happens due to
the mis-calibration of the output layer. Representational forgetting is still significant—for the binary
classification problem illustrated in Figure[I} readout accuracy on Task A drops over 15% after 300
iterations of training on Task B.

Meta-learning is a general tool for us to learn a new learning algorithm with desired properties. In
the next section, we propose a novel meta-learning algorithm that directly addresses the issue of
representational forgetting.
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4 LEARNING FROM A MULTI-TASK TEACHER

As the learning process goes on in Task B, each gradient descent step can potentially erase useful
features for the old task. Continuous regularization (Evgeniou & Pontil,|2004; Kirkpatrick et al.,[2016;
Zenke et al.,|2017) or discrete model pruning based methods (Mallya & Lazebnik, [2018}; [Fernando
et al.,[2017; |Rusu et al.l [2016; [Yoon et al., 2018]), as discussed in Section@], can hurt the capacity
of learning new tasks and limit the sharing of a distributed representation. Manually designing a
sophisticated learning objective is not obvious, thus we are interested in learning a learning rule that
can predict dynamic weight updates alongside the training of Task B.

For simplicity, we describe the setting of a fully connected layer, shown in Figure[3] where 7 indexes
pre-activations and j post-activations. A weight synapse w; ; connects to its pre-activation h; and post-
activation h; Let g; ; be the gradient of the connection obtained through regular backpropagation.
Our meta-learner f is implemented as a long short-term memory (LSTM) network that takes as inputs
the weight connection, gradients, inputs and outputs, similar to what has been done by Metz et al.
(2018). The network intuitively predicts a dynamic gating that modulates the plasticity of synapses:
0.5 =f(w.j, g h h ;0), which is then multiplied with the original gradients to form the updates
of the synapse: Aw.; = ¢.; - g. ;. Finally, the weights are updated in a similar way to SGD,
W.; =Ww.; — alAw. j, where @ 1s the learning rate. We can generalize this setup to convolutional
layers as well by considering all filter locations together, with more details in Section[5.1}

Learning this meta-learner, is however a
non-trivial task. In (Metz et al, 2018), the Algorithm 1 Learning to Remember from a Multi-Task
learning process is unrolled just like a re- Teacher

current neural network for a large number Require: wo, D4, Dp

of steps, and meta-learning is done using Ensure: ¢ (Meta-parameters)

backpropagation through time, which is in- !: fori=1... N'do

efficient since each meta-update can only : [/l Reinitialize teacher and student networks

be done in the outer loop.

w < Wo
W < wWo
Meta-learner resets hidden state;

2
3
4
A key insight of our paper is that, we can S -lcarn
6:  // Reinitialize T-BPTT step s to zero
7.
8
9

actually learn from a multi-task teacher
network as if it is an oracle to our se-
quential learner. Similar to knowledge

s+ 0
fort =1..7() do
Za,Ya < GetMiniBatch(D4);

distillation (Hinton et al., .201.5), where a 10.: b, Uy < GetMiniBatch(Dp);
student network learns activation patterns 11: g + TeacherNetBackward(z U zp, ya U y6; w);
from a teacher network, here, we would 12: g < StudentNetBackward(zp, yp; 0);
like to train the meta-learner such that the 13: /I Teacher update with SGD
student network has a similar activation 14: W 4= W — ag;
pattern Compa_red to the teacher network. 15: /! f takes Weights, gfadients and activations
This avoids using the final accuracy of an 16: AW« g- f(w,9,h;0);
episode as the supervision signal, which 17: /I Student update with meta-learner f
can be very inefficient. 18: W = D — adw;

19: h < TeacherNet(z, U zp; w);
The idea of using a multi-task network asa  20: B« StudentNet(z, U zp; 0);
teacher is inspired by the human language 7. L «+ HuberLoss(h, h);
acquisition literature. It was found that 22: s+ s+ 1;
adopted children who were separated from 23: // Meta-learner update, backprop thru time s steps
the Chinese language (their birth language) 24: 6 < 0 — nT-BPTT(L, 0, 5);
at around one year old on average, still 25: if L > LossThreshold(z) then
maintain activations in their left superior %g (lln_':ak; /I Restart learning
temporal gyrus similar to French/Chinese <’ end1
bilirll)gual %geakers at the age of 9 to 17 28: if s > T-BPTTSteps(i) then

> 29: s < 0; // Reset T-BPTT steps

even though they have no exposure to Chi- 5, end if
nese for 13 years on average (Pierce etal, 31.  end for
2014). We draw a parallel in our sequential  32- end for
learning framework here: whereas the net-
work is allowed to forget the old task on the output level, the learned representation should resemble
the one learned by a multi-task network.

The overall algorithm has two nested loops, like many other meta-learning algorithms. The inner
loop simulates the experience of doing a single learning process, and the outer loop rolls the network
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back to its initial point and re-starts the learning again. Different from standard hyper-parameter
optimization, in our proposed algorithm, the meta-learner is updated every step in the inner loop,
which makes the training more efficient. The meta-training procedure is detailed in Algorithm T]

In the beginning of each inner loop, the teacher network and the student network share the same
initialization that is pre-trained on Task A. For every step in the inner loop, as illustrated in Figure
the teacher network performs a regular SGD update using data from both the old and new tasks. The
student network, who does not have access to the old task, computes the gradients on the new task
and sends them to the meta-learner network, which then predicts a multiplicative gating. Now using
the newly updated weights, we compare the representation difference between the teacher and student
networks, and update the meta-learner to minimize this difference.

We use Huber loss multiplied with a scalar hyperparameter as the objective for minimizing the
representational differences. To help the meta-learner gradually make progress, we set up a curriculum
such that whenever the loss is greater than certain threshold, we will reinitialize the learning process
to prevent the meta-learner deviating too far (see Line 25| of Algorithm I)). To speed up learning, we
perform truncated backpropagation through time on the meta-learner LSTM. Gradient accumulation
is reset whenever the number of unrolled steps is longer than the truncation steps (see Line [28] of
Algorithm T).

5 EXPERIMENTS

In this section, we first give implementation details of our algorithm, and then report experimental
results on three sets of experiments. In the first set, we test whether our meta-learning algorithm can
learn useful learning rules through many sequential training episodes. In the second and third sets of
experiments, we verify the generalization ability of our meta-learner, by using unseen classes and
unseen initialization checkpoints for evaluation.

5.1 IMPLEMENTATION DETAILS

A separate three-layer stacked LSTM meta-learner is learned for each layer of the student network
(except the classification layer). The meta-learner uses ReLU activation functions in the hidden layers
and tanh in the output layer. The weights and biases of the output layer are initialized to 0 and 1
respectively, to produce a reasonable value at the starting time. A learnable scaling coefficient is then
applied to the output to adjust the range. For the classification layer, we apply standard SGD without
a meta-learner.

Meta-learner specification: For convolutional layers, we take the average over the spatial window
of the pre- and post- activations. The convolutional kernel of size ky X ky x Cj, is flattened to a
vector as the input to the meta-learner, which outputs the weight updates of size kg x ky x Cj,. For
example, for a 3 x 3 x 10 convolutional layer, the input dimension of the meta-learner is 3 x 3 x 10
(weights) +3 x 3 x 10 (gradients) +10 (pre-act) + 1 (post-act) = 191, and the output dimension is
3 x 3 x 10 = 90. For other layers, ki X ky is not applicable, and the input is C;,, x 3 (weight,
gradient, pre-act) +1 (post-act) and the output is Cjy,.

Baselines: We compare our proposed method to several baselines:

e SGD performs standard SGD on new tasks with the same learning rate as Task A.

e SGD x 0.1 is standard SGD with 0.1 learning rate. This is to see whether forgetting on Task A
can be traded off with learning progress on Task B.

e Learning without Forgetting (LwF) (L1 & Hoiem, |2018) distills new data on the old classification
branch as additional regularization. We validate the regularization coefficient and set it to 1.0.

¢ Elastic Weight Consolidation (EWC) (Kirkpatrick et al.|[2016) adds a quadratic regularizer on

the weights, where the regularization strength is computed as a diagonal approximation of the
Fisher information matrix. We validate the regularization coefficient and set it to 1.0.

5.2 EXPERIMENT 1: SEQUENTIAL LEARNING ON TWO TASKS

We first conduct experiments on MNIST and CIFAR-10 to verify the effectiveness of our meta-learner.
To ensure that the meta-learner does not overfit to the training examples, we split the data of Task B
into two parts evenly, denoted as D, and Dp, respectively. At meta-training time, only Dp, will be
used; at meta-test time, only Dp, will be used.
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Figure 4: Left: Exp 1: MNIST +— FashionMNIST, “Freeze” has 98.37% on Task A and 75.64% on
Task B; Right: Exp 1: CIFAR 5A +— 5B, “Freeze” has 92.31% on Task A and 74.81% on Task B.
Error bar denotes standard error of the mean of 5 runs.
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with unseen initialization checkpoints. “Freeze” has 92.25% on Task A and 71.68% on Task B. Error
bar denotes standard error of the mean of 5 runs.

MNIST +— FashionMINIST: The network is first pre-trained on MNIST (Lecun et al.,|1998) (i.e.,
Task A) and then trained on FashionMNIST (Xiao et al.l [2017)) (i.e., Task B). The main network
contains two 5x5 conv layers and two fully-connected layers with dimensions [20, 50, 500, 10],
respectively, and the meta-learner is a 3-layer LSTM with 32 hidden unit. SGD with learning rate
le-2 and momentum of 0.5 is used throughout pre-training. During meta-learning, we use learning
rate Se-2 without momentum. We set the curriculum threshold to 20 and T-BPTT step to 5 initially
and increase them by 5 and 2 every 1000 episodes until 35 and 11, respectively. The loss coefficient
is set to 300. We train the meta-learner using the Adam optimizer with learning rate 1e-3 for a total
of 4000 episodes. At meta-test time, we take the activations before the last layer and train a linear
readout layer with 100 Adam optimization steps using learning rate le-1.

CIFAR-10: We split the CIFAR-10 dataset into two subsets, the first subset (CIFAR-5A) consists of
the first 5 classes (“airplane”, “automobile”, “bird”, “cat”, “deer””) and the second subset (CIFAR-5B)
consists of the remaining 5 classes (“dog”, “frog”, “horse”, “ship”, “truck”). A ResNet-32 (He et al.,
2016) network is first pre-trained on CIFAR-5A, with all BatchNorm (loffe & Szegedy, [2015) layers
replaced by GroupNorm (Wu & He, [2018)), using a learning rate of 0.1 and momentum of 0.9. During
meta-learning, we use learning rate 0.1 without momentum. For pre-training we use 128 examples as
a mini-batch, and for meta-learning we use 128 for the teacher and 64 for the student (Task B only).
The meta-learner is a 3-layer LSTM with 64 hidden units for the convolutional kernels and 32 hidden
units for -y or 8 of the GroupNorm layers. We set the curriculum threshold to 20 and T-BPTT step to
5 initially and increase them by 5 and 2 every 300 episodes until 30 and 9, respectively. The loss
scaling coefficient is set to 300. We train the meta-learner using the Adam optimizer with learning
rate 1e-3 for a total of 900 episodes. At meta-test time, we take the activations before the last layer
and train a linear readout network using 500 Adam optimizer steps with a learning rate of le-1.

Results:  Figure[d] shows results on MNIST — FashionMNIST and CIFAR-10. The error bar is the
standard error of the mean of 5 runs. All entries in the table use the proposed readout measure. We
found that reducing learning rate cannot help prevent from catastrophic forgetting. Our meta-learner
outperforms other methods by a large margin on Task A. On Task B, our meta-learner has very similar
performance to the teacher network, which matches our expectation.

5.3 EXPERIMENT 2: GENERALIZING TO UNSEEN CLASSES

In Experiment 1, Task B is the same for both training and testing. To verify the generalization ability
of our model to unseen classes, we utilize the CIFAR-100 dataset, to construct two different tasks,
B; and B, from disjoint subset of data. We start from an initial model trained on CIFAR-5A, at
meta-training time we train a meta-learner on Task B, while at meta-test time we evaluate meta-



Under review as a conference paper at ICLR 2020

Exp 1 MNIST/Fashion Exp 1 CIFAR-5A/5B  Exp 2 CIFAR-5A/100 Exp 3 CIFAR-5A/100

Freeze 84.8 65.1 68.6 +2.9 68.6 +2.9
SGD 86.8 £1.0 68.7 £ 1.5 71.0 £ 2.1 71.0£2.1
SGD x 0.1 85.0+£0.7 654+ 2.1 69.7 £2.3 69.7+2.3
LwF 872+ 1.1 69.3 £0.7 73.1+£1.7 73.1+£1.7
EWC 869+ 1.7 67.7+ 1.0 729 +2.1 729 +2.1
Ours 873+ 0.7 705 £ 1.1 750+ 1.3 73.6 £ 2.6
Teacher 88.0+ 1.1 76.7£0.3 81.9+1.2 81.9+1.2

Table 1: Joint task performance on Experiment 1, 2 & 3, after 500 update steps. £ denotes standard
error of the mean of 5 runs.
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Figure 6: Training curve on Experiment 2 Figure 7: Visualization of the meta-learner outputs

learner on Task By. Unlike the previous experiment, the class definition changes from meta-training
to meta-testing. This is a more practical setting since in reality we do not know a priori which new
task the model needs to adapt to.

CIFAR-100: We split CIFAR-100 dataset into two subsets. The first subset consists of the first 50
classes, the second subset consists of the remaining 50 classes. At meta-training time we randomly
sample 5 classes from the first subset to constitute Task B at the beginning of every episode. And
at meta-test time, we randomly sample 5 classes from the second subset to constitute Task B2, and
we repeat it for 5 times to take the average performance. Task B; and Task By have no overlap for
both images and classes. We set the curriculum threshold to 20 and the T-BPTT step to 5 initially
and increase them by 5 and 2 every 300 episodes until 50 and 17 and train the meta-learner for a
total of 2k episodes. Figure[6]illustrates the curriculum threshold schedule and number of unrolled
steps to indicate the training progress. Other hyper-parameters are keep the same as CIFAR-10 in this
experiment.

Results: As shown in Figure 5] our meta-learner generalizes well to unseen classes and clearly
outperforms other baselines. By the end of 500 update steps, the representation forgetting on Task A
is 4% for our model, compared to over 10% for SGD, EWC, and LwF; meanwhile on Task B our
model performs much than SGD x0.1, only ~2% behind other baselines.

5.4 EXPERIMENT 3: GENERALIZING TO UNSEEN INITIALIZATION

In Experiment 3, we remove the assumption on a fixed initialization checkpoint. In order for the meta-
learner to generalize to different initialization state, during training time we provide 100 different
pretrained checkpoints and each training episode uses a different checkpoint. At test time, an unseen
checkpoint is provided.

Results:  As shown in Figure[5] our meta-learner generalizes well to unseen initialization (as well
as unseen classes) and still outperforms other baselines. The performance drops a little as expected,
since the meta-learner model has to learn to adapt different initializations during meta training/test.

Joint task performance: We include the joint task performance in Table I|for all Experiments 1-3,
where we train a joint classifier on the representations learned after 500 update steps on Task B. It can
be confirmed that the sequentially learned representations produced by the meta-learner are useful to
both tasks, outperforming other sequential learning baselines.

5.5 VISUALIZATION OF META-LEARNER OUTPUTS

To further understanding the behavior of our meta-learner, we visualize the distribution of the output
of the meta-learner (i.e. the gradient multiplier ) in Figure[7} Our meta-learner produces non-trivial
outputs that are not simply a global scaling of the learning rate. Sometimes the multiplier can be
negative, which means the final update direction is opposite to the gradient descent direction. It shows
that the meta-learner can learn to dynamically modify the gradient direction to prevent catastrophic
forgetting.
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6 CONCLUSION AND FUTURE WORK

Catastrophic forgetting handicaps state-of-the-art deep neural networks from learning online tasks
in the wild. This paper studies the effect of representational forgetting in a sequential learning
framework. In particular, we propose to add a linear readout layer to test the amount of forgetting
at the representation level, where a significant drop in performance on old tasks is still observed,
consistent with prior literature. We then propose to train a meta-learner to predict the weight updates,
with supervision from a multi-task teacher network. Our meta-learner is able to overcome catastrophic
forgetting while improving its performance on new tasks. We further verify that our meta-learner
has the ability to generalize to unseen classes and checkpoint initializations. Currently we have
made the meta-learner successful at predicting weight updates for up to 500 steps, but we still find it
challenging to let it generalize to even longer sequences. In the future, we expect these issues can
be addressed by potentially training the meta-learner with longer sequences and more sequential
tasks with more computational time, and combining meta-learning techniques for dealing with longer
horizon (e.g. |Liao et al.|(2018); [Metz et al.[(2019)).
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