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1. Introduction

Models of user behavior are critical in many decision making problems and can be viewed as
decision rules that transform state information (in set S) available to the user to actions (in
set A). Formally, a user model is a function f : S 7→ A. Gaussian processes (GPs) employed
to learn functions on the action/target space (henceforth target GPs or TGPs for short)
can thus be used to place a prior on user models and identify a posterior distribution over
them supported by data in conjunction with approximate Bayesian inference techniques
(Blei et al., 2017; Beaumont, 2019).

TGPs for user modeling would assume that user actions at a given set of finite states
follow a multivariate Gaussian. To capture non-Gaussian action distributions, one could
apply GPs to learn functions in a transformed space that is not the target. Examples
include warped and chained GPs proposed in Snelson et al. (2004) and Saul et al. (2016),
respectively. Extending this literature, we study the application of GPs in a transformed
space defined by decision rules. Such rules are known in several applications and depend
on functions themselves. Specifically, a user model based on a decision rule takes the
form g : ΠkPk × S → A, where the arguments are obtained using functions hk : S 7→ Pk,
k = {1, . . . ,K} that map from S to transformed spaces Pk, possibly different from the target
space A. Each such function has immediate interpretability to a practitioner, and we model
them using GPs. We refer to such a user model {g, h1, ..., hk} as a decision-rule GP (DRGP).

To make the notion of DRGPs concrete in this short article, we focus on the problem
faced by a firm providing services to store ethanol – a real application that motivated this
work. Suppose capacity (in gallons) is sold via annual contracts to N users. The contract of
user n specifies the maximum amount of ethanol that can be stored, denoted by Cn. User
behavior corresponds to the injection of ethanol and the withdrawal of previously injected
ethanol, which can be modeled as a time series. The inventory In,t in storage associated with
user n at time t is the net of past injections and withdrawals. A TGP approach would employ
a GP to determine the next-period storage inventory level function In,t+1 directly. In con-
trast, we propose a DRGP that leverages a well-known decision rule based on injection and
withdrawal threshold functions (Charnes et al., 1966; Secomandi, 2010). These threshold
functions are learned as GPs instead of the (relatively less interpretable) inventory function.

We focus on the following research questions in the context of the ethanol storage ap-
plication: (Q1) Can existing exact and approximate Bayesian inference techniques be used
for inference with DRGP? and (Q2) How does DRGP perform relative to TGP?

We answer these questions by executing numerical experiments based on real data of
aggregated ethanol storage injection and withdrawals. For Q1, we show that sparse vari-
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ational inference (Titsias, 2009; Hensman et al., 2013), which can be applied to TGP on
our data set, can also be used with DRGP, albeit heuristically, which is encouraging from
an implementation standpoint. For Q2, we find that DRGP implemented in this manner
leads to lesser out-of-sample error than TGP on most of our datasets, in addition to be-
ing more interpretable to practitioners. This preliminary finding is promising and suggests
that applying GPs in the interpretable space of the decision rule threshold functions has
potential value, which adds to the growing literature on interpretable machine learning and
optimization (Letham et al., 2015; Bertsimas and Dunn, 2017). In addition, the improve-
ments we report are based on the heuristic use of sparse variational inference with DRGPs,
which bodes well for additional potential improvements from the development of new infer-
ence techniques targeting DRGPs. Finally, several applications in energy, health care, and
transportation, among other domains, have known interpratable decision rules, which can
be leveraged in the DRGP framework proposed here.

2. Related Work

Snelson et al. (2004) show that modeling data using a warped GP, which is a non-linear
transformation (aka warping) of a GP, can enhance predictive performance. Inference using
a warped GP can be performed in closed-form provided the warping function satisfies certain
properties, such as being invertible. Lázaro-Gredilla (2012) consider the case where the
warping function is not fixed a priori. DRGPs differ from warped GPs as they are based
on a potentially non-invertible transformation of multiple GPs.

Chained GPs by Saul et al. (2016) extend warped GPs by considering a likelihood
function that factorizes across the data and is a general nonlinear transformation of multiple
latent functions, each modeled as a GP. Exact inference of chained GPs is not tractable in
general and thus approximate inference techniques are used instead. See Lázaro-Gredilla
and Titsias (2011); Vanhatalo et al. (2013); and Moreno-Muñoz et al. (2018) for alternative
approaches to handle multiple GPs.

Recent work has focused on finding a balance between the modeling generality (restric-
tiveness) of chained (warped) GPs and its associated challenging (straightforward) inference
procedure. For example, Tobar and Rios, 2019 extend a warped GP using a composition of
simple functions and retain closed form inference. DRGP is similar to a chained GP because
its underlying decision rule is a nonlinear transformation g(·) of multiple GPs that model
functions h1, . . . , hK . However, unlike a chained GP, each function hk is interpretable and
not necessarily latent, which simplifies inference (see §3 for details). For instance, in our
energy storage application (where K = 2), the functions h1 and h2 correspond to injection
and withdrawal threshold functions, respectively, and are fully or partially observable.

3. DRGPs for Energy Storage

For each user n ∈ N , the most basic inventory update model capturing temporal dependen-
cies can be written as: In,t+1 = fn(In,t, Xn,t) + εn,t, where fn is the user specific transition
function, Xn,t is an exogenous variable with information such as commodity price at time
t and other observable user characteristics (e.g., contract size Cn), and εn,t is an i.i.d. zero
mean Gaussian noise variable. We assume that the exogenous state evolves in a Marko-
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vian manner. Given sufficient historical inventory usage data for each user, we can infer a
posterior on fn for each user n separately (this is TGP).

While TGP can capture rich user behavior patterns, it is relatively less interpretable
because the relationship between the previous inventory level (and other inputs) and the
next inventory level can turn out be highly nonlinear, and using the corresponding posterior
belief in downstream overbooking decisions may become cumbersome. To alleviate this, we
enhance the interpretibility by incorporating findings from prior literature (Charnes et al.,
1966). In particular, it is known that a user (e.g., a merchant operator) makes injection-
withdrawal decisions using a two threshold decision rule structure (also called a double
base-stock policy) under reasonable assumptions on the stochasticity of the exogenous vari-
able Xn,t:

In,t+1 − In,t =


min{fan,t(In,t, Xn,t)− In,t, G} if In,t ≤ fan,t(In,t, Xn,t)

0 if f bn,t(In,t, Xn,t) > In,t > fan,t(In,t, Xn,t)

−min{In,t − f bn,t(In,t, Xn,t), G} if f bn,t(In,t, Xn,t) ≤ In,t,

where fa, f b are two threshold functions and G is a known operational parameter. Because
this two-threshold structure for user behavior is interpretable (user injects if below a given
threshold, withdraws if above another threshold, and holds still in between), we use this to
define DRGP as follows:

In,t+1 = g(f1
n, f

2
n, Xn,t) =


f1
n(In,t, Xn,t) if In,t ≤ f1

n(In,t, Xn,t)

In,t if f2
n(In,t, Xn,t) > In,t > f1

n(In,t, Xn,t)

f2
n(In,t, Xn,t) if f2

n(In,t, Xn,t) ≤ In,t,

where GP beliefs are placed on the threshold functions f1 and f2 (with noise terms asso-
ciated with each function suppressed to ease notation). Note that this composition of two
functions f1 and f2 is non-invertible.

4. Computational Experiments

4.1. Data

We use aggregate inventory level data (∼ 100 observations over 2 years) provided by a US
ethanol storage operator. The aggregate values are log-transformed and split into separate
inventory levels for four users based on three different heuristics to simulate different types
of injection-withdrawal behavior (see Appendix A). As a result, we obtain three datasets
with low, medium, and high variability of injection and withdrawal patterns. We also vary
the number of data points across all users, T , between 200 and 400.

These data sets also include information about the exogenous state vector Xn,t that
includes: (i) the lease capacity of each user; (ii) the spot and prompt-week futures prices
for ethanol; and (iii) the prompt-week futures prices for corn and natural gas. We obtain
price data from Bloomberg.

4.2. Inference

At any time step, a user may inject, withdraw, or do nothing. When a user injects, the
inventory level Xn,t+1 reached as a result of this injection is f1 at Xn,t, and as a result,
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this threshold value is observed but the withdrawal threshold is not. Similarly, if there is
a withdrawal action, f2 at Xn,t is observed while f1 is not. In other words, f1 and f2 are
partially observable over time. To avoid handling partial observability during inference, we
partition the dataset based on when users inject and withdraw and learn the functions f1

and f2, respectively, on the resulting subsets. When computing posteriors in this manner,
the ordering of f1 and f2 may not satisfy the condition f1 ≤ f2 that is implicitly assumed
in the DRGP model. To overcome this issue, we train a classifier to first predict if a user’s
decision is either injection or withdrawal and then employ the corresponding threshold to
determine the next stage inventory level.

We compute posteriors on f1 and f2 using sparse (GP) variational inference (Titsias,
2009) with 10 inducing points and an Automatic Relevance Determination kernel (note that
while one can also use exact GP regression here as an alternative, we chose the former for
future scalability). We use a gradient boosting decision tree based classifier.

Both TGP and DRGP can be combined with transfer learning by assuming a common
component across users and a user specific latent variable. We also consider such models
and label them TGP-TL and DRGP-TL. Details of these models and their accompanying
inference procedures can be found in Appendix B.

4.3. Results

In the first experiment, we answer the question (Q2) laid out in the Introduction, which
seeks to relate the empirical performance of DRGP when compared to TGP. In order to do
so, we perform a training-validation partition of each dataset based on a 70%− 30% split.
The training data is then used to obtain the posteriors, for instance on f1

n and f2
n in the case

of DRGP, for each user n = 1, ..., 4. Subsequently these posteriors are used to predict the
inventory levels in the validation data. The mean and standard deviation of the root mean
squared errors (RMSEs) for TGP and DRGP are displayed in Figure 4.3 for two values of
dataset size T . When T equals 200, the RMSE of DRGP is smaller than TGP across all
datasets. As the number of data points T is increased to 400, this trend continues to be true
for datasets 1 and 3 but is reversed for dataset 2. Overall, we can conclude that DRGP
obtains a lower RMSE than TGP in most cases, while also buying us interpretability.

Figure 1: Out of sample RMSE for TGP and DRGP with T = 200 (left) and T = 400
(right). In each panel, there are 6 box plots corresponding to three pairs of
datasets in order.

In the second experiment, we investigate the value of transfer learning (where users share
common priors). Figure 2(a-c) compares the models with and without transfer learning (T =
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400). We observe that incorporating transfer learning produces mixed results, suggesting
that these datasets may lack a common user behavioral pattern that can be exploited.
Further, in figure 3 (a-d), we illustrate the quality of one-step predictions of the transfer
learning models (for all users in Dataset 3, with T = 400) as a function of one of the
exogenous variables (spot price) in the validation data. We observe that DRGP-TL can
predict the out-of-sample log-inventory levels with higher accuracy and low uncertainty
when compared to TGP-TL.

(a) (b) (c)

Figure 2: Predictive performance with & without transfer learning across the three datasets.

(a) User 1 (b) User 2 (c) User 3 (d) User 4

Figure 3: One step prediction of log(inventory) level for dataset 3. The means are shown
in solid, and the standard deviations around them are shown using dotted curves.

5. Future Research

Our initial study of DRGPs shows that there is promise in leveraging decision rules to
define non-linear transformations of GPs for user modeling in the ethanol storage applica-
tion. Extending this investigation to other real-world applications and developing inference
procedures tailored to DRGP would be valuable. For instance, we are in the process of
developing an inference procedure that directly handles the partial observability of the
thresholds and thus benefits from the full dataset, as opposed to partitioning the dataset
as we did in this paper. Other research directions being explored include: (i) the interplay
between the structure of decision rules in a class of applications, their interpretability, and
how this can be leveraged within inference procedures for DRGPs; and (ii) robust inference
techniques for DRGP, where parameters are computed by optimizing a metric other than
the (exact/approximate) likelihood function.
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Appendix A. Datasets

The ethanol application dataset contains the daily aggregate inventory level of a storage
tank in the US, and the daily price of ethanol over a period of two years. We consider
weekly inventory levels to model the behavior of users, as suggested by practitioners. There
were 39 companies signed up in the system, with various contract sizes. Assuming that
users cluster into groups that have similar injection and withdrawal patterns, we created
four users (essentially user types/groups) by assigned these companies to each group based
on their contract size. We break down the aggregate inventory levels to four user levels
based on three heuristics. These three heuristics are designed to test the performance of
the four approaches we have for user modeling; and they capture low, medium, and high
variance of injection-withdrawal patterns of users.

The first dataset is created by assigning fractions of the aggregate inventory to each
user proportional to their contracted capacity, and simulates a system where the users have
low variability. In the second dataset, we simulate a setting where users have medium
variability when interacting with the system. This is captured by ensuring that the users
do not change their inventory levels with probability 0.5, and change their inventory levels
randomly between 0 and their rented capacity, again with probability 0.5. Finally, to sim-
ulate a system where users interact with the system with high volatility, we make the users
change their inventory level randomly from 0 to their rented capacity in every period, such
that the aggregate of these individual inventory levels is equal to the aggregate inventory
level.

Appendix B. Approximations for Bayesian Inference

Sparse GP for Scalability: For TGP and DRGP, we rely on variational sparse Gaus-
sian process based inference procedure Titsias (2009); Hensman et al. (2013). Inducing
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point methods involve introducing M � T inducing points at locations Z = {zi}Mi=1 with
corresponding function values given by ui = f(zi) such that:

p(f |{In,t, Xn,t}Tt=1,Z) =

∫
p(f |{In,t, Xn,t}Tt=1,u)p(u|Z)du,

where f is the vector of function evaluations at the T observation points. Using this ap-
proach, we are able to approximate the posterior GP with a variational distribution that
only depends on the inducing points by obtaining a lower bound on the marginal likelihood.
Transfer Learning: TGP-TL modifies TGP by assuming that user specific latent vari-
ables and a common target function together drive the inventory updates of all users (Wang
and Neal, 2012; Damianou and Lawrence, 2015; Dai et al., 2017). That is, In,t+1 =
f(In,t, Xn,t, γn) + εn,t, where f is a common target function across users that maps the
triple (In,t, Xn,t, γn) to the next inventory level In,t+1, and γn is a user specific latent vari-
able. We can jointly infer a posterior belief on f (we fix this to be a GP) and γn (which
we take to be Gaussian distributed) using LVMOGP Dai et al. (2017). Common temporal
patterns of all users can now be captured by f , while idiosyncratic aspects of each user
can be captured using γn. Similarly, DRGP can be extended to DRGP-TL, where we
have common threshold functions for all users and user-specific latent variables to capture
user heterogeneity. The graphical models for TGP-TL and DRGP-TL are illustrated in
Figure 4.

Figure 4: The DRGP-TL and TGP-TL models capturing common user behaviors.

The inference procedure for transfer learning extensions of TGP-TL and DRGP-TL
involves handling the joint distribution with respect to the latent variables Γ = {γ1, .., γN}
and the common function (two functions in DRGP-TL). The following independence as-
sumption is made in the variational approximation for tractability:

p(f ,Γ) ≈ q(f)q(Γ),
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where q(f) is a GP and q(Γ) = ΠN
n=1N (γn|µn,Σn). Below, we show the evidence lower

bound (ELBO) in TGP-TL:

log p({{In,t}Tt=1}Nn=1) ≥ Ep(Γ,f)

[
log

p({{In,t}Tt=1}Nn=1,Γ, f)

p(Γ, f)

]
≥

N∑
n=1

T∑
t=1

Eq(f) [log p(In,t|f)]

−KL(q(u)||p(u))−KL(q(Γ)||p(Γ)),

where we use Figure 4 in the second inequality. Following Hoffman et al. (2013) and other
prior works, we maximize the evidence lower bound (ELBO) which provides a lower bound
for the log-marginal likelihood of observed data, and jointly optimize with respect to the
model hyper-parameters and the variational parameters as suggested in Sæmundsson et al.
(2018).
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