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Abstract

Recent work establishes dataset difficulty and
removes annotation artifacts via partial-input
baselines (e.g., hypothesis-only or image-only
models). While the success of a partial-input
baseline indicates a dataset is cheatable, our
work cautions the converse is not necessar-
ily true. Using artificial datasets, we illus-
trate how the failure of a partial-input base-
line might shadow more trivial patterns that
are only visible in the full input. We also iden-
tify such artifacts in real natural language in-
ference datasets. Our work provides an alterna-
tive view on the use of partial-input baselines
in future dataset creation.

1 Dataset Artifacts Hurt Generalizability

Dataset quality is crucial to the development and
evaluation of machine learning models. Large-
scale natural language processing datasets often
rely on crowdsourcing and web crawling, which
can introduce artifacts. For example, crowdwork-
ers might use specific words to contradict a given
premise (Gururangan et al., 2018). These artifacts
corrupt the intention of the datasets to model nat-
ural language understanding. Annotation artifacts
are subtle patterns that are only visible in aggre-
gate on the dataset level. Consequently, they evade
human detection and machine learning algorithms,
which detect and exploit recurring patterns in large
datasets by design, can just as easily use artifacts as
real linguistic clues. The resulting models achieve
high test accuracy but fail to generalize: for exam-
ple, they fail under adversarial evaluation (Jia and
Liang, 2017; Ribeiro et al., 2018).

Identification of dataset artifacts has changed
model evaluation and dataset construction (Chen
et al., 2016; Jia and Liang, 2017; Goyal et al., 2017;
Zellers et al., 2018). One key identification strategy
is partial-input baselines: models that intentionally
ignore portions of the input. Examples include

hypothesis-only models for natural language in-
ference (Gururangan et al., 2018), question-only
models for visual question answering (Goyal et al.,
2017), and paragraph-only models for reading com-
prehension (Kaushik and Lipton, 2018). A dataset
is easier than expected if a partial-input baseline
performs well. On the other hand, examples where
the baseline fails are “hard” (Gururangan et al.,
2018), and the failure of partial-input baselines is
considered a verdict of a dataset’s difficulty (Zellers
et al., 2018; Kaushik and Lipton, 2018).

These partial-input analyses are valuable and in-
deed reveal dataset issues; however, they do not tell
the whole story. Just as being free of one ailment is
not the same as a clean bill of health, a baseline’s
failure only indicates that the dataset is not broken
in one specific way. There is no reason that artifacts
only infect part of the input—models can exploit
patterns that are only visible in the full input.

After reviewing of partial-input baselines (Sec-
tion 2), we construct variants of a natural language
inference dataset to highlight the potential pitfalls
of partial-input dataset validation (Section 3). Sec-
tion 4 shows that real datasets have artifacts that
cannot be detected by partial-input baselines; we
use a hypothesis-plus-one-word model to solve
some of the “hard” examples from SNLI (Bow-
man et al., 2015; Gururangan et al., 2018) where
hypothesis-only models fail. We then use k-nearest
neighbors to understand how the model learn to
exploit these artifacts in the training data. Despite
its potential pitfalls, partial-input baselines are still
valuable sanity checks; we discuss how it should
be used in future dataset creation in Section 5.

2 What are Partial-input Baselines?

A long-term goal of NLP is for models to tackle
tasks that we believe require human-level under-
standing of language. The community typically



defines tasks in terms of datasets: reproduce these
answers given these inputs, and you have solved
the underlying task. This equivalence is only valid
when the data accurately represents the task. Un-
fortunately, verifying this equivalence via humans
is fundamentally insufficient: humans reason about
examples one by one, while models can discover
recurring patterns. Patterns that are not part of the
underlying task, or “artifacts” of the data collection
process, lead to models that “cheat”—ones that
achieve high test accuracy using trivial patterns
that do not generalize.

One type of artifact observed in many datasets,
specifically classification tasks where each input
contains multiple parts (e.g., a question and an
image), is a strong correlation between part of the
input and the label. For example, a model can
answer many VQA questions without looking at the
image (Goyal et al., 2017). These artifacts can be
detected using partial-input baselines: models that
are restricted to using only part of the input.

Validating a dataset with a partial-input baseline
has the following steps:

1. Decide which part of the input to use.
2. Reduce all examples in the training set and

the test set.
3. Train a new model from scratch on the partial-

input training set.
4. Test the model on the partial-input test set.

High accuracy from a partial-input model im-
plies the original dataset is solvable (to some ex-
tent) in the wrong ways—using patterns that were
not intended. This method has identified artifacts
in datasets including SNLI (Gururangan et al., 2018;
Poliak et al., 2018), VQA (Goyal et al., 2017),
EmbodiedQA (Anand et al., 2018), visual dia-
logue (Massiceti et al., 2018), and visual naviga-
tion (Thomason et al., 2018).

3 How Partial-input Baselines Fail

If a partial-input baseline fails—for example, get-
ting close to chance accuracy—one might con-
clude that the dataset is difficult; for example,
partial-input baselines are used to identify the
“hard” examples in SNLI and MULTINLI (Guru-
rangan et al., 2018), verify that SQUAD is well
constructed (Kaushik and Lipton, 2018) and that
SWAG is challenging (Zellers et al., 2018).

Reasonable as it might seem, this kind of ar-
gument can be misleading. It is important to un-
derstand what exactly these results do and do not

imply. Low accuracy from a partial-input base-
line only means that the model failed to find ex-
ploitable patterns in the visible part of the input.
This does not mean, however, that the dataset is
free of artifacts—the full input might still contain
very trivial patterns.

To illustrate how failures of partial-input base-
lines might shadow more trivial patterns that are
only visible in the full input, we construct two vari-
ants of the SNLI dataset (Bowman et al., 2015).
The datasets are constructed to contain trivial pat-
terns that are visible in the full input but cannot
be exploited by partial-input baselines, i.e., a full-
input model can achieve perfect accuracy whereas
partial-input models fail.

3.1 Label as Premise
In SNLI, each example consists of a pair of sen-
tences: a premise and a hypothesis. The goal is
to classify the semantic relationship between the
premise and the hypothesis: either entailment, neu-
tral, or contradiction.

Our first SNLI variant is an extreme example
where we introduce artifacts to the dataset that
cannot be detected by some partial-input baseline.
Each SNLI example (training and testing) is copied
three times, then each copy is then assigned the
label Entailment, Neutral, and Contradiction, re-
spectively. Finally, we set the premise to be the
literal word of the associated label: “entailment”,
“neutral”, or “contradiction” (Table 1). From the
perspective of a hypothesis-only model, the three
copies have identical inputs but conflicting labels,
which prevents the model from fitting the training
set. Thus the best accuracy from any hypothesis-
only model is chance—the baseline fails due to
high Bayes error. However, a full-input model can
see the label in the premise and achieve perfect
accuracy.

This serves as an extreme example of a dataset
that passes one partial-input baseline test but still
contains artifacts. Obviously, a premise-only base-
line can detect these artifacts; we address this in
the next variant.

3.2 Label Hidden in Premise and Hypothesis
The artifact we introduce in the previous dataset
can be easily detected by a premise-only baseline.
In this variant, we “encrypt” the label such that it is
only visible if we combine the premise and the hy-
pothesis, i.e., neither premise-only nor hypothesis-
only baselines can detect the artifact. Each label



Old Premise Animals are running
New Premise Entailment
Hypothesis Animals are outdoors

Label Entailment

Table 1: Each example in this dataset has the
groundtruth label as the premise. Because each hypoth-
esis occurs in the dataset three times with a different
label each time (not shown in this table), no hypothesis-
only baseline can achieve better than chance accuracy.
However, a full-input model can trivially solve the
dataset.

Label Combinations

Entailment A+B C+D E+F
Contradiction A+F C+B E+D
Neutral A+D C+F E+B

Table 2: We “encrypt” the labels to mimic the ex-
ploitable patterns that requires both parts of the input.
Each capital letter is a code word, and each label can be
represented as one of three combinations of two code
words. Each combination uniquely identifies a label—
for example, A in the premise and B in the hypothe-
sis equals Entailment. However, a single code word
cannot—one cannot infer the label by only seeing A in
the premise.

is represented by the concatenation of two code
words, and the mapping is one-to-many: each la-
bel has three combinations, and each combination
uniquely identifies a label. The design of the code
words (Table 2) ensure that one code word cannot
uniquely identify a label—you need both.

We put one code word in the premise and the
other in the hypothesis. These encrypted labels
mimic the exploitable patterns that require both
parts of the input. The most extreme version of
this dataset has the nine combinations in Table 2 as
both the training set and the test set.

Because a single code word cannot identify the
label, neither hypothesis-only nor premise-only
baselines can achieve more than chance accuracy
(one-third chance). However, a full-input model
can still easily learn to extract the label by com-
bining the premise and the hypothesis and achieve
perfect accuracy.

4 Artifacts Undetected by Partial-input
Baselines

Our synthetic datasets are trivially solvable but
partial-input baselines fail to detect the artifacts.

Do real datasets such as SNLI have artifacts that
cannot be detected by partial-input baselines?

Additional information about the premise should
make it easier to solve examples that are unsolvable
for a hypothesis-only model. If the added features
appear useless to humans but allow the hypothesis-
only model to improve accuracy, they are artifacts
instead of generalizable patterns.

We showcase using a very limited premise
feature—only the last noun—to form a hypothesis-
plus-one-word model. We start with a BERT-based
classifier that gets 88.28% accuracy with regular,
full input. The hypothesis-only version reaches
70.10% accuracy.1 With hypothesis-plus-one-word,
the accuracy improves to 74.6% and the model
solves 15% of the “hard” examples, all of which
are unsolvable by the hypothesis-only model.2

In Table 3 we show examples that are only
solvable with the additional one word from the
premise. Following Papernot and McDaniel (2018),
we extract training examples by nearest neigh-
bor search in the final BERT representation space,
for both hypothesis-only and hypothesis-plus-one-
word models. In the first example, humans would
not judge “The young boy is crying” as a contra-
diction to “camera”, which is the premise seen by
the hypothesis-plus-one-word model; without the
additional word, nearest neighbor search returns
examples with the incorrect Entailment label, but
with the additional word “camera” as premise, we
get instead training examples with label Contradic-
tion. This added pattern by including one premise
word is an artifact that regular partial-input base-
lines cannot detect, but it can be exploited by a
full-input model.

5 Discussion and Related Work

Partial-input baselines are valuable sanity checks
for complex NLP datasets, but as we illustrated,
their implications should be understood carefully.
Going one step further, we discuss not only meth-
ods for creating datasets with fewer artifacts but
also empirical results that corroborate the potential
pitfalls we suggest in this paper. We also discuss
some alternative approaches to robust NLP models.

As we illustrate with synthetic and real datasets,
each partial-input test can only verify that the
dataset is not broken in one specific way. A more

1Gururangan et al. (2018) report 67.0% using a simpler
hypothesis-only model.

2The easy-hard split of the dataset is done with our own
model, not the one released by Gururangan et al. (2018).



Label Premise Hypothesis
Contradiction A young boy hanging on a pole smiling at the camera. The young boy is crying.
Contradiction A boy smiles tentatively at the camera. a boy is crying.
Contradiction A happy child smiles at the camera. The child is crying at the playground.
Contradiction A girl shows a small child her camera. A boy crying.
Entailment A little boy with a baseball on his shirt is crying. A boy is crying.
Entailment Young boy crying in a stroller. A boy is crying.
Entailment A baby boy in overalls is crying. A boy is crying.

Entailment Little boy playing with his toy train. A boy is playing with toys.
Entailment A little boy is looking at a toy train. A boy is looking at a toy.
Entailment Little redheaded boy looking at a toy train. A little boy is watching a toy train.
Entailment A young girl in goggles riding on a toy train. A girl rides a toy train.
Contradiction A little girl is playing with tinker toys. A little boy is playing with toys.
Contradiction A toddler shovels a snowy driveway with a shovel. A young child is playing with toys.
Contradiction A boy playing with toys in a bedroom. A boy is playing with toys at the park.

Table 3: SNLI test examples (highlighted) that are unsolvable for the hypothesis-only model but can be solved when
a single word in the premise (underlined) is added. We also show the training examples that are nearest neighbors
to the test example in BERT’s representation space. Underlines indicate parts of the input that are visible to the
model. With the additional last noun in the premise, training examples with the same label are retrieved; with only
the hypothesis, examples with the incorrect label are returned.

complete validation of the dataset requires us to list
more ways that a model can cheat, but it is impos-
sible to list all of them. Can we prevent the model
from cheating by creating datasets with fewer arti-
facts?
Adversarial Annotation A natural next step is to
incorporate these baselines into the data genera-
tion process. One notable example of a dataset
that uses adversarial annotation is SWAG (Zellers
et al., 2018), where multiple-choice answers are
selected adversarially against an ensemble of clas-
sifiers. However, since the adversaries (trained
normally) can be easily fooled if they rely on super-
ficial patterns, these supposedly challenging exam-
ples still contain artifacts, which can be exploited
by a stronger model, e.g. BERT. This annotation
paradigm leads to datasets that are just difficult
enough to fool the baselines but not enough to en-
sure that no model can cheat.
Adversarial Evaluation Switching our focus from
dataset to models, adversarial evaluation is vital to
understanding a system’s capabilities, as strikingly
simple model limitations can be overlooked (Be-
linkov and Bisk, 2018; Jia and Liang, 2017). For
instance, simple paraphrases can fool textual entail-
ment and visual question answering systems (Iyyer
et al., 2018; Ribeiro et al., 2018), while common ty-
pos drastically degrade neural machine translation
quality (Belinkov and Bisk, 2018).
Interpretations We can also try to understand di-
rectly what the model is doing using interpreta-
tions. But there is a problem of faithfulness (Rudin,

2018). The nature of interpretation is that we ap-
proximate (often locally) a complex model (often
neural networks) with a much simpler, inherently
interpretable model (often linear models). Because
the interpretation is an approximation, it can never
be completely faithful: there must be cases where
the original model and the simple model behave
differently, and these cases might be especially im-
portant as they usually reflect the counter-intuitive
brittleness of the complex models (e.g., in adver-
sarial examples).
Certifiable Robustness In computer vision, the re-
search on robustness is transitioning from an empir-
ical arm race between attacks and defenses to more
theoretically sound certifiable and provable ro-
bustness methods. Despite their strong empirical
results and theoretical guarantees, direct adaptation
of these methods to natural language tasks is still
an open problem due to the discrete nature of text
inputs.

6 Conclusion

Partial-input baselines are valuable sanity checks
of dataset difficulty, but their implications need to
be analyzed carefully. We illustrate in both syn-
thetic and real datasets how these experiments can
shadow trivial, exploitable patterns that require
the full input. Our work provides an alternative
view on the use of partial-input baselines in future
dataset creation.
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