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Abstract

In the adaptive setting, many multi-armed bandit applications allow the learner
to adaptively draw samples and adjust sampling strategy in rounds. In many
real applications, not only the query complexity but also the round complexity
need to be optimized. In this paper, we study both PAC and exact top-k arm
identification problems and design efficient algorithms considering both round
complexity and query complexity. For PAC problem, we achieve optimal query
complexity and use only O(log∗k

δ
(n)) rounds, which matches the lower bound

of round complexity, while most of existing works need Θ(log n
k
) rounds. For

exact top-k arm identification, we improve the round complexity factor from logn
to log

∗
1

δ
(n), and achieve near optimal query complexity. In experiments, our

algorithms conduct far fewer rounds, and outperform state of the art by orders of
magnitude with respect to query cost.

1 Introduction

Mutli-armed bandit (MAB) problems are classic decision problems with numerous applications such
as medical trials [1], online advertisement [2], and crowdsourcing [3]. These problems typically
consider a bandit with a set of arms, each of which has an unknown reward distribution with an
unknown mean, and the objective is either to (i) identify the top-k arms with the maximum reward
means or (ii) maximize the expected total reward under some constrains on the costs of arm pulling.

This paper studies the problem of top-k arms identification in the adaptive setting, which allows the
leaner to draw samples from the arms adaptively in rounds to estimate their means, and to adjust the
sampling strategy for the i-th round based on the observations from the first i − 1 rounds. Following
previous work [4], we assume that in each round, the learner is allowed to query an arbitrary number
of arms for an arbitrary number of times, but the query results would only be revealed at the end of
the round. We aim to minimize the number of rounds performed, as well as achieving best possible
query complexity. In addition, our proposed algorithms exhibit superior practical performance due to
our small constant factors. Existing top-k algorithms mainly focus on query complexity and most of
them are not efficient due to their large constants [5, 6, 3, 7, 8] or inferior query complexities [9, 10].
Adaptive round setting of MAB has many real applications, as described below.

Medical trials. In medical trials [11], to identify the best drug for a disease, one can conduct tests in
rounds, such that each round involves testing multiple candidate drugs on multiple clinical subjects
(e.g., mice) simultaneously. However, after each round of testing, there is typically a waiting time
(e.g., days) before the effects of drugs become observable to guide the design of the next round of
testing. It is important to minimize not only the total number of tests on clinical subjects (i.e., query
complexity) but also the number of rounds, to identify the best drug within the shortest time frame.
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Online advertisement. In online advertisement [12], an advertiser may push ads to the users of
candidate websites, so as to identify the top-k websites that have the highest click-through rates and
match some clients advertising requirements. The pushing of ads could be conducted in rounds, and
each round may involve multiple ads and multiple users. However, in each round, it takes time to
observe users’ responses to the ads, and to decide which websites are unpromising and should be
pruned in the next round. In this application, there is usually a tight time frame to offer a solution to
the clients, so as to ensure the timeliness of the ads.

Crowdsourcing. Workers on crowdsourcing platforms often vary significantly in terms of the answer
quality. As an effective strategy to identify the most reliable workers for a specific task, one may test
each worker with a sequence of questions with ground-truths, and then select workers based on the
accuracy of their answers. Note that for such tests, workers need some time to answer the questions,
and need to be rewarded upon the completion of the questions. To minimize the time and monetary
cots, it is crucial to have an algorithm to identify the most reliable workers that minimizes the number
of tests (i.e., query complexities) within a limited number of rounds, where our proposals fit.

1.1 Problem Formulation

Under the standard setting of stochastic multi-armed bandit selection, there is a set S of n arms,
such that each arm i is associated with an unknown reward distribution Di supported on [0,1] with

unknown mean θi. Let i∗ be the arm with ith largest mean. We aim to identify the k arms with the
largest means by pulling (i.e., sampling from) the arms in rounds. In each round, we can pull any
number of arms for any number of times, such that (i) each pull of an arm i returns a reward that is an
i.i.d. sample from Di, and (ii) the reward is only revealed at the end of the round.

For PAC subset selection, we study two problems: (i) Problem 1 (PAC-top-k): PAC Top-k Arm
Selection with Adaptive Rounds, and (ii) Problem 2 (RL-top-k): Top-k Arm with a Round Limit R.
In both problems, the goal is to identify a set V ⊆ S of k arms, such that for all i ∈ [1, k], the ith

largest arm in V has mean larger than θi∗ − ǫ with probability at least 1 − δ, where ǫ and δ are given
constants. Specifically, for PAC-top-k, we aim to minimize the number of rounds performed, while
achieving the best possible query complexity; for RL-top-k, we expose a upper limit on the number
of rounds that can perform, R, and aim to minimize the query complexity within R rounds.

For exact top-k arm identification, denoted as Problem 3 (exact-top-k), we aim to minimize the
number of rounds required as well as the query cost, for identifying the top-k arms with the largest
means. We assume θk∗ > θ(k+1)∗ , in order to ensure the uniqueness of the solution.

1.2 State of the Art

To the best of our knowledge, Agarwal et al.’s work [4] is the only one that studies the top-k arms
problem while taking into account the round complexity. In particular, [4] studies the identification
of exact top-k arms with adaptive rounds, and presents a method that takes ∆k as input and returns

the exact top-k arms with at least 1 − δ probability, with query complexity O ( n
∆2

k

⋅ log k
δ
) and round

complexity2 log
∗(n) , where ∆k denotes the difference between the means of the kth and (k + 1)th

largest arms, and log
∗(n) denotes the iterated logarithm of n, i.e.,

log
∗(n) = {1 + log∗(logn), if n > 1

0, otherwise
(1)

In other words, log
∗(n) equals the number of times that we need to apply the logarithm function on

n before the result is no more than 1. Furthermore, [4] also studies the problem where the round limit
R is given. Their algorithm identifies the exact top-k arms with at least 1− δ probability, with a query

complexity of O ( n
∆2

k

⋅ (log k
δ
+ ilog

(R)(n))), where ilog
(R)(n) is the result of iteratively applying

the logarithm function on n for R times, i.e.,

ilog
(r)(x) = {ilog(r−1)(log(x)), if x > 1

1, if x ≤ 1. (2)

With respect to lower bound, Agarwal et al. show that a round complexity of log
∗(n) is near

optimal, since for constants k and δ, any algorithm with O( n
∆2

k

) query complexity requires at least

2All logarithms(e.g., log∗b(n)) in this paper are to base b.
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Algorithm Number of Rounds Query Complexity

k = 1 [5] Θ(logn) O ( n

ǫ2
⋅ log 1

δ
)

All k ∈ [n] [6, 16, 14] Θ(log n

k
) O ( n

ǫ2
⋅ log k

δ
)

This paper (Algorithm 1) 2 log∗k
δ

(n) O ( n

ǫ2
⋅ log k

δ
)

Table 1: Summary of algorithms for Problem 1: Top-k arms with adaptive rounds.

Algorithm Bound Query Complexity

All k ∈ [n] [4], assuming ∆k is known exact top-k O ( n

∆2

k

⋅ (log k

δ
+ ilog(R)(n)))

This paper (Algorithm 2) (ǫ, δ) O ( n

ǫ2
⋅ (log k

δ
+ ilog

(R)
k
δ

(n)))
Table 2: Summary of algorithms for Problem 2: Top-k arms with a round limit R

.

log
∗(n) − log∗(Θ(log∗(n))) rounds. Besides, Agarwal et al. prove that identifying the exact top-k

arms with at least 3/4 probability using R rounds must use Ω ( n
∆2

k
R4 ⋅ ilog

(r) (n
k
)) samples.

Agarwal et al.’s algorithm suffers from a major deficiency that it requires ∆k to be known in advance,
which is unrealistic in most practical applications as the mean of each arm is unknown. In addition,
the algorithm cannot be extended to address PAC-top-k and RL-top-k by replacing ∆k with ǫ, since
the algorithm strongly relies on the assumption that there is exact k arms whose means are larger
than θk∗ −∆k, where k∗ is the arm with the kth largest mean. (This assumption does not hold in
general if we replace ∆k with any ǫ > ∆k.) Further, the algorithm cannot be used to get instance-
dependent query complexity (where the query complexity not only depends on ∆k but also depends
on {θi}ni=1), since all Exponential-Gap-Elimination algorithms [8, 13, 14, 15] need a PAC algorithm
as a subroutine.

There also exists a number of techniques [16, 6, 13, 10, 14, 8] for both PAC and exact top-k arm
identification problems that optimizes the query complexity, without considering the round complexity.
The query complexity achieved by these technique is near optimal. However, all of these incur logn
factor on round complexity, significantly worse than the round complexity of [4].

1.3 Our Results

In this paper, we present three algorithms for the top-k arm selection problems in adaptive round
model. Below summarizes our results.

Theorem 1. There is an algorithm that computes ǫ-top-k arms with probability at least 1 − δ, pulls

the arms at most O( n
ǫ2
⋅ log k

δ
) times and runs in at most 2 log

∗
k
δ
(n) expected rounds.

Theorem 2. There is an algorithm that computes ǫ-top-k arms with probability at least 1 − δ, pulls

the arms at most O( n
ǫ2
⋅ (ilog(R)k

δ

(n) + log k
δ
) times and runs within R rounds.

Since (i) the solution in [4] is proved to be near-optimal, and (ii) the problems studied in [4] are
special cases of PAC-top-k and RL-top-k with ǫ ←∆k, the round complexity of our algorithm for
PAC-top-k and the query complexity of our algorithm for RL-top-k are near-optimal.

Compared with the solution in [4], our algorithms do not require any prior knowledge of ∆k, and
allow us to choose an error parameter ǫ ∈ (0,1) to strike a trade-off between the accuracy and
efficiency of the algorithm, which is much more practical. Further, our PAC version can be used to
get instance-dependent query complexity while [4] can not.

Theorem 3. There is an algorithm that computes exact top-k arms with probability at least 1 − δ,

pulls the arms at most O (∑n
i=1∆

−2
i log (k⋅log∆−1i

δ
)) times and runs in O(log∗1

δ
n ⋅ log∆−1k ) rounds.

Compared with the previous exact top-k arm algorithms [14, 8, 13], we improve the factor on round
complexity from logn to log

∗
1

δ
(n), while achieving the same query complexity. Tables 1, 2 and 3

summarize our results and those of the state-of-the-art methods.

2 PAC Subset Selection

We present our algorithms for the PAC top-k arms selection problems, i.e., PAC-top-k and RL-top-k.
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Algorithm Round Complexity Query Complexity

k = 1 [8] O(logn ⋅ log∆−1k ) O (∑n
i=1∆

−2
i ⋅ log

log∆−1i
δ
)

[17] O (∑n
i=1∆

−2
i ⋅ log

log∆−1i
δ
) O (∑n

i=1∆
−2
i ⋅ log

log∆−1i
δ
)

All k ∈ [n] [10] O (∑n
i=1∆

−2
i ⋅ log

∑
n
i=1 ∆−1i

δ
) O (∑n

i=1∆
−2
i ⋅ log

∑
n
i=1 ∆−1i

δ
)

[13] O(logn ⋅ log∆−1k ) O (∑n
i=1∆

−2
i ⋅ log

k⋅log∆−1i
δ
)

This paper O(log∗1
δ

n ⋅ log∆−1k ) O (∑n
i=1∆

−2
i ⋅ log

k⋅log∆−1i
δ
)

Table 3: Summary of algorithms for Problem 3: Exact top-k arm identification. (For i ≤ k, ∆i

denotes the difference between the means of the ith and (k + 1)th arms. For i > k, ∆i denotes the

difference between the means of the kth and ith arms.)

2.1 Top-k δ-Elimination

k-δE (Algorithm 1) can identify the top-k arms for PAC-top-k, with query complexity O( n
ǫ2
log k

δ
)

and at most 2 log
∗
k
δ
(n) expected rounds. Compared with Median Elimination based top-k algorithms,

e.g., [16, 6], which only eliminate half of the candidates in each round, k-δE can eliminate at least

100(1 − δ
k
) percent of candidate arms every other round, which is far better. We go through the

algorithm first and then explain why. Note that in each while iteration (Line 5-17), k-δE performs
two separate rounds of pulling (Line 5 and Line 8), since the pulls at Line 8 are dependent on
the empirical results obtained at Line 5. This corresponds to the 2 factor in our round complexity
2 log

∗
k
δ
(n). Without ambiguity, r means iterations in Algorithm 1, but means rounds in Algorithm 2.

Algorithm 1 takes as input S, Q, k, ǫ, δ, where S is the set of all the arms and Q = c
ǫ2

(c is an constant

factor determined in Lemma 1). An empty set S′ (Line 3) is initialized for the storage of the arms and
their empirical means obtained later in the algorithm. In each iteration, we pull every arm in Sr by
Qr times, and sort them by their empirical means (Line 5). At Line 7-8, we double test the empirical
mean of each arm in Sr

k′ (in order to keep the estimation unbiased) and keep it in S′. Then we update

Sr to Sr+1 by only keeping the arms with empirical means 3/4ǫ greater than the kth largest mean in
S′, and also excluding the arms in Sr

k′ (Line 10). From Line 11 to 15, we update βr and δr, which
can make Qr exponentially decrease in next iteration. This is critical to keep the total number of pulls
linear to n. The whole process continues until Sr is empty, then the top-k arms in S′ are returned.

Median Elimination (ME) methods can only allow ǫr regret in each iteration (∑r ǫr ≤ ǫ), in order to
guarantee ǫ error bound even when the best arm is mistakenly eliminated. On the other hand, k-δE
allows ǫ loss in each iteration with the help of S′ and double test, which allows us to perform fewer
pulls and eliminate more than half of the arms per iteration. During a iteration r, ME methods need
to sample O((1/ǫ2r) log(k/δr)) times per arm, much larger compared to O((1/ǫ2) log(k/δr)). It is
even worse when r increases (i.e., ǫr decreases), leading to the large constant factors in ME methods.

Specifically, in Algorithm 1, S′ stores randomly chosen arms that are eliminated. It holds that the
top ith(i ≤ k) arm stored in S′ is at most ǫ smaller than ith eliminated arm (see the proof details of
Lemma 1). If k-δE has eliminated the ith largest arm, then with high probability the ith largest arm
stored in S′ must be the ǫ-approximate of ith largest arm. Hence, k-δE allows ǫ loss per iteration.

Moreover, k-δE uses a more aggressive indicator to eliminate arms, compared to the median indicator
used in Median Elimination based algorithms. We use as our indicator, the kth largest empirical mean
of the randomly chosen top arms stored in S′, plus 3/4ǫ (Line 10 of Algorithm 1). However, directly
using such indicator without double test, the indicator may be positively biased. And then all the
ǫ-top-k arms might be eliminated with such indicator, which leads to wrong results. To deal with this,
we use double-test strategy to re-sample another Qr times at Line 8 before using the indicator at Line
10 in Algorithm 1, to keep the indicator unbiased. Further, 3/4ǫ increment is added to the indicator to
eliminate more arms safely, proved in Lemma 1. k-δE runs in 2 log

∗
k
δ
(n) expected rounds.

Compared to [4], our Algorithm 1 and Algorithm 2 are fundamentally different. We assume no prior
knowledge of the arms, e.g., ∆k. Given ∆k, Agarwal et al.’s algorithm can compute an optimal
indicator to eliminate the arms definitely not in top-k. Our indicator (Line 10) is set with the help of
S′ and double test, which gives our algorithm near-optimal round complexity 2 log

∗
k
δ
(n).
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Algorithm 1 Top-k δ-Elimination (k-δE)

1: Input: S, Q, k, ε and δ.
2: Initialize r ← 1, β1 ← 1, δ1 ← δ/4, S1 ← S.
3: Initialize S′ ← ∅.
4: while Sr ≠ ∅ do
5: Sample each arm i ∈ Sr for Qr ← βr ⋅Q ⋅ log( k

δr
) times; sort them decreasingly by empirical means θ̂i;

6: k′ ←min{k, ∣Sr ∣};
7: Uniformly sample k′ arms from the top-[⌈(δr/k)βr

⋅ ∣Sr ∣/2⌉ + k′ − 1] sorted arms as set Sr
k′ ;

8: For each arm i ∈ Sr
k′ , double test by re-sampling it Qr times and insert its new empirical mean into S′;

9: Get the k-th largest mean in S′ as S′(k);
10: Set Sr+1 ← {i ∈ Sr ∶ θ̂i ≥ S′(k) + 3ǫ/4} and Sr+1 ← Sr+1/Sr

k′ ;

11: if ∣Sr+1∣ ≤ 2δ

k
∣Sr ∣ then

12: βr+1 ← βr
∣Sr ∣

2∣Sr+1 ∣
;

13: else
14: βr+1 ← βr

∣Sr ∣

∣Sr+1 ∣
;

15: end if
16: δr+1 ← δ/(2 ⋅ 2r);
17: r ← r + 1;
18: end while
19: Return: Top-k arms in S′.

2.2 Bounding the Regret, Query Complexity, and Round Number of k-δE

We bound the regret in k-δE and give its query and round complexity. The proofs are in Appendix B.

Lemma 1. Given a n-arm set, S, parameter ǫ ∈ (0,1), and δ ∈ (0,1/4), it suffices to run Algorithm 1

with Q ≥ 32
ǫ2

in order to obtain a k-sized subset V ⊆ S, such that with probability at least 1 − δ,

the ith largest arm in V has mean larger than θi∗ − ǫ, for all i ∈ [1, k]. Additionally, if we change

the parameter 3/4ǫ (Line 10 in Algorithm 1) to ǫ1, where ǫ1 ∈ (0, ǫ), then by setting Q ≥ 2
(ǫ−ǫ1)2

,

Algorithm 1 still works with the (ǫ, δ) guarantee.

Lemma 1 provides the (ǫ, δ) guarantee of algorithm k-δE. Lemma 2 shows that, w.h.p., Sr+1 is(δ/k)−βr times smaller than Sr, which is used in Lemma 3 to bound the round complexity.

Lemma 2. If Q ≥ 57
ǫ2

and δ ∈ (0,1/4), then at iteration r, with probability at least 1 − 2δr, ∣Sr+1∣ ≤
⌈2 ⋅ (δr/k)βr ∣Sr ∣⌉ − 1.

Lemma 3. For Q ≥ 57/ǫ2 and δ ∈ (0,1/4), with probability at least 1 − δ, the number of rounds R′

used in k-δE satisfies: R′ ≤ 2 log∗k
δ
(n), and E[R′] ≤ 2(1 + 2δ) log∗k

δ
(n).

Next, we provide the query complexity of k-δE in Lemma 4. Kalyanakrishnan et al. [10, Theorem

8] present a lower bound of Ω( n
ǫ2
log k

δ
) for PAC version (the Explore-k metric, see Section 5).

Hence, up to a small constant factor, our query complexity is optimal. Combining Lemma 1,3, and 4,
Theorem 1 follows.

Lemma 4. Let N be the number of arms pulled by Algorithm 1. For Q ≥ 57
ǫ2

, with probability at

least 1 − δ, N ≤ 7n ⋅Q ⋅ log(4k/δ); and E[N] ≤ 7(n + 1) ⋅Q ⋅ log(4k/δ).
Remark 1. In previous work [16], as the theoretical analysis is rather pessimistic due to the extensive
usage of the union bound, the constant to achieve regret bound are far from tight. The constant can

be even up to 105(i.e., the bound is N ≥ 105

ǫ2
log 1

δ
in previous works).

In k-δE, (i) our constants (Lemma 4) are much smaller; (ii) our constant factor is adjustable according
to Lemma 1 with the ǫ regret bound still guaranteed (for instance, the 3/4ǫ factor in Line 10 of

Algorithm 1 can be changed to 1/2ǫ, then setting Q ≥ 8
ǫ2

still guarantees the PAC bound); (iii) our
algorithm can stop as soon as it is confident to find the correct arm, reducing the practical query cost.

2.3 Top-k Arm Selection with a Round Limit

In this section, we propose k-δER (Algorithm 2) to solve Problem 2, top-k arm selection with a
round limit R. Our proposal can report correct result within R rounds, with almost optimal query
complexity. Compared to k-δE, k-δER only requires one round (Line 4) per iteration, rather than
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Algorithm 2 Top-k δ-Elimination with Limited Rounds (k-δER)

1: Input: S, R, k,Q, ǫ and δ.

2: Initialize r ← 1, δ1 ← δ/4, β1 ← 1 + i log(R)k
δ

(n), S1 ← S, S′ ← ∅.

3: for r ≤ R − 1 do
4: Sample each arm in Sr by Qr ← βr ⋅Q ⋅ log(k/δr) times, and sort decreasingly by their empirical θ̂i;
5: k′ ←min{k, ∣Sr ∣}.
6: Uniformly sample k′ arms from the top-[⌈(δr/k)βr

⋅ ∣Sr ∣/2⌉ + k′ − 1] sorted arms as set Sr
k′ ;

7: Add Sr
k′ into S′;

8: Let Sr+1 be set containing all the top-[⌈2 ⋅ (δr/k)βr ∣Sr ∣⌉ + k′ − 1] sorted arms in Sr;
9: Sr+1 ← Sr+1/Sr

k′ ;

10: βr+1 ← βr
∣Sr ∣

2∣Sr+1 ∣
;

11: δr+1 ← δ/(2 ⋅ 2r);
12: r ← r + 1;
13: end for
14: Return: US(S′, SR,Q, βR, δ, k).

Algorithm 3 Uniformly Sampling (US)

1: Input: S′, SR,Q, βR, δ, k.

2: Sample each arm i ∈ SR by Q ⋅ βR ⋅ log
2k⋅2R

δ
times and sort decreasingly by their empirical θ̂i;

3: Let SR
k be the set of all the top-min{k, ∣SR∣} arms;

4: Sample each arm i ∈ S′ by Q log
4∣S′ ∣

δ
times, and let θ̂i be its empirical mean;

5: Return: Top-k arms in SR
k ⋃S′.

two rounds per iteration. According to Lemma 2, in each iteration, we can bound the total number of
arms in Sr+1 without double test. Thus, rather than performing the double test immediately (Line 8,
Algorithm 1), k-δER delays all the double-tests of all the iterations until the final round (Line 14,
Algorithm 2), and conducts all the double-tests in this round, using uniform sampling (Algorithm 3).

Algorithm 2 shows the pseudo-code of k-δER. It takes as input one more parameter, R, the round
limit. S′ stores all the arms delayed for double test in the first R − 1 rounds (Line 7). At Line
14, Algorithm 3 is called to sample all the arms in both S′ and SR in one round, and then the the
top-k arms are reported. Note that in Algorithm 3, the samples in Line 2 and 4 can be submitted
simultaneously, so this only cost one round. Compared to Median Elimination algorithms, k-δER has
similar advantages as k-δE analyzed in Section 3.1. With the help of S′ and double test, k-δER can
eliminate more arms in each round, while still provides (ǫ, δ) guarantee, as follows.

Lemma 5. Given a n-arm set, S, parameters k, ǫ ∈ (0,1), δ ∈ (0,1/4), and 1 ≤ R ≤ log∗k
δ
(n), it

suffices to run Algorithm 2 with Q ≥ 57
ǫ2

in order to obtain a k-sized subset V ⊆ S, such that with

probability at least 1 − δ, the ith largest arm in V has mean larger than θi∗ − ǫ, for all i ∈ [1, k].
Details of the proof are in Appendix B. Lemma 6 bounds the query complexity of k-δER. When
R ≥ log∗k

δ
(n), our algorithm can achieve the optimal query complexity using just log

∗
k
δ
(n) rounds.

Combining Lemma 5 and 6, Theorem 2 follows.

Lemma 6. If Q ≥ 57
ǫ2

, with target number of rounds 1 ≤ R ≤ log
∗
k
δ
(n), Algorithm 2 uses

O ( n
ǫ2
(ilog(R)k

δ

(n) + log(k/δ))) samples.

3 Exact Top-k Arm Identification

Here we solve exact-top-k to identify exact top-k arms. Our algorithm uses the Exponential-Gap-
Elimination algorithm(e.g., [13, 14, 8]) as a framework, and uses Algorithm 1 as a component.
Specifically, we replace the Median Elimination Algorithm used in [13, 14, 8] by Algorithm 1 and
then prove the newly algorithms satisfies Theorem 3. Here, we use [13] as an example. In [13], it
has three subroutines, called PAC-Best-k, EstMean-Large, EstMean-Small. We replace all of these
subroutines by Algorithm 1, to get our algorithm for exact-top-k, denoted as Algorithm 4. In [13],
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Figure 1: Query cost of PAC best arm selection.
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Figure 2: Query cost of PAC top-k arm selection.

it is proved that the query complexity is no worse than O (∑n
i=1∆

−2
i ⋅ log

k⋅log∆−1i
δ
). Combining

Lemma 7 and 8, we get Theorem 3. The proofs are in Appendix B.

Lemma 7 ([13], Theorem 1.2). Algorithm 4 returns the correct answer with probability at least 1− δ

and takes O (∑n
i=1∆

−2
i ⋅ log

k⋅log∆−1i
δ
) samples.

Lemma 8. Algorithm 4 runs in O(log∗k
δ
(n) ⋅ log∆−1k ) rounds.

4 Experiments

4.1 Experimental Results for PAC Top-k Identification

For PAC top-k arms, we compare k-δE and k-δER with median elimination method ME-AS [16].
When k = 1, we denote k-δE and k-δER, as δE and δER respectively, and compare them with the best
arm algorithm ME [5]. We do not experimentally compare to [4] since there is no prior knowledge
of ∆k in this paper. Note that ME-AS is designed for relative error. To make a fair comparison,
given the absolute error bound ǫ, we transform it to ǫ/θ1, where θ1 is the largest mean in the given
bandit. ǫ/θ1 is used as the equivalent relative error bound in ME-AS. As proved in Lemma 1, without
compromising correctness, we can adjust the elimination indicator in k-δE (Line 10 in Algorithm 1).
We change 3/4ǫ to 1/2ǫ and set Q to be 8

ǫ2
in our implementation, to gain even better performance.

Without loss of generality, we test our algorithms and competitors on arms following independent
Bernoulli distributions with various means. We set the number of total arms to be n = 2000. We test
the methods on three synthetic datasets, as follows:

• Uniform: θi ∼ Unif[0,1]. The mean of arms, θi, are uniformly distributed in [0,1].
• Normal: θi ∼ TN(0.5,0.2). Each θi is generated from a truncated normal distribution with

mean 0.5, the standard deviation 0.2 and the support [0,1].
• Segment: θi = 0.5 for i = 1,⋯, k and θi = 0.4 for i = k + 1,⋯, n.

Default parameter values are set as: δ = 0.1, and R = 2. For each setting, the results are averaged over
100 repeated runs. As shown later, ME-AS can be very costly and takes too long time to obtain their
average performance over 100 runs, so we terminate them when time is up and report the average
obtained. We vary ǫ from 0.01 to 0.1, while keeping other parameters unchanged.
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Algorithm Uniform Normal Segment

k = 1
ME 11 11 11
δE 2.2 3.4 3.9
δER 2 2 2

k = 20
ME-AS 6 6 6
k-δE 2.1 3.0 3.8
k-δER 2 2 2

Table 4: Number of rounds performed.

Dataset Algorithm Rounds Query Cost

Normal
EG-δE 21 1.4 × 108

[8] 36 6.7 × 109
[17] 0.9 × 108 0.9 × 108

Uniform
EG-δE 27 2.8 × 109

[8] 59 1.2 × 1011
[17] 2.4 × 109 2.4 × 109

Segment
EG-δE 6 5.6 × 107

[8] 24 1.3 × 1010
[17] 2.2 × 108 2.2 × 108

Table 5: Exact top-k arms: rounds and query cost.

For the best arm selection (k = 1), Figure 1 reports the query cost (i.e., total number of pulls) for
δE, δER, and ME on the three datasets. Both δE and δER outperform ME significantly for all the ǫ
values on the three datasets. δE is about 100 times faster than ME, while δER is about 10 times faster
than ME. δE is faster than δER since δER has hard round limit R = 2, while δE does not has such
constraint. The first row of Table 4 shows the number of rounds actually used by each method. δER
strictly uses only two rounds limited by R, and δE needs slightly more rounds, while ME requires 11
rounds that is several times more. For the top-k arm selection (k = 20), Figure 2 reports the query
cost for k-δE, k-δER, and ME-AS when varying ǫ. k-δER is about 100 times faster than ME-AS,
and k-δE is about 1000 times faster. The second row of Table 4 shows the number of rounds used
per method. Our methods use far fewer rounds. In summary, our k-δE, k-δER outperform ME and
ME-AS with a huge performance gap.

4.2 Experimental Results for Exact Top-k Arm Identification

We evaluate our algorithm for exact top-k arm identification. Our algorithm choose [8] as framework,
since [14, 13] only focus on theory part and have big constants. We call our algorithm EG-δE
(Exponential-Gap + δE), and compare it with Elimination based [8] and UCB based [17] algorithms.
Default parameter is set as: δ = 0.1. We set [17]’s parameters following their experimental setting.
Other experimental settings are same as the PAC-top-k problems.

Table 5 reports the query and round cost for different methods. Compare with [8], EG-δE uses fewer
rounds and is up to 250 times faster than [8] with respect to query cost. Compare with [17], EG-δE
uses significantly fewer rounds while keeps the query cost on same order.

5 Related Work

Instance-independent arm selection. Top-k arm selection is first studied under the setting of
instance-independent. All such existing works [5, 18, 6, 16, 3, 14] are designed for worst case query
complexity, and need Θ(log n

k
) rounds, which is inferior to ours. Median Elimination [5] finds the

best arm (when k = 1) with query complexity O( n
ǫ2
log 1

δ
) under PAC bound, matching the lower

bound in [18]. Our top-k algorithms can be easily handle best arm selection by simply setting k = 1.
We use the same top-k arm definition as [16], which requires that, with high probability, the selected
ith-top arm has mean greater than θi∗ − ǫ, for all i ∈ [1, k], where θi∗ is ith largest mean in the whole
bandit. Explore-k metric is studied in [6]: with high probability, all the k selected arms have mean
greater than θk∗ − ǫ, where θk∗ is kth largest mean in the whole bandit. Our metric is tighter than
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Explore-k metric, and thus our algorithms can also apply to solve Explore-k problem. Another metric
was considered in [3], where the identified k arms can have at most kǫ regret in total. [14] studies
multi-armed bandit problem under matroid constraints. All these works are elimination based.

Instance-dependent arm selection. The query complexity of instance-optimal algorithms (e.g.,
[4, 7, 13, 15, 8, 10, 9]) is closely tied to the bandit instance and is better than the worst case
complexity for ‘easy’ bandit instances. Some of them [7, 13, 15, 8] are elimination-based, and use
instance-independent algorithms like [6] and [5] as a sub-procedure to eliminate the arms. Due to
the usage of instance-independent algorithms, in the worst case, each iteration of these instance-
dependent algorithms needs logn rounds. Thus the total round complexity is O(logn ⋅ log∆−1k ).
Another instance-dependent approach is based on upper or lower confidence bounds (UCB or LUCB),
e.g., [10] [9]. With respect to query complexity, UCB methods require a logn factor, while it is log k
in the lower bound. For round complexity, UCB methods need a huge number of rounds since their
round complexity is proportional to the query complexity due to their nature of fully adaptiveness.

Variant settings on limited rounds. Under the delayed feedback setting, the reward of pulling an
arm in round τ is delayed to be shown in later round τ + t [19, 20]. Our methods can simulate this
setting when taking an appropriately high value of t. Most of the existing works focus on regret
minimization rather than top-k arms. Some works [11, 21, 22] investigate the batches arm problem.
[11] only considers the regret minimization. [21] only allows to pull an arm once per round; the
number of rounds required is Ω(logn). In [22], within a round, there are limits for both the number
of total pulls and the number of pulls per arm. Its rounds in the worst case is at least Ω(logn).
6 Conclusion

We study the problems of top-k arm selection in adaptive round model, and propose algorithms
that achieve the near-optimal query complexity and match the lower bound of round complexity. In
practice, our algorithms outperform existing methods in terms of query cost and round complexity.
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