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ABSTRACT

Graph neural networks (GNNs) have been widely used for representation learning
on graph data. However, there is limited understanding on how much performance
GNNs actually gain from graph data. This paper introduces a context-surrounding
GNN framework and proposes two smoothness metrics to measure the quantity
and quality of information obtained from graph data. A new GNN model, called
CS-GNN, is then designed to improve the use of graph information based on the
smoothness values of a graph. CS-GNN is shown to achieve better performance
than existing methods in different types of real graphs.

1 INTRODUCTION

Graphs are powerful data structures that allow us to easily express various relationships (i.e., edges)
between objects (i.e., nodes). In recent years, extensive studies have been conducted on GNNs for
tasks such as node classification and link predication. GNNs utilize the relationship information in
graph data and significant improvements over traditional methods have been achieved on benchmark
datasets (Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Xu et al., 2019;
Hou et al., 2019). Such breakthrough results have led to the exploration of using GNNs and their
variants in different areas such as computer vision (Satorras & Estrach, 2018; Marino et al., 2017),
natural language processing (Peng et al., 2018; Yao et al., 2019), chemistry (Duvenaud et al., 2015),
biology (Fout et al., 2017), and social networks (Wang et al., 2018). Thus, understanding why
GNNs can outperform traditional methods that are designed for Euclidean data is important. Such
understanding can help us analyze the performance of existing GNN models and develop new GNN
models for different types of graphs.

In this paper, we make two main contributions: (1) two graph smoothness metrics to help understand
the use of graph information in GNNs, and (2) a new GNN model that improves the use of graph
information using the smoothness values. We elaborate the two contributions as follows.

One main reason why GNNs outperform existing Euclidean-based methods is because rich informa-
tion from the neighborhood of an object can be captured. GNNs collect neighborhood information
with aggregators (Zhou et al., 2018), such as the mean aggregator that takes the mean value of neigh-
bors’ feature vectors (Hamilton et al., 2017), the sum aggregator that applies summation (Duvenaud
et al., 2015), and the attention aggregator that takes the weighted sum value (Velickovic et al., 2018).
Then, the aggregated vector and a node’s own feature vector are combined into a new feature vector.
After some rounds, the feature vectors of nodes can be used for tasks such as node classification.
Thus, the performance improvement brought by graph data is highly related to the quantity and
quality of the neighborhood information. To this end, we propose two smoothness metrics on node
features and labels to measure the quantity and quality of neighborhood information of nodes. The
metrics are used to analyze the performance of existing GNNs on different types of graphs.

In practice, not all neighbors of a node contain relevant information w.r.t. a specific task. Thus,
neighborhood provides both positive information and negative disturbance for a given task. Simply
aggregating the feature vectors of neighbors with manually-picked aggregators (i.e., users choose
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a type of aggregator for different graphs and tasks by trial or by experience) often cannot achieve
optimal performance. To address this problem, we propose a new model, CS-GNN, which uses the
smoothness metrics to selectively aggregate neighborhood information to amplify useful information
and reduce negative disturbance. Our experiments validate the effectiveness of our two smoothness
metrics and the performance improvements obtained by CS-GNN over existing methods.

2 MEASURING THE USEFULNESS OF NEIGHBORHOOD INFORMATION

We first introduce a general GNN framework and three representative GNN models, which show
how existing GNNs aggregate neighborhood information. Then we propose two smoothness metrics
to measure the quantity and quality of the information that nodes obtain from their neighbors.

2.1 GNN FRAMEWORK AND MODELS

The notations used in this paper, together with their descriptions, are listed in Appendix A. We use
G = {V, E} to denote a graph, where V and E represent the set of nodes and edges of G. We use
ev,v′ ∈ E to denote the edge that connects nodes v and v′, and Nv = {v′ : ev,v′ ∈ E} to denote the
set of neighbors of a node v ∈ V . Each node v ∈ V has a feature vector xv ∈ X with dimension d.
Consider a node classification task, for each node v ∈ V with a class label yv , the goal is to learn
a representation vector hv and a mapping function f(·) to predict the class label yv of node v, i.e.,
ŷv = f(hv) where ŷv is the predicted label.

Table 1: Neighborhood aggregation schemes

Models Aggregation and combination functions for round k (1 ≤ k ≤ K)

General GNN framework h
(k)
v = COMBINE(k)

({
h
(k−1)
v ,AGGREGATE(k)

(
{h(k−1)v′ : v′ ∈ Nv}

)})
GCN h

(k)
v = A

(∑
v′∈Nv∪{v}

1√
(|Nv|+1)·(|Nv′ |+1)

·W (k−1) · h(k−1)v′

)
GraphSAGE h

(k)
v = A

(
W (k−1) ·

[
h
(k−1)
v

∣∣∣∣AGGREGATE
(
{h(k−1)v′ , v′ ∈ Nv}

)])
GAT h

(k)
vi = A

(∑
vj∈Nvi

∪{vi} a
(k−1)
i,j ·W (k−1) · h(k−1)vj

)

GNNs are inspired by the Weisfeiler-Lehman test (Weisfeiler & Lehman, 1968; Shervashidze et al.,
2011), which is an effective method for graph isomorphism. Similarly, GNNs utilize a neighborhood
aggregation scheme to learn a representation vector hv for each node v, and then use neural networks
to learn a mapping function f(·). Formally, consider the general GNN framework (Hamilton et al.,
2017; Zhou et al., 2018; Xu et al., 2019) in Table 1 with K rounds of neighbor aggregation. In
each round, only the features of 1-hop neighbors are aggregated, and the framework consists of two
functions, AGGREGATE and COMBINE. We initialize h(0)v = xv . After K rounds of aggregation,
each node v ∈ V obtains its representation vector h(K)

v . We use h(K)
v and a mapping function f(·),

e.g., a fully connected layer, to obtain the final results for a specific task such as node classification.

Many GNN models have been proposed. We introduce three representative ones: Graph Convolu-
tional Networks (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and Graph
Attention Networks (GAT) (Velickovic et al., 2018). GCN merges the combination and aggregation
functions, as shown in Table 1, where A(·) represents the activation function and W is a learnable
parameter matrix. Different from GCN, GraphSAGE uses concatenation ‘||’ as the combination
function, which can better preserve a node’s own information. Different aggregators (e.g., mean,
max pooling) are provided in GraphSAGE. However, GraphSAGE requires users to choose an ag-
gregator to use for different graphs and tasks, which may lead to sub-optimal performance. GAT
addresses this problem by an attention mechanism that learns coefficients of neighbors for aggrega-
tion. With the learned coefficients a(k−1)i,j on all the edges (including self-loops), GAT aggregates
neighbors with a weighted sum aggregator. The attention mechanism can learn coefficients of neigh-
bors in different graphs and achieves significant improvements over prior GNN models.
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2.2 GRAPH SMOOTHNESS METRICS

GNNs usually contain an aggregation step to collect neighboring information and a combination
step that merges this information with node features. We consider the context cv of node v as the
node’s own information, which is initialized as the feature vector xv of v. We use sv to denote
the surrounding of v, which represents the aggregated feature vector computed from v’s neighbors.
Since the neighborhood aggregation can be seen as a convolution operation on a graph (Defferrard
et al., 2016), we generalize the aggregator as weight linear combination, which can be used to
express most existing aggregators. Then, we can re-formulate the general GNN framework as a
context-surrounding framework with two mapping functions f1(·) and f2(·) in round k as:

c(k)vi = f1(c(k−1)vi , s(k−1)vi ), s(k−1)vi = f2(
∑

vj∈Nvi

a
(k−1)
i,j · c(k−1)vj ). (1)

From equation (1), the key difference between GNNs and traditional neural-network-based methods
for Euclidean data is that GNNs can integrate extra information from the surrounding of a node into
its context. In graph signal processing (Ortega et al., 2018), features on nodes are regarded as signals
and it is common to assume that observations contain both noises and true signals in a standard
signal processing problem (Rabiner & Gold, 1975). Thus, we can decompose a context vector into
two parts as c(k)vi = c̆

(k)
vi + n̆

(k)
vi , where c̆(k)vi is the true signal and n̆(k)vi is the noise.

Theorem 1. Assume that the noise n̆
(k)
vi follows the same distribution for all nodes. If the

noise power of n̆(k)vi is defined by its variance σ2, then the noise power of the surrounding input∑
vj∈Nvi

a
(k−1)
i,j · c(k−1)vj is

∑
vj∈Nvi

(a
(k−1)
i,j )2 · σ2.

The proof can be found in Appendix B. Theorem 1 shows that the surrounding input has less noise
power than the context when a proper aggregator (i.e., coefficient a(k−1)i,j ) is used. Specifically, the
mean aggregator has the best denoising performance and the pooling aggregator (e.g., max-pooling)
cannot reduce the noise power. For the sum aggregator, where all coefficients are equal to 1, the
noise power of the surrounding input is larger than that of the context.

2.2.1 FEATURE SMOOTHNESS

We first analyze the information gain from the surrounding without considering the noise. In the ex-
treme case when the context is the same as the surrounding input, the surrounding input contributes
no extra information to the context. To quantify the information obtained from the surrounding, we
present the following definition based on information theory.
Definition 2 (Information Gain from Surrounding). For normalized feature space Xk = [0, 1]dk , if∑

vj∈Nvi
a
(k)
i,j = 1, the feature space of

∑
vj∈Nvi

a
(k)
i,j · c̆

(k)
vj is also in Xk = [0, 1]dk . The probability

density function (PDF) of c̆(k)vj over Xk is defined as C(k), which is the ground truth and can be
estimated by nonparametric methods with a set of samples, where each sample point c̆(k)vi is sam-
pled with probability |Nvi |/2|E|. Correspondingly, the PDF of

∑
vj∈Nvi

a
(k)
i,j · c̆

(k)
vj is S(k), which

can be estimated with a set of samples {
∑

vj∈Nvi
a
(k)
i,j · c̆

(k)
vj }, where each point is sampled with

probability |Nvi |/2|E|. The information gain from the surrounding in round k can be computed by
Kullback–Leibler divergence (Kullback & Leibler, 1951) as

DKL(S(k)||C(k)) =

∫
Xk

S(k)(x) · log
S(k)(x)

C(k)(x)
dx.

The Kullback–Leibler divergence is a measure of information loss when the context distribution is
used to approximate the surrounding distribution (Kurt, 2017). Thus, we can use the divergence to
measure the information gain from the surrounding into the context of a node. When all the context
vectors are equal to their surrounding inputs, the distribution of the context is totally the same with
that of the surrounding. In this case, the divergence is equal to 0, which means that there is no extra
information that the context can obtain from the surrounding. On the other hand, if the context and
the surrounding of a node have different distributions, the divergence value is strictly positive. Note
that in practice, the ground-truth distributions of the context and surrounding signals are unknown.
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In addition, for learnable aggregators, e.g., the attention aggregator, the coefficients are unknown.
Thus, we propose a metric λf to estimate the divergence. Graph smoothness (Zhou & Schölkopf,
2004) is an effective measure of the signal frequency in graph signal processing (Rabiner & Gold,
1975). Inspired by that, we define the feature smoothness on a graph.

Definition 3 (Feature Smoothness). Consider the condition of the first round, where c(0)v = xv , we
define the feature smoothness λf over normalized space X = [0, 1]d as

λf =

∣∣∣∣∣∣∑v∈V

(∑
v′∈Nv

(xv − xv′)
)2∣∣∣∣∣∣

1

|E| · d
,

where || · ||1 is the Manhattan norm.

According to Definition 3, a larger λf indicates that the feature signal of a graph has higher fre-
quency, meaning that the feature vectors xv and xv′ are more likely dissimilar for two connected
nodes v and v′ in the graph. In other words, nodes with dissimilar features tend to be connected.
Intuitively, for a graph whose feature sets have high frequency, the context of a node can obtain
more information gain from its surrounding. This is because the PDFs (given in Definition 2) of
the context and the surrounding have the same probability but fall in different places in space X .
Formally, we state the relation between λf and the information gain from the surrounding in the
following theorem. For simplicity, we let X = X0, d = d0, C = C(0) and S = S(0).
Theorem 4. For a graph G with the set of features X in space [0, 1]d and using the mean aggre-
gator, the information gain from the surrounding DKL(S||C) is positively correlated to its feature
smoothness λf , i.e., DKL(S||C) ∼ λf . In particular, DKL(S||C) = 0 when λf = 0.

The proof can be found in Appendix C. According to Theorem 4, a large λf means that a GNN model
can obtain much information from graph data. Note that DKL(S||C) here is under the condition
when using the mean aggregator. Others aggregators, e.g., pooling and weight could have different
DKL(S||C) values, even if the feature smoothness λf is a constant.

2.2.2 LABEL SMOOTHNESS

After quantifying the information gain with λf , we next study how to measure the effectiveness of
information gain. Consider the node classification task, where each node v ∈ V has a label yv , we
define vi ' vj if yvi = yvj . The surrounding input can be decomposed into two parts based on the
node labels as∑

vj∈Nvi

a
(k−1)
i,j c̆(k−1)vj =

∑
vj∈Nvi

I(vi'vj)a(k−1)i,j c̆(k−1)vj +
∑

vj∈Nvi

(1− I(vi'vj))a(k−1)i,j c̆(k−1)vj ,

where I(·) is an indicator function. The first term includes neighbors whose label yvj is the same as
yvi , and the second term represents neighbors that have different labels. Assume that the classifier
has good linearity, the label of the surrounding input is shifted to

∑
vj∈Nvi

a
(k−1)
i,j · yvj (Zhang

et al., 2018), where the label yvj is represented as a one-hot vector here. Note that in GNNs, even
if the context and surrounding of vi are combined, the label of vi is still yvi . Thus, for the node
classification task, it is reasonable to consider that neighbors with the same label contribute positive
information and other neighbors contribute negative disturbance.
Definition 5 (Label Smoothness). To measure the quality of surrounding information, we define the
label smoothness as

λl =
∑

evi,vj∈E

(
1− I(vi ' vj)

)
/|E|.

According to Definition 5, a larger λl implies that nodes with different labels tend to be connected
together, in which case the surrounding contributes more negative disturbance for the task. In other
words, a small λl means that a node can gain much positive information from its surrounding. To
use λl to qualify the surrounding information, we require labeled data for the training. When some
graphs do not have many labeled nodes, we may use a subset of labeled data to estimate λl, which is
often sufficient for obtaining good results as we show for the BGP dataset used in our experiments.

In summary, we propose a context-surrounding framework, and introduce two smoothness metrics
to estimate how much information that the surrounding can provide (i.e., larger λf means more
information) and how much information is useful (i.e., smaller λl means more positive information)
for a given task on a given graph.
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3 CONTEXT-SURROUNDING GRAPH NEURAL NETWORKS

In this section, we present a new GNN model, called CS-GNN, which utilizes the two smoothness
metrics to improve the use of the information from the surrounding.

3.1 THE USE OF SMOOTHNESS FOR CONTEXT-SURROUNDING GNNS

The aggregator used in CS-GNN is weighted sum and the combination function is concatenation.
To compute the coefficients for each of the K rounds, we use a multiplicative attention mechanism
similar to Vaswani et al. (2017). We obtain 2|E| attention coefficients by multiplying the leveraged
representation vector of each neighbor of a node with the node’s context vector, and applying the
softmax normalization. Formally, each coefficient a(k)i,j in round k is defined as follows:

a
(k)
i,j =

exp
(
A(p

(k)
vi · q

(k)
i,j )
)∑

vl∈Nvi
exp

(
A(p

(k)
vi · q

(k)
i,l )
) , (2)

where p(k)vi = (W
(k)
p ·h(k)vi )>, q(k)i,j = p

(k)
vi −W

(k)
q ·h(k)vj , W (k)

p and W (k)
q are two learnable matrices.

To improve the use of the surrounding information, we utilize feature and label smoothness as fol-
lows. First, we use λl to drop neighbors with negative information, i.e., we set a(k)i,j = 0 if a(k)i,j

is less than the value of the r-th (r = d2|E|λle) smallest attention coefficient. As these neighbors
contain noisy disturbance to the task, dropping them is helpful to retain a node’s own features.

Second, as λf is used to estimate the quantity of information gain, we use it to set the dimension
of p(k)vi as ddk ·

√
λfe, which is obtained empirically to achieve good performance. Setting the

appropriate dimension is important because a large dimension causes the attention mechanism to
fluctuate while a small one limits its expressive power.

Third, we compute the attention coefficients differently from GAT (Velickovic et al., 2018). GAT
uses the leveraged representation vectorW (k) ·h(k)vj to compute the attention coefficients. In contrast,
in equation (2) we use q(k)i,j , which is the difference of the context vector of node vi and the leveraged

representation vector of neighbor vj . The definition of q(k)i,j is inspired by the fact that a larger λf
indicates that the features of a node and its neighbor are more dissimilar, meaning that the neighbor
can contribute greater information gain. Thus, using q(k)i,j , we obtain a larger/smaller a(k)i,j when the
features of vi and its neighbor vj are more dissimilar/similar. For example, if the features of a node
and its neighbors are very similar, then q(k)i,j is small and hence a(k)i,j is also small.

Using the attention coefficients, we perform K rounds of aggregations with the weighted sum ag-
gregator to obtain the representation vectors for each node as

h(k)vi = A
(
W

(k)
l ·

(
h(k−1)vi

∣∣∣∣∑
vj∈Nvi

a
(k−1)
i,j · h(k−1)vj

))
,

where W (k)
l is a learnable parameter matrix to leverage feature vectors. Then, for a task such as

node classification, we use a fully connected layer to obtain the final results ŷvi
= A(W · h(K)

vi ),
where W is a learnable parameter matrix and ŷvi is the predicted classification result of node vi.

3.2 SIDE INFORMATION ON GRAPHS

Real-world graphs often contain side information such as attributes on both nodes and edges, local
topology features and edge direction. We show that CS-GNN can be easily extended to include
rich side information to improve performance. Generally speaking, side information can be divided
into two types: context and surrounding. Usually, the side information attached on nodes belongs
to the context and that on edges or neighbors belongs to the surrounding. To incorporate the side
information into our CS-GNN model, we use the local topology features as an example.

We use a method inspired by GraphWave (Donnat et al., 2018), which uses heat kernel in spectral
graph wavelets to simulate heat diffusion characteristics as topology features. Specifically, we con-
struct |V| subgraphs, G = {Gv1 , Gv2 ..., Gv|V|}, from a graph G = {V, E}, where Gvi is composed
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of v and its neighbors within K hops (usually K is small, K = 2 as default in our algorithm), as
well as the connecting edges. For each Gvi ∈ G, the local topology feature vector tvi of node vi is
obtained by a method similar to GraphWave.

Since the topology feature vector tvi itself does not change during neighborhood aggregation, we
do not merge it into the representation vector. In the attention mechanism, we regard tvi as a part of
the context information by incorporating it into p(k)vi = (W

(k)
p · (h(k)vi ||tvi))>. And in the last fully

connected layer, we use tvi to obtain the predicted class label ŷvi = A(W · (h(K)
vi ||tvi)).

3.3 COMPARISON WITH EXISTING GNN MODELS

The combination functions of existing GNNs are given in Table 1. The difference between addi-
tive combination and concatenation is that concatenation can retain a node’s own feature. For the
aggregation functions, different from GCN and GraphSAGE, GAT and CS-GNN improve the per-
formance of a task on a given graph by an attention mechanism to learn the coefficients. However,
CS-GNN differs from GAT in the following ways. First, the attention mechanism of CS-GNN fol-
lows multiplicative attention, while GAT follows additive attention. Second, CS-GNN’s attention
mechanism utilizes feature smoothness and label smoothness to improve the use of neighborhood
information as discussed in Section 3.1. This is unique in CS-GNN and leads to significant perfor-
mance improvements over existing GNNs (including GAT) for processing some challenging graphs
(to be reported in Section 4.2). Third, CS-GNN uses side information such as local topology features
to further utilize graph structure as discussed in Section 3.2.

4 EXPERIMENTAL EVALUATION

We first compare CS-GNN with representative methods on the node classification task. Then we
evaluate the effects of different feature smoothness and label smoothness on the performance of
neural networks-based methods.

4.1 BASELINE METHODS, DATASETS, AND SETTINGS

Baseline. We selected three types of methods for comparison: topology-based methods, feature-
based methods, and GNN methods. For each type, some representatives were chosen. The topology-
based representatives are struc2vec (Ribeiro et al., 2017), GraphWave (Donnat et al., 2018) and La-
bel Propagation (Zhu & Ghahramani, 2002), which only utilize graph structure. struc2vec learns la-
tent representations for the structural identity of nodes by random walk (Perozzi et al., 2014), where
node degree is used as topology features. GraphWave is a graph signal processing method (Ortega
et al., 2018) that leverages heat wavelet diffusion patterns to represent each node and is capable of
capturing complex topology features (e.g., loops and cliques). Label Propagation propagates labels
from labeled nodes to unlabeled nodes. The feature-based methods are Logistic Regression and
Multilayer Perceptron (MLP), which only use node features. The GNN representatives are GCN,
GraphSAGE and GAT, which utilize both graph structure and node features.

Datasets. We used five real-world datasets: three citation networks (i.e., Citeseer, Cora (Sen et al.,
2008) PubMed (Namata et al., 2012)), one computer co-purchasing network in Amazon (McAuley
et al., 2015), and one Border Gateway Protocol (BGP) Network (Luckie et al., 2013). The BGP
network describes the Internet’s inter-domain structure and only about 16% of the nodes have labels.
Thus, we created two datasets: BGP (full), which is the original graph, and BGP (small), which was
obtained by removing all unlabeled nodes and edges connected to them. The details (e.g., statistics
and descriptions) of the datasets are given in Appendix D.

Settings. We use F1-Micro score to measure the performance of each method for node classifica-
tion. To avoid under-fitting, 70% nodes in each graph are used for training, 10% for validation and
20% for testing. For each baseline method, we set their the parameters either as their default values
or the same as in CS-GNN. For the GNNs and MLP, the number of hidden layers (rounds) was set
as K = 2 to avoid over-smoothing. More detailed settings are given in Appendix E.

Note that GraphSAGE allows users to choose an aggregator. We tested four aggregators for Graph-
SAGE (details in Appendix F) and report the best result for each dataset in our experiments below.
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4.2 PERFORMANCE RESULTS OF NODE CLASSIFICATION

Smoothness. Table 2 reports the two smoothness values of each dataset. Amazon has a much larger
λf value (i.e., 89.67 × 10−2) than the rest, while PubMed has the smallest λf value. This implies
that the feature vectors of most nodes in Amazon are dissimilar and conversely for PubMed. For
label smoothness λl, BGP (small) has a fairly larger value (i.e., 0.71) than the other datasets, which
means that 71% of connected nodes have different labels. Since BGP (full) contains many unlabeled
nodes, we used BGP (small)’s λl as an estimation.

Table 2: Smoothness values

Metrics
Smoothness value Dataset

Citeseer Cora PubMed Amazon BGP (small) BGP (full)

Feature Smoothness λf (10−2) 2.76 4.26 0.91 89.67 7.46 5.90
Label Smoothness λl 0.26 0.19 0.25 0.22 0.71 ≈0.71

F1-Micro scores. Table 3 reports the F1-Micro scores of the different methods for the task of
node classification. The F1-Micro scores are further divided into three groups. For the topology-
based methods, Label Propagation has relatively good performance for the citation networks and the
co-purchasing Amazon network, which is explained as follows. Label Propagation is effective in
community detection and these graphs contain many community structures, which can be inferred
from their small λl values. This is because a small λl value means that many nodes have the same
class label as their neighbors, while nodes that are connected together and in the same class tend to
form a community. In contrast, for the BGP graph in which the role (class) of the nodes is mainly
decided by topology features, struc2vec and GraphWave give better performance. GraphWave ran
out of memory (512 GB) on the larger graphs as it is a spectrum-based method. For the feature-based
methods, Logistic Regression and MLP have comparable performance on all the graphs.

For the GNN methods, GCN and GraphSAGE have comparable performance except on the PubMed
and BGP graphs, and similar results are observed for GAT and CS-GNN. The main reason is that
PubMed has a small λf , which means that a small amount of information gain is obtained from the
surrounding, and BGP has large λl, meaning that most information obtained from the surrounding
is negative disturbance. Under these two circumstances, using concatenation as the combination
function allows GraphSAGE and CS-GNN to retain a node’s own features. This is also why Logistic
Regression and MLP also achieve good performance on PubMed and BGP because they only use
the node features. However, for the other datasets, GAT and CS-GNN have considerably higher
F1-Micro scores than all the other methods. Overall, CS-GNN is the only method that achieves
competitive performance on all the datasets.

Table 3: Node classification results

Alg.
F1-Micro(%) Dataset

Citeseer Cora PubMed Amazon BGP (small) BGP (full)

struc2vec 30.98 41.34 47.60 39.86 48.40 49.66
GraphWave 28.12 31.66 OOM 37.33 50.26 OOM
Label Propagation 71.07 86.26 78.52 88.90 34.05 36.82
Logistic Regression 69.96 76.62 87.97 85.89 65.34 62.41
MLP 70.51 73.40 87.94 86.46 67.08 67.00
GCN 71.27 80.92 80.31 91.17 51.26 54.46
GraphSAGE 69.47 83.61 87.57 90.78 65.29 64.67
GAT 74.69 90.68 81.65 91.75 47.44 58.87
CS-GNN (w/o LTF) 73.58 90.38 89.42 92.48 66.20 68.83
CS-GNN 75.71 91.26 89.53 92.77 66.39 68.76

We further examine the effects of local topology features (LTF) on the performance. We report the
results of CS-GNN without using LTF, denoted as CS-GNN (w/o LTF) in Table 3. The results show
that using LTF does not significantly improve the performance of CS-GNN. However, the results
do reveal the effectiveness of the smoothness metrics in CS-GNN, because the difference between

7



Published as a conference paper at ICLR 2020

CS-GNN (w/o LTF) and GAT is mainly in the use of the smoothness metrics in CS-GNN’s attention
mechanism. As shown in Table 3, CS-GNN (w/o LTF) still achieves significant improvements over
GAT on PubMed (by improving the gain of positive information) and BGP (by reducing negative
noisy information from the neighborhood).

Improvements over non-GNN methods. We also evaluate whether GNNs are always better meth-
ods, in other words, whether graph information is always useful. Table 4 presents the improve-
ments of existing GNNs (i.e., GCN, GraphSAGE, GAT) and CS-GNN over the topology-based and
feature-based methods, respectively. The improvements (in %) are calculated based on the average
F1-Micro scores of each group of methods. The results show that using the topology alone, even if
the surrounding neighborhood is considered, is not sufficient. This is true even for the BGP graphs
for which the classes of nodes are mainly determined by the graph topology. Compared with feature-
based methods, GNN methods gain more information from the surrounding, which is converted into
performance improvements. However, for graphs with small λf and large λl, existing GNN meth-
ods fail to obtain sufficient useful information or obtain too much negative noisy information, thus
leading to even worse performance than purely feature-based methods. In contrast, CS-GNN utilizes
smoothness to increase the gain of positive information and reduce negative noisy information for a
given task, thus achieving good performance on all datasets.

Table 4: Improvements of GNNs over non-GNN methods

Alg.
Improvement (%) Dataset

Citeseer Cora PubMed Amazon BGP (small) BGP (full)

Existing GNNs vs. topology-based methods 65% 60% 32% 65% 23% 37%
CS-GNN vs. topology-based methods 74% 72% 42% 68% 50% 59%
Existing GNNs vs. feature-based methods 2% 13% -5% 6% -17% -9%
CS-GNN vs. feature-based methods 8% 22% 2% 8% 0% 6 %

4.3 SMOOTHNESS ANALYSIS

The results in Section 4.2 show that GNNs can achieve good performance by gaining surrounding
information in graphs with large λf and small λl. However, the experiments were conducted on
different graphs and there could be other factors than just the smoothness values of the graphs.
Thus, in this experiment we aim to verify the effects of smoothness using one graph only.
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Figure 1: The effects of smoothness

To adjust λf in a graph, we broadcast the feature vector of each node to its neighbors in rounds.
In each round, when a node receives feature vectors, it updates its feature vector as the mean of its
current feature vector and those feature vectors received, and then broadcast the new feature vector
to its neighbors. If we keep broadcasting iteratively, all node features converge to the same value due
to over-smoothness. To adjust λl, we randomly drop a fraction of edges that connect two nodes with
different labels. The removal of such edges decreases the value of λl and allows nodes to gain more
positive information from their neighbors. We used the Amazon graph for the evaluation because
the graph is dense and has large λf .

8



Published as a conference paper at ICLR 2020

Figure 1 reports the F1-Micro scores of the neural-network-based methods (i.e., MLP and the
GNNs). Figure 1 (left) shows that as we broadcast from 20 to 28 rounds, λf also decreases accord-
ingly. As λf decreases, the performance of the GNN methods also worsens due to over-smoothness.
However, the performance of MLP first improves significantly and then worsens, and becomes the
poorest at the end. This is because the GNN methods can utilize the surrounding information by
their design but MLP cannot. Thus, the broadcast of features makes it possible for MLP to first at-
tain the surrounding information. But after many rounds of broadcast, the effect of over-smoothness
becomes obvious and MLP’s performance becomes poor. The results are also consistent with the
fact that GNN models cannot be deep due to the over-smoothness effect. Figure 1 (right) shows that
when λl decreases, the performance of the GNN methods improves accordingly. On the contrary,
since MLP does not use surrounding information, dropping edges has no effect on its performance.
In summary, Figure 1 further verifies that GNNs can achieve good performance on graphs with large
λf and small λl, where they can obtain more positive information gain from the surrounding.

5 CONCLUSIONS

We studied how to measure the quantity and quality of the information that GNNs can obtain from
graph data. We then proposed CS-GNN to apply the smoothness measures to improve the use of
graph information. We validated the usefulness of our method for measuring the smoothness values
of a graph for a given task and that CS-GNN is able to gain more useful information to achieve
improved performance over existing methods.
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Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, pp. 3837–3845, 2016.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
dings via diffusion wavelets. In SIGKDD, pp. 1320–1329, 2018.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
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A NOTATIONS

The notations used in the paper and their descriptions are listed in Table 5.

Table 5: Notations and their descriptions

Notations Descriptions

G A graph
V The set of nodes in a graph
v/vi Node v/vi in V
E The set of edges in a graph

evi,vj An edge that connects nodes vi and vj
X The node feature space
xv The feature vector of node v

yv/ŷv The ground-truth / predicted class label of node v
Nv The set of neighbors of node v

hv/h
(k)
v The representation vector of node v (in round k)

f(·) A mapping function
W A parameter matrix
A(·) An activation function
a
(k)
i,j The coefficient of node vj to node vi (in round k)
c
(k)
v The context vector of node v (in round k)
c̆
(k)
v The ground-truth context vector of node v (in round k)
n̆
(k)
v The noise on the context vector of node v (in round k)
s
(k)
v The surrounding vector of node v (in round k)
dk The dimension of a representation vector (in round k)
C(k) Probability density function (PDF) estimated by the term c̆

(k)
v (in round k)

S(k) Probability density function (PDF) estimated by the term
∑

vj∈Nvi
a
(k)
i,j · c̆

(k)
v (in round k)

DKL(S||C) The Kullback–Leibler divergence between S and C
λf Feature smoothness
λl Label smoothness
|| Vector concatenation
|| · ||1 Manhattan norm
I(·) An indicator function
a Attention parameters (vector)
tv Topology feature of node v
Gvi A subgraph built based on node vi
G The set of subgraphs Gvi

B PROOF OF THEOREM 1

Proof. We use the variance of n̆(k−1)vj to measure the power of noise. Without loss of generality, we
assume that the signal c̆(k−1)vj is uncorrelated to the noise n̆(k−1)vj and noise is random, with a mean
of zero and constant variance. If we define

Var
(
n̆(k−1)vj

)
= E

[(
n̆(k−1)vj

)2]
= σ2,

then after the weight aggregation, the noise power of
∑

vj∈Nvi
a
(k−1)
i,j · c(k−1)vj is

Var
(∑

vj∈Nvi

a
(k−1)
i,j · n̆(k−1)vj

)
= E

[(∑
vj∈Nvi

a
(k−1)
i,j · n̆(k−1)vj

)2]
=
∑

vj∈Nvi

(
a
(k−1)
i,j σ

)2
= σ2 ·

∑
vj∈Nvi

(
a
(k−1)
i,j

)2
.
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C PROOF OF THEOREM 4

Proof. For simplicity of presentation, let X = X0, d = d0, C = C(0) and S = S(0). For
DKL(S||C), since the PDFs of C and S are unknown, we use a nonparametric way, histogram,
to estimate the PDFs of C and S. Specifically, we uniformly divide the feature space X = [0, 1]d

into rd bins {H1, H2, ...,Hrd}, whose length is 1
r and dimension is d. To simplify the use of no-

tations, we use |Hi|C and |Hi|S to denote the number of samples that are in bin Hi. Thus, we
have

DKL(S||C) ≈ DKL(Ŝ||Ĉ)

=

rd∑
i=1

|Hi|S
2|E|

· log

|Hi|S
2|E|
|Hi|C
2|E|

=
1

2|E|
·

rd∑
i=1

|Hi|S · log
|Hi|S
|Hi|C

=
1

2|E|
·
( rd∑

i=1

|Hi|S · log |Hi|S −
rd∑
i=1

|Hi|S · log |Hi|C
)

=
1

2|E|
·
( rd∑

i=1

|Hi|S · log |Hi|S −
rd∑
i=1

|Hi|S · log (|Hi|S + ∆i)

)
,

where ∆i = |Hi|C − |Hi|S . Regard ∆i as an independent variable, we consider the term∑rd

i=1 |Hi|S · log (|Hi|S + ∆i) with second-order Taylor approximation at point 0 as

rd∑
i=1

|Hi|S · log (|Hi|S + ∆i) ≈
rd∑
i=1

|Hi|S ·
(

log |Hi|S +
ln 2

|Hi|S
·∆i −

ln 2

2(|Hi|S)2
·∆2

i

)
.

Note that the numbers of samples for the context and the surrounding are the same, where we have

rd∑
i=1

|Hi|C =

rd∑
i=1

|Hi|S = 2 · |E|.

Thus, we obtain
rd∑
i=1

∆i = 0.

Therefore, the DKL(Ŝ||Ĉ) can be written as

DKL(S||C) ≈ DKL(Ŝ||Ĉ)

=
1

2|E|
·
( rd∑

i=1

|Hi|S · log |Hi|S −
rd∑
i=1

|Hi|S · log (|Hi|S + ∆i)

)

≈ 1

2|E|

( rd∑
i=1

|Hi|S log |Hi|S −
rd∑
i=1

|Hi|S
(

log |Hi|S +
ln 2

|Hi|S
∆i −

ln 2

2(|Hi|S)2
∆2

i

))

=
1

2|E|
·

rd∑
i=1

(
ln 2

2|Hi|S
∆2

i − ln 2 ·∆i

)

=
ln 2

4|E|
·

rd∑
i=1

∆2
i

|Hi|S
,

which is the Chi-Square distance between |Hi|C and |Hi|S . If we regard |Hi|S as constant, then we
have: if ∆2

i are large, the information gain DKL(S||C) tends to be large. Formally, consider the
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samples of C as {xv : v ∈ V} and the samples of S as { 1
|Nv|

∑
v′∈Nv

xv′ : v ∈ V} with counts |Nv|
of node v, we have the expectation and variance of their distance as

E
[
|Nv| · xv −

∑
v′∈Nv

xv′

]
= 0,

Var
(
|Nv| · xv −

∑
v′∈Nv

xv′

)
= E

[(
|Nv| · xv −

∑
v′∈Nv

xv′
)2] ≥ 0.

For simplicity, for the distribution of the difference between the surrounding and the context, |Nv| ·
xv −

∑
v′∈Nv

xv′ , we consider it as noises on the “expected” signal as the surrounding, 1
|Nv| ·∑

v′∈Nv
xv′ , where the context xv is the “observed” signal. Apparently the power of the noise on

the samples is positively correlated with the difference between their PDFs, which means that a large
Var
(
|Nv| · xv −

∑
v′∈Nv

xv′
)

would introduce a large difference between |Hi|S and |Hi|C . Then,
we obtain

rd∑
i=1

∆2
i

|Hi|S
∼ Var

(
|Nv| · xv −

∑
v′∈Nv

xv′

)
,

then it is easy to obtain

DKL(S||C) ≈ ln 2

4|E|
·

rd∑
i=1

∆2
i

|Hi|S
∼ Var

(
|Nv| · xv −

∑
v′∈Nv

xv′

)
.

Recall the definition of λf , if xvi and xvj are independent, we have

λf =

∣∣∣∣∣∣∑v∈V

(∑
v′∈Nv

(xv − xv′)
)2∣∣∣∣∣∣

1

|E| · d

=

∣∣∣∣∣∣∑v∈V

(
|Nv| · xv −

∑
v′∈Nv

xv′

)2∣∣∣∣∣∣
1

|E| · d

=

∣∣∣∣∣∣Var
(
|Nv| · xv −

∑
v′∈Nv

xv′

)∣∣∣∣∣∣
1

|V| · |E| · d

∼ Var
(
|Nv| · xv −

∑
v′∈Nv

xv′

)
.

Therefore, we obtain

DKL(S||C) ≈ ln 2

4|E|
·

rd∑
i=1

∆2
i

|Hi|S
∼ Var

(
|Nv| · xv −

∑
v′∈Nv

xv′

)
∼ λf .

If λf = 0, we have that all nodes have the same feature vector xv . Obviously, DKL(Ŝ||Ĉ) = 0.

D DATASETS

Table 6: Dataset statistics

Dataset Citeseer Cora PubMed Amazon (computer) BGP (small) BGP (full)

|V| 3,312 2,708 19,717 13,752 10,176 63,977
|E| 4,715 5,429 44,327 245,861 206,799 349,606

Average degree 1.42 2.00 2.25 17.88 20.32 5.46
feature dim. 3,703 1,433 500 767 287 287
classes num. 6 7 3 10 7 7
λf (10−2) 2.7593 4.2564 0.9078 89.6716 7.4620 5.8970

λl 0.2554 0.1900 0.2455 0.2228 0.7131 ≈0.7131

Table 6 presents some statistics of the datasets used in our experiments, including the number of
nodes |V|, the number of edges |E|, the average degree, the dimension of feature vectors, the number
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of classes, the feature smoothness λf and the label smoothness λl. The BGP (small) dataset was
obtained from the original BGP dataset, i.e., BGP (full) in Table 6, by removing all unlabeled nodes
and edges connected to them. Since BGP (full) contains many unlabeled nodes, we used BGP
(small)’s λl as an estimation. As we can see in Table 6, the three citation networks are quite sparse
(with small average degree), while the other two networks are denser. According to the feature
smoothness, Amazon (computer) has much larger λf than that of the others, which means that nodes
with dissimilar features tend to be connected. As for the label smoothness λl, the BGP network has
larger value than that of the others, meaning that connected nodes tend to belong to different classes.
A description of each of these datasets is given as follows.

• Citeseer (Sen et al., 2008) is a citation network of Machine Learning papers that are divided
into 6 classes: {Agents, AI, DB, IR, ML, HCI}. Nodes represent papers and edges model
the citation relationships.

• Cora (Sen et al., 2008) is a citation network of Machine Learning papers that divided into
7 classes: {Case Based, Genetic Algorithms, Neural Networks, Probabilistic Methods, Re-
inforcement Learning, Rule Learning, Theory}. Nodes represent papers and edges model
the citation relationships.

• PubMed (Namata et al., 2012) is a citation network from the PubMed database, which
contains a set of articles (nodes) related to diabetes and the citation relationships (edges)
among them. The node features are composed of TF/IDF-weighted word frequencies, and
the node labels are the diabetes type addressed in the articles.

• Amazon Product (McAuley et al., 2015) is a co-purchasing network derived from the Ama-
zon platform. Nodes are computers and edges connect products that were bought together.
Features are calculated from the product image, and labels are the categories of computers.
We used the processed version by Alex Shchur in GitHub.

• Border Gateway Protocol (BGP) Network (Luckie et al., 2013) describes the Internet’s
inter-domain structure, where nodes represent the autonomous systems and edges are the
business relationships between nodes. The features contain basic properties, e.g., the lo-
cation and topology information (e.g., transit degree), and labels means the types of au-
tonomous systems. We used the dataset that was collected in 2018-12-31 and published in
Center for Applied Internet Data Analysis.

E PARAMETERS

For struc2vec and GraphWave, we used their default settings to obtain the node embeddings for all
nodes since they are unsupervised. For struc2vec, we set their three optimization as “True”. The
embedding dimension of struc2vec is 128 and that of GraphWave is 100. Then based on those
embeddings, we put them in a logistic model implemented by (Perozzi et al., 2014), where the
embeddings of the training set were used to train the logistic model and the embeddings of the test
set were used to obtain the final F1-Micro score. Label Propagation is a semi-supervised algorithm,
where nodes in the training set were regarded as nodes with labels, and those nodes in the validation
set and test set were regarded as unlabeled nodes.

The feature-based methods and GNN methods used the same settings: the batch size was set as
512; the learning rate was set as 0.01; the optimizer was Adam. Except GraphSAGE, which set the
epoch number as 10, all the other methods were implemented with the early stop strategy with the
patience number set as 100. Other parameters were slightly different for different datasets but still
the same for all methods. Specifically, for Citeseer and Cora, the dropout was set as 0.2, and the
weight decay was set as 0.01. And the hidden number was set as 8. For PubMed, the dropout was
set as 0.3, but the weight decay was set as 0. The hidden number was 16. For Amazon (computer),
BGP (small) and BGP (full), the dropout was set as 0.3, and the weight decay was set as 0. The
hidden number was 32. As for GAT and CS-GNN, the attention dropout was set as the same as the
dropout. And the dimension of topology features in CS-GNN was set as 64. Note that the residual
technique introduced in GAT was used for the GNN methods. As for the activation function in
CS-GNN, ReLU was used for feature leveraging and ELU was used for the attention mechanism.
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Table 7: The F1-Micro scores of GraphSAGE with different aggregators

Aggregators

F1-Micro (%) Dataset
Citeseer Cora PubMed Amazon BGP (small) BGP (full)

GCN 71.27 80.92 80.31 91.17 51.26 54.46
GraphSAGE-GCN 68.57 83.61 81.76 88.14 49.64 48.54
GraphSAGE-mean 69.02 82.31 87.42 90.78 64.96 63.76

GraphSAGE-LSTM 69.17 82.50 87.08 90.09 65.29 64.67
GraphSAGE-pool (max) 69.47 82.87 87.57 87.39 65.06 64.24

F THE PERFORMANCE OF GRAPHSAGE WITH DIFFERENT AGGREGATORS

Table 7 reports the F1-Micro scores of GCN and GraphSAGE with four different aggregators: GCN,
mean, LSTM and max-pooling. The results show that for GraphSAGE, except on PubMed and BGP,
the four aggregators achieve comparable performance. The results of GCN and GraphSAGE-GCN
are worse than the others for PubMed and the BGP graphs because of the small information gain
(i.e., small λf ) of PubMed and the large negative disturbance (i.e., large λl) of BGP as reported in
Table 3 and Section 4.2. As explained in Section 3.3, GCN uses additive combination merged with
aggregation, where the features of each node are aggregated with the features of its neighbors. As a
result, GCN has poor performance for graphs with small λf and large λl, because it merges the con-
text with the surrounding with negative information for a given task. This is further verified by the
results of GraphSAGE using the other three aggregators, which still have comparable performance
on all the datasets. In Section 4, we report the best F1-Micro score among these four aggregators for
each dataset as the performance of GraphSAGE.

G THE KULLBACK–LEIBLER DIVERGENCE VS. MUTUAL INFORMATION

We use the Kullback–Leibler Divergence (KLD), instead of using Mutual Information (MI), to mea-
sure the information gain from the neighboring nodes in Section 2.2.1 because of the following
reason. In an information diagram, mutual information I(X;Y ) can be seen as the overlap of two
correlated variables X and Y , which is a symmetric measure. In contrast, DKL(X||Y ) can be seen
as the extra part brought by X to Y , which is a measure of the non-symmetric difference between
two probability distributions. Considering the node classification task, the information contributed
by neighbors and the information contributed to neighbors are different (i.e., non-symmetric). Thus,
we use the KLD instead of MI.

We remark that, although some existing GNN works (Velickovic et al., 2019; Chen et al., 2019) use
MI in their models, their purposes are different from our work. MI can be written as I(X,Y ) =
DKL(P (X,Y )||P (X) × P (Y )), where P (X,Y ) is the joint distribution of X and Y , and P (X),
P (Y ) are marginal distributions of X and Y . From this perspective, we can explain the mutual
information of X and Y as the information loss when the joint distribution is used to approximate
the marginal distributions. However, this is not our purpose in node classification.
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