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ABSTRACT

Determinantal point processes (DPPs) is an effective tool to deliver diversity in
multiple machine learning and computer vision tasks. Under the deep learning
framework, DPP is typically optimized via approximation, which is not straight-
forward and has some conflicts with the diversity requirement. We note, however,
there have been no deep learning paradigms to optimize DPP directly since it
involves matrix inversion that may result in computational instability. This fact
greatly hinders the use of DPP on some specific objective functions where DPP
would otherwise serve as a term to measure the feature diversity. In this paper, we
devise a simple but effective algorithm to optimize the DPP term directly through
expressing with L-ensemble in the spectral domain over the gram matrix, which is
more flexible than learning on parametric kernels. By further taking into account ad-
ditional geometric constraints, our algorithm seeks to generate valid sub-gradients
of the DPP term in cases where the DPP gram matrix is not invertible (no gradients
exist in this case). In this sense, our algorithm can be easily incorporated with
multiple deep learning tasks. Experiments show the effectiveness of our algorithm,
indicating promising performance for practical learning problems.

1 INTRODUCTION

Diversity is desired in multiple machine learning and computer vision tasks (e.g., image hashing
(Chen et al., 2017; Carreira-Perpinán & Raziperchikolaei, 2016), descriptor learning (Zhang et al.,
2017), metric learning (Mishchuk et al., 2017) and video summarization (Sharghi et al., 2018; Liu
et al., 2017)), in which sub-sampled points or learned features need to spread out through a specific
bounded space. Originated from quantum physics, determinantal point processes (DPP) have shown
its power in delivering such properties (Kulesza et al., 2012; Kulesza & Taskar, 2011b). Compared
with other diversity-oriented techniques (e.g., entropy (Zadeh et al., 2017) and orthogonality (Zhang
et al., 2017)), DPP shows its superiority as it incorporates only one single metric and delivers genuine
diversity on any bounded space (Kulesza et al., 2012; Affandi et al., 2013; Gillenwater et al., 2012).
Therefore, DPP has been utilized in a large body of diversity-oriented tasks.

In general, sample points from a DPP tend to distribute diversely within a bounded space A (Kulesza
et al., 2012). Given a positive semi-definite kernel function κ : A × A → R, the probability of a
discrete point set X ⊂ A under a DPP with kernel function κ can be characterized as:

Pκ(X ) ∝ det(LX ) (1)
where L is a |X | × |X | matrix with entry Lij = κ(xi,xj) and xi,xj ∈ X . L is called L-ensemble.
Note that A is a continuous space, whereas X is finite. In the Hilbert space associated with κ, larger
determinant implies larger spanned volume, thus the mapped points tend not to be similar or linearly
dependent.

DPP can be viewed from two perspectives: sampling and learning. A comprehensive introduction
to mathematical fundamentals of DPP for sampling from a discrete space can be found in Kulesza
et al. (2012). Based on this, a line of works has been proposed (Kulesza & Taskar, 2011a; Kang,
2013; Hennig & Garnett, 2016). In this paper, we concentrate on learning DPPs. In learning of DPP,
the term det(L) is typically treated as a singleton diversity measurement and is extended to learning
paradigms on continuous space (Chao et al., 2015; Kulesza & Taskar, 2010; Affandi et al., 2014).
There are generally two lines of strategies to learn DPPs:
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Approximation. This type of methods is to convert DPP into a simpler format which can ease and
stabilize the computation. low-rank approximation proves powerful in easing the computational
burden (Gartrell et al., 2017), in which the gram matrix is factorized as L = BB> where B ∈ <n×m
with m� n. This decomposition can also reduce the complexity which is originally a cubic time
of |L|. Kulesza & Taskar (2011b) explicitly expressed the kernel with κ(x,y) = σ1σ2δ(x)>δ(y),
where σ measures the intrinsic quality of the feature and δ(·) is function mapping input x to a
feature space. In this sense, the pairwise similarity is calculated in Euclidean feature space with
cosine distance. Elfeki et al. (2019) suggest approximating a given distribution by approximating the
eigenvalues of the corresponding DPP. As such, the computation can be eased and become stable.
Following this, DPP is also applied on some visual tasks, such as video summarization (Sharghi et al.,
2018), ranking (Liu et al., 2017) and image classification (Xie et al., 2017). It can be noted that the
approximation is not straightforward for DPP, thus cannot fully deliver the diversity property (e.g.
resulting in rank-deficiency).

Direct optimization. While the aforementioned methods optimize DPP with specific approximation,
a series of efforts also seek to optimize the DPP term directly (Gillenwater et al., 2014; Mariet &
Sra, 2015; Bardenet & Titsias, 2015). In this setting, the whole gram matrix L corresponding to the
pairwise similarity among features is updated directly, which allows accommodating more flexible
feature mapping functions rather than an approximation. Gillenwater et al. (2014) proposed an
Expectation-Maximization algorithm to update marginal kernel DPP K = L(L + I)−1, together
with a baseline K-Ascent derived from projected gradient ascent (Levitin & Polyak, 1966). Mariet &
Sra (2015) extended DPP from a fixed-point perspective and Bardenet & Titsias (2015) proposed
to optimize DPP upon a lower bound in variational inference fashion. A key problem of such line
of works is that the computation is not differentiable, making it difficult to be used in deep learning
frameworks.

To the best of our knowledge, there is no previous method incorporating DPP as a feature-level
diversity metric in deep learning. A key difficulty in doing so is that the calculation of the gradient
of det(L) involves matrix inversion, which can be unstable and inaccurate in GPUs. Though K-
Ascent seems to be a naive rule, it still needs explicit matrix inversion in the first step before the
projection procedure. This fact greatly hinders the tight integration of DPP with deep networks. Some
alternative methods seek to reach diversity under more constrained settings. For example, Zhang
et al. (2017) resorted to a global pairwise orthogonality constraint in hyper-sphere and Zadeh et al.
(2017) employed statistical moments to measure the diversity. However, compared with DPP, such
measurements are unable to fully characterize diversity in an arbitrary bounded space.

In this paper, rather than providing more efficient DPP solvers, we concentrate on delivering a
feasible feature-level DPP integration under the deep learning framework. To this end, we revisit the
spectral decomposition of DPP and propose a sub-gradient generation method which can be tightly
integrated with deep learning. Our method differs from either approximation or direct optimization
by introducing a “differentiable direct optimization” procedure, thus can produce genuinely diverse
features in continuous bounded space. Our method is stable and scalable to the relatively large dataset
with a specific mini-batch sampling strategy, which is verified by several experiments on various
tasks.

Notations: Bold lower case x and bold upper case K represent vector and matrix, respectively. det(·)
and Tr(·) calculate the determinant and trace of a matrix, respectively. A⊗B is the element-wise
product of matrices A and B. |X | and |x| measure the cardinality of a finite set X and the L2 length
of a vector x, respectively. 〈x,y〉 calculates the inner product of the two vectors. x = diag(X)
transforms a diagonal matrix X into its vector form x, and vice versa. We refer “positive semi-definite”
and “positive definite” to PSD and PD, respectively. Denote < the real numbers.

2 BACKGROUND

2.1 DETERMINANTAL POINT PROCESS

L-ensemble expression of DPP requires L to be PSD, whereas kernel expression further constrains
K < I (each eigenvalue of K is less than 1). A conversion from L to K can thus be written as
K = L(L + I)

−1 following the truth
∑
X det(LX ) = det(L + I), which is the marginal normaliza-

tion constant given a specific L. While there is always conversion from L to K, the inverse may not
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exist (Kulesza et al., 2012). In practice, one may construct L-ensemble first, then normalize it into a
marginal kernel. This fact may give rise to the difficulty of deep networks. Since a conversion from
K to L might not exist, the network needs carefully adjusting the gradients under specific constraints
to ensure the updated L to be valid. As L and K share the same eigenvectors vi, a pair of L and K
holds the relation:

K =
∑
i

λiviv
>
i ⇐⇒ L =

∑
i

λi
1− λi

viv
>
i (2)

where λi is the ith eigenvalue. It is seen that such conversion is not straightforward to be directly
integrated with deep learning framework. Therefore, we optimize ensemble L directly in this paper.

2.2 GAUSSIAN KERNEL

We briefly introduce Gaussian kernel in this section, which works on Hilbert space with infinite
dimension. Mercer’s theorem Friedman et al. (2001) ensures the PSD properties when constructing
new kernels with existing ones under a specific procedure. Such procedure is also employed in
multiple kernel learning paradigms (Affandi et al., 2014; Kulesza & Taskar, 2011b; Chao et al.,
2015), which is out of the scope of this paper. A Gaussian kernel is defined as κ(xi,xj) =
exp

(
−|xi − xj |2/σ2

)
, where σ is a controlling parameter. Thus an L-ensemble matrix becomes

Lij = κ(xi,xj). According to the definition, Lii = 1 and for any element in the matrix we have
Lij ∈ (0, 1]. With Gaussian kernel, we have a nice property 0 ≤ det(L) ≤ 1. This can be easily
verified by applying geometric inequality to the eigenvalues of L. Although not tight, this property
shows that the determinant value with Gaussian kernel is bounded. This fact inspires one version
of our algorithm detailed in the next section. Throughout this paper, our discussion is based on the
Gaussian kernel unless specified.

3 METHOD

Given vectorized inputs Ii ∈ Rh where i = 1, ..., n, our goal is to learn a map f such that the features
xi = f(Ii) can spread out within a bounded feature space xi ∈ S. Hereafter we refer space to an
Euclidean bounded space (e.g., [−1, 1]d) without loss of generality. Given any loss function J , the
chain rule of gradient involving DPP is written as:

∆J =
∂J

∂ det(L)

∂ det(L)

∂L

∂L

∂X
(3)

where X refer to the features before DPP layer. While calculating ∂J/∂ det(L) and ∂L/∂X is
straightforward, the main difficulty lies on the calculation of ∂ det(L)/∂L. We will discuss the
calculation of this term under two case: 1) When the inversion L−1 can be stably obained, we
will derive the gradient of DPP det(L) on Sec 3.1; When L is not invertible or L−1 is difficult to
calculate, we give the procedure to handle the case by generating valid sub-gradient in Sec 3.2. Since
our objective is to diverse features, det(L) will serve as a (partial) objective term to be directly
maximized.

Algorithm 1 DPPSG

Input: K, tolerance ∆; Output: K̄
UΛU> ← K
(σ1, ..., σn)← diag(K)
for i in {1, ..., n} do

if σi < ∆ then
σi ← ∆

end if
end for
Λ̂← diag(σ1, ..., σn)

K̂← UΛ̂U>

K̄← K̂−K

Algorithm 2 DPPSG*

Input: K, tolerance θ; Output: K̄
UΛU> ← K
(σ1, ..., σn)← diag(K)
b = (1− θ)(σ1, ..., σn)− θ(1, ..., 1)

Λ̂← diag(b)

K̂← UΛ̂U>

K̄← K̂−K
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3.1 DERIVATION OF GRADIENT

With kernel κ, a DPP regularization term seeks to maximize the possibility of a feature configuration
xi, i = 1, ..., n. As this possibility is proportional to det(L), the objective is max det(L). This can
become a regularization term where diversity is required. Thus with a general loss function LG, our
aim is to solve minLG − λ1 det(L), with the controlling parameter λ1 ≥ 0. For the time being, we
assume that kernel matrix L is invertible (we will discuss the case when L is not invertible in the next
section), hence L−1 exists. Without loss of generality, we discuss the gradient of the determinant
equipped with Gaussian kernel. For other kernels the derivation is analogous. According to Eq (??),
Lij can be further factorized as:

Lij = exp

(
−
∑
l(xil − xjl)

2

σ2

)
(4)

where xij is the jth dimension of feature xi. Using chain rule, the derivative of det(L) w.r.t. xil can
be written as:

∂ det(L)

∂xil
= det(L) Tr

(
L−1

∂L

∂xil

)
(5)

where on the ijth position of ∂L
∂xil

the corresponding element is:(
∂L

∂xil

)
ij

= exp

(
−|xi − xj |2

σ2

)(
−2(xil − xjl)

σ2

)
(6)

Eq (6) can be more compactly expressed as:
∂L

∂xil
= L⊗M(il) (7)

where M(il) is such a matrix that, except for the ith column and row, all resting elements are 0s.
Besides, the ijth and jith elements of M(il) are both − 2(xil−xjl)

σ2 . In summary, Eq (5) can be
simplified as:

∂ det(L)

∂xil
= det(L) Tr

(
L−1

(
L⊗M(il)

))
(8)

To ease the computation and fully utilize the chain rule in deep learning architecture, we peel the
DPP loss into two layers, and the corresponding gradient product can be expressed as:(

∂ det(L)

∂L

)
·
(
∂L

∂x

)
(9)

While we can use existing package to obtain ∂L/∂x reliably, the way to stably calculate ∂ det(L)/∂L
becomes essential. We will detail in the next section once the term is hard to calculate.

3.2 PROPER SPECTRAL SUB-GRADIENT FOR BACK-PROPAGATION

The calculation of the gradient ∂ det L/∂L involves computing the inverse matrix L−1. However,
the kernel matrix L is not always invertible. This situation happens iff there exists at least a pair of
features xi and xj such that xi = xj . In this case, there exist two identical columns/rows of L and the
0 eigenvalue results in the non-invertibility. This phenomenon is sometimes caused by Relu function,
which can map different input values onto an identical one. Even when all features are distinct, the
numerical precision (typically on float number in GPU) may also lead to failure. We occasionally
observed that GPU calculation of L−1 reports error even no eigenvalue is 0. One may imagine
a naive replacement of matrix inverse with the pseudo-inverse, which can be applied on singular
matrices. However, pseudo-inverse will keep the zero eigenvalues intact (still rank-deficiency), and
the back-propagated gradient will play no part to increase the determinant value (both 0 before and
after updates).

To address this, we first diverge to consider the objective of DPP max det(L). Since DPP term
seeks to maximize the determinant, for a configuration L(t) at iteration t with det(L(t)) = 0, any
sufficiently small η sufficing det(L(t+1)) > 0 with η = L(t+1) − L(t) can be a valid ascending
direction. Thus we give the following definition:
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Figure 1: (a)-(c): feature distribution of MNIST dataset under different settings. Left and right for
training and testing samples, respectively. (a) Contrastive loss for metric learning; (b) Contrastive
loss + DPP regularization; (c) Contrastive loss + DPP regularization + WGAN regularization. For (c),
the features are generally lying in the space [−1, 1]2. Zoom in for better view.

Definition 3.1. Proper Sub-gradient: For a PSD matrix L such that det(L) = 0, L̂ is called its
proper sub-gradient if L̂ is a sub-gradient and det(L + αL̂) > 0 for sufficiently small α > 0.

We see if a proper sub-gradient L̂ can be found at det(L) = 0, back-propagation procedure in deep
learning can consequently perform calculation using L̂. To obtain such L̂, we first note that L can be
eigen-decomposed as following since it is symmetric and PSD:

L = UΛU> (10)

where U is the orthogonal eigenvector matrix and Λ’s diagonal elements are the corresponding
eigenvalues. As L has zero eigenvalues, the rank of Λ is lower than the dimension of L. We sort
all eigenvalue into descending order to k = (σ1, ..., σq, 0, ..., 0), where q < n. We then employ
a simple yet effective amplification procedure by amplifying any eigenvalue smaller than ∆ to ∆.
The amplified eigenvalues are now k̄ = (σ1, ..., σs,∆, ...,∆), where s ≤ q. Let the diagonalized
amplified eigenvalue matrix be Λ̄ (w.r.t. k), then the modified matrix with small positive determinant
can be written as:

L̄ = UΛ̄U> (11)

Now that det(L̄) =
∏q
i=1 σi

∏n
j=q+1 ∆ > 0. For any ε > 0, we can choose a sufficiently small ∆

such that det(L̄) < ε. Thus the continuity of this procedure is guaranteed. The difference L̂ = L̄−L

can be viewed as a proper ascending direction w.r.t. L, as by adding L̂, det(L + L̂) becomes above 0

as well as arbitrarily small. It is trivial to prove that L̂ is a sub-gradient on a neighbor of L, thus L̂ is
also a proper sub-gradient sufficing Definition 3.1. This procedure is summarized in Algorithm 1 and
is termed as DPPSG. Intuitively, once encountering an identical or too close feature pair xi and xj ,
this procedure tries to enhance the diversity by separating them apart from each other.

Inspired by geometric inequality, we provide an improved version of the algorithm taking into
account the property of Gaussian kernel. First it easy to show that the function

∏
i σi is concave in the

feasible set
∑
i σi = n (diagonal of Gaussian gram matrices are 1s, thus trace is n) and the maximal

objective is reached out iff σi = 1. Therefore, any point b = (1− θ)(σ1, ..., σn) + θ(1, ..., 1) will
increase the objective

∏
i σi. By letting θ being a small value, the proper sub-gradient becomes

Udiag(b− σ)U>, where σ = (σ1, ..., σn). This version of update differs from DPPSG as it
generates sub-gradients under geometric constraints. The method is summarized in Algorithm 2 and
is termed as DPPSG*.

During implementation, the irregularity of L is examined to determine whether to adopt a normal
back-propagation (in Sec 3.1) or sub-gradient (in Sec 3.2). This can be done by verifying if the
determinant value in the forward pass is less than a pre-defined small value β. This proper sub-
gradient based back-propagation method can be used to integrate to deep learning framework with
other objectives involving matrix determinant. We emphasize that our method is different from
the line of gradient-projection based methods, such as K-Ascent. While projection-based methods
calculate the true gradient then project it back to a feasible set, our methods generate proper sub-
gradient directly. Without explicitly computing matrix inversion, sub-gradients, in this case, is more
feasible for deep learning framework.
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Mini-batch sampling We employed a balanced sampling strategy for each mini-batch. Assuming
the batch size is n and there are c classes in total, in each mini-batch the distribution of samples
generally follows the whole training sample distribution on c classes. This strategy is considered to
utilize the intrinsic diversity of the original data. Besides, mini-batch sampling can constrain the
overhead of DPP computation depending only on the batch size, which can be viewed as a constant
in practice.

3.3 BOUNDING THE FEATURES WITH WASSERSTEIN GAN

Practically, the features are always required to lie in a bounded space. This is essential in some
applications as a bounded space is more controllable. Especially, sometimes one may demand that
the features should suffice to a pre-defined distribution P . This bounding requirement is crucial
to the objective of DPP since maximizing determinant tends to draw feature points infinitely apart
from each other. A naive method to achieve this is to truncate the features or using barrier functions.
However, these methods will result in irregularly dense distribution on the learned feature space
boundary. To overcome this issue, we employ Wasserstein GAN (WGAN) Arjovsky et al. (2017) to
enforce the features mapped to a specific distribution P . As we do not focus on WGAN in this paper,
readers are referred to Arjovsky et al. (2017) for more details.

To this end, we randomly sample n1 points x̄i from the distribution P under balanced sampling,
which are treated as positive samples. The generator f(·) takes a feature as input and outputs the
corresponding embedding. Denote the discriminator h(·) (which is also the mapping from input to
feature). Then the WGAN loss for discriminator is:

LW = Ex̄∼P [h(x̄)]− EI∼p(I) [h(f(I))] (12)

According to the Arjovsky et al. (2017), we incorporate the generator loss LC = −E[h(f(I))] into
general loss LG and obtain L = LG − λ1LD + λ2LC , where λ1 > 0 and λ2 > 0 are controlling
parameters and LD is the DPP term. In general, the second and third losses serve as regularization.
While the DPP term LD makes the points spread out over the whole space, the WGAN term LW
enforce the points to be under a distribution P . These two terms are set to negative as we seek to
maximize them. In the implementation, LW and L are trained alternatively.

mAP-k(%)
k 10 20 50 100

baseline 63.90 62.87 61.43 58.65
DPPSG 67.22 67.45 65.82 62.78

DPPSG* 67.94 68.73 66.32 62.75
DPPSG+WGAN 68.07 69.34 66.19 63.40

DPPSG*+WGAN 69.14 70.32 68.04 64.58

Table 1: Retrieval performance on MNIST.

mAP-k(%)
b-size 10 20 50
200 30.50 31.28 32.49
300 30.78 32.27 32.29
400 31.44 33.46 33.51
500 33.97 34.49 35.38

Table 2: Impact of batch size (b-
size) in CIFAR-100 100 classes.

4 EXPERIMENTS

In this section, we conduct two experiments. One is about metric learning and image hashing on
MNIST and CIFAR to verify the effectiveness of our method, while another is for local descriptor
retrieval task based on HardNet (Mishchuk et al., 2017). For the first test.

4.1 VERIFICATION TEST

MNIST This simple dataset is suitable to reveal the geometric properties of the features on various
tasks. We test the image retrieval task equipped with contrastive loss LC =

∑
L(i)=L(j) (xi − xj)

2
+

α
∑
L(i)6=L(j) max

(
µ− (xi − xj)

2, 0
)

under Gaussian DPP regularization, where L(i) indicates
the label of the ith feature and xi is the learnt feature. We employ a simple network structure for

1We choose n as the batch size for simplicity. One can change this value.
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(b) Lin et al. (2015)
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Figure 2: Visualization of 16–bit hashing code results on CIFAR–10. For (c) the histograms up and
down correspond to DPP+WGAN and Lin et al. (2015), respectively. Zoom in for better view.

MNIST. This network consists of 3 convolutional layers (Conv) followed by 2 fully connected layers
(FC). Batch normalization (Ioffe & Szegedy, 2015) is applied on each layer. The filter number of
each Conv are 32, 32 and 64, respectively. The sizes of the filter are identically 5× 5. For the first
Conv, we employ maxpooling. For the other 2 Convs, average pooling is adopted. The dimensions of
the last FCs are 200 and 2 (for 2D visualization).

The performance can be found in Table 1 and the feature distribution is visualized in Figure 1. From
Table 1, it is observed that the performance on retrieval task can be enhanced by adding the DPP
and WGAN regularization terms. We see that DPP term can enhance the retrieval performance by
avoiding feature points from concentrating too much. In this sense, the learned map around the
separating boundary can be much smoother. As retrieval task typically requires the existence of top-k
inter-class samples rather than concentrating property, the DPP term is more preferable. In Figure
1(c), we see that the feature points generally fall into the pre-defined space [−1, 1]2. The utility
of such space is high without sacrificing the retrieval performance. Typically, DPPSG* is slightly
superior to DPPSG. Thus in the following test, we only report the performance under DPPSG* setting
(termed as DPP* for short).

CIFAR–10 image hashing We conduct image hashing on CIFAR–10 which seeks to produce binary
code for images. To this end, we follow the binary hashing code generation procedure in Lin et al.
(2015) which is activated by a Sigmoid function. The number of neurons in the second last layer
equals to the number of bits of the hashing codes. It is anticipated that DPP regularization can
enhance the utility in binary code space since the code can spread out2. We test two lengths of binary
code (12 and 16). We visualize the 16–bit feature distribution using TSNE (Maaten & Hinton, 2008)
in Fig. 2 (a) and (b), and the binary code histogram comparison in (c). The quantitative results are
summarized in Table 2. As Lin et al. (2015) jointly solve binary code generation and classification,
we report both retrieval performance (mAP) and classification performance (Acc). We see our method
can significantly enhance the binary space utility while keeping the performance almost intact.

CIFAR–100 metric learning We employ all the convolutional layers in VGG-19 (Simonyan &
Zisserman, 2014) as the base and discard its final fully connected layers. Thus the output size of this
base VGG-19 network is 1× 1× 512. We concatenate 3 fully connected layers with ReLU activation
on each after that with dimensions 512, 100 and 20, respectively. Contrastive loss is applied on the
20-dimensional space. We train the whole network from scratch. Aside from mAP, we also report
top-k average precision (Precision-k) and the Wasserstein distance to the pre-defined distribution
(Gap to P). The performance on coarse (20 classes) and fine (100 classes) levels can be found in
Table 3. In either setting, we see that DPP+WGAN significantly outperform the baseline. Thus we
infer that the DPP term can serve as a regularization not only for the feature itself but also for the
smoothness of the mapping. Since the DPP term avoids the features from concentrating too much,
the learned mapping should also be from a smoother function family.

Batch size VS. performance We study how batch size influences the performance with DPP regu-
larization. To this end, we report the performance on CIFAR-100 100-class retrieval with different
batch sizes. The results are shown in Table 2. Generally, with larger batch size, the algorithm can
reach out better mAP. We note the computational efficiency of DPP sub-gradients is high, which adds

2Higher binary code space utility can enhance the hashing speed and save the storage.
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very slight overhead (even with 500 batch size) to each iteration of common back-propagation under
contrastive loss, which can be neglected.

mAP-k (%) Precision-k (%) Gap to P
k 10 20 50 10 20 50

On coarse (20) classes
Baseline 6.98 6.74 6.82 9.44 9.36 9.35 –

DPP* 45.35 48.09 48.74 55.62 53.04 51.08 –
DPPW* 47.30 52.18 54.37 60.60 58.44 57.39 0.046

On fine (100) classes
Baseline 17.98 18.24 18.06 23.21 23.47 22.76 –

DPP* 28.43 28.49 28.37 35.18 34.79 33.26 –
DPPW* 30.50 31.28 32.49 40.15 40.76 38.36 0.032

Table 3: Metric learning performance on CIFAR–100 dataset
with course (20) and fine (100) classes.

mAP-k (%) Acc
k 50 100 all

12–bit
DCH 82.9 83.9 85.9 83.5
DPP 81.7 81.9 81.7 89.9

16–bit
DCH 84.9 85.4 86.7 92.0
DPP 83.9 83.7 82.9 91.5

Table 4: Image hashing on CIFAR–
10. “Acc” is the classification accu-
racy.

4.2 LOCAL DESCRIPTOR RETRIEVAL

This test utilizes the UBC Phototour dataset (Brown & Lowe, 2007), which consists of three subsets
(Liberty, Notre Dame, and Yosemite) with around 400k 64× 64 local patches for each. We follow
the protocol in Mishchuk et al. (2017) to treat two subsets as the training set and the third one as
the testing set. As each pair of matched image patches includes only two patches, there is no need
to apply balanced sampling in this test. We simply add DPP regularization term to the objective
of state-of-the-art algorithm HardNet (Mishchuk et al., 2017). The batch size is 512. We report
FPR (false positive rate) and FDR (false discovery rate) following Mishchuk et al. (2017); Han
et al. (2015). Results are summarized in Table 5. Several baselines are selected for comparison (i.e.
SIFT (Lowe, 1999), MatchNet (Han et al., 2015), TFeat-M (Balntas et al., 2016), L2Net (Tian et al.,
2017) and HardNet (Mishchuk et al., 2017)). As the authors improved HardNet after the NeurIPS
submission, we also compare with the latest version (termed as HardNet+). We only conduct our
method under DPPSG* setting and name our method HardDPP. We see that with DPP regularization,
the performance of HardNet can be further enhanced. Note that in HardNet there is no WGAN
integrated as the mapped features lie in the surface of a hyper unit sphere. While the sampling strategy
of HardNet emphasizes the embedding behavior near the margin, DPP regularization can further
focus on global feature distribution.

Training Notre + Yose Lib + Yose Lib + Notre Mean
Testing Lib Notre Yose FDR FPR

SIFT 29.84 22.53 27.29 26.55
MatchNet 7.04 11.47 3.82 5.65 11.6 8.7 7.74 8.05
TFeat-M 7.39 10.31 3.06 3.8 8.06 7.24 6.47 6.64
PCW 7.44 9.84 3.48 3.54 6.56 5.02 5.98
L2Net 3.64 5.29 1.15 1.62 4.43 3.3 3.24
HardNet 3.06 4.27 0.96 1.4 3.04 2.53 3.0 2.54
HardNet+ 1.47 2.67 0.62 0.88 2.14 1.65 1.57
HardDPP 1.21 2.17 0.58 0.70 1.79 1.32 1.31 1.17

Table 5: Performance of UBC Phototour comparison. Notre, Yose and Lib are short for “Notre
Dame”, “Yosemite” and “Liberty”, respectively. Following HardNet Mishchuk et al. (2017), we
report FPR at true positive rate at 95%. The best results are in bold.

5 CONCLUSION

In this paper, we investigated the problem of learning diverse features via a determinantal point
process under deep learning framework. To overcome the instability in computing the gradient
which involves the matrix inverse, we developed an efficient and reliable procedure called proper
spectral sub-gradient generation. The generated proper sub-gradient can replace the true gradient
and performs well in applications. We also considered how to constrain the features into a bounded
space, since in such a way one can ensure the behavior of the network more predictable. To this
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end, we further incorporated Wasserstein GAN into our framework. Together, DPP+WGAN showed
significant performance on both some common criteria and feature space utility.

ACKNOWLEDGMENTS

The work was supported in part by a grant from ONR. Any opinions expressed in this material are
those of the authors and do not necessarily reflect the views of ONR.

REFERENCES

Raja Hafiz Affandi, Emily Fox, and Ben Taskar. Approximate inference in continuous determinantal
processes. In NIPS, 2013.

Raja Hafiz Affandi, Emily Fox, Ryan Adams, and Ben Taskar. Learning the parameters of determi-
nantal point process kernels. In ICML, 2014.
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A APPENDIX

A.1 PARAMETER SET-UP

MNIST Some parameters are set as follows: α = 5, λ1 = 103, λ2 = 106, margin µ = 0.8, variance
for Gaussian kernel σ = 0.2 and ∆ = 10−7. During the training, the batch size is set to 200. In
each iteration of DPP and WGAN training, we uniformly sample 2, 000 adversarial points from the
space [−1, 1]2. We adopt RMSprop and the learning rate is 10−4 for all tests. In the testing stage, we
sample 2, 000 points from [−1, 1]2 and calculate the Wasserstein distance with all the testing samples.
This procedure is conducted 10 times and the mean distance is reported.

CIFAR–10 image hashing The parameters in the hashing related experiments are used as following:
variance for Gaussian Kernel σ = 2, the coefficients for the loss term of DPP is λ1 = 102 and for the
loss term of discriminator and generator in WGAN is 10 and 1 respectively. The batch size is set to
500 and the learning rate is initialized to 0.01 with a changing rate of 0.1 at every 150 epoch. The
total number of epoch is set to 350 and we adopt the Adam optimizer to update our model.
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CIFAR–100 metric learning The parameter setting is as follows: α = 1, λ1 = 103, λ2 = 103,
margin µ = 0.8, variance for Gaussian kernel σ = 0.2 and ∆ = 10−6. The rest of the settings are
the same as those of MNIST test.

A.2 CRITERIA PRECISION-k AND MAP-k

For image retrieval task, we adopt the top-k mean average precision (abbreviated as mAP-k) to
evaluate the performance. We also present the top-k average precision (abbreviated as Precision-k),
which is calculated as:

Precision(bj)@K =

∑K
i=1 I(bj)P (bj)@i∑K

i=1 I(bj)
(13)

where b is the corresponding class and I is the indicator function:

I(b) =

{
1 if b is a true positive
0 if b is a false positive

(14)

Thus mAP-k is the reweighted version of Precision-k:

mAP(bj) =

∑N
j=1 Precision(bj)@K

N
(15)

A.3 OVERHEAD OF DPP

Calculating SVD or matrix inversion on a large number of features can be time consuming. However,
in our setting, we employed a common practice in deep learning – mini-batch – to avoid such
computation on a whole batch. We can conclude that mini-batch strategy can limit the computational
cost such that the extra overhead of DPP is only dependent on the batch size (thus other parts of the
networks have no impact on this overhead). Therefore, although the complexity of our method is
O(n3), n only corresponds to the batch size rather than whole sample number in our setting, which
is much more manageable in practice. We report the average overhead comparison on CIFAR-10
hashing task with varying batch sizes (100, 200, 250, 400 and 500) on a GTX 1080 GPU as in Table
6 (time in seconds):

batch size 100 200 250 400 500
overhead-all 0.175 0.263 0.308 0.411 0.493

overhead-DPP 0.011 0.029 0.033 0.042 0.056

Table 6: Overhead of a single batch and a DPP calculation on CIFAR-10 hashing task with varying
batch size. Time is in seconds.

where “overhead-all” and “overhead-DPP” refer to the average time cost (s) for a single batch on
all the computation and only DPP computation (both forward and backward), respectively. We can
conclude that, compared to other computation, the extra overhead of DPP is small (even in a simple
network as CIFAR-10 hashing). Besides, a batch size up to 500 is considered to be sufficient in most
of the applications. In practice, we did not employ any trick to reduce such overhead (since it is out
of the papers focus) but simply utilized standard functions provided by Pytorch.

A.4 SOME BASELINE DETAILS

For MNIST verification test, we employed a simple backbone. The structure of the back-
bone is {conv 1(5× 5)+maxpool+conv 2(5× 5)+avepool+conv 3(5× 5)+avepool+fully con1(200-
d)+fully con2(2-d)+fully con3(10-d)+contrastive loss} . We add DPP and WGAN regularization to
the features at “fully con2” layer, which is 2-dimensional thus better for visualization.

For CIFAR-10 image hashing task, we employ the same network structure as a high-cited method
DCH (Lin et al., 2015). DPP and WGAN loss is applied on the second last fully connected layer (the
dimension of this layer corresponds to the length of digits in the hashing code).
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For CIFAR-100 metric learning task, we employ all the convolutional layers of VGG19, concate-
nated with 3 fully connected layers (with 512, 100 and 20 dimension). DPP and WGAN loss, together
with contrastive loss, is applied on the final fully connected layer (20-dimension). The network is
trained from scratch without any pre-training.

A.5 DEGRADATION ON CIFAR-10 IMAGE HASHING

For the performance degradation with DPP on hashing task, we can take Figure 2 (c) as an example
to explain. We see that original DCH features concentrate on several digits (generally 10 digits
corresponding to 10 classes), while DPP features diffuse to almost the whole discrete space. In this
sense, if one retrieves the k-th closest hashing code, DCH can find the hashing code with a small
searching radius. However, one has to greatly enlarge the search radius for k-th closest code in DPP
feature space since the distribution is much more even. In this sense, DPP will inevitably causes
degradation since large searching radius will more likely to reach a code in other class. Therefore, we
think “utility vs mAP” is an intrinsic conflict and needs to reach a trade-off.
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